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Regression analysis on forward 
modeling of diffuse optical 
tomography system for carcinoma 
cell detection
K. Uma Maheswari 1, M. Thilak 2, N. SenthilKumar 2, N. Nagaprasad 3, Leta Tesfaye Jule 4,5, 
Venkatesh Seenivasan 6 & Krishnaraj Ramaswamy 5,7*

The forward model design was employed in the Diffuse Optical Tomography (DOT) system to 
determine the optimal photonic flux in soft tissues like the brain and breast. Absorption coefficient 
(mua), reduced scattering coefficient (mus), and photonic flux (phi) were the parameters subjected to 
optimization. The Box–Behnken Design (BBD) method of the Response Surface Methodology (RSM) 
was applied to enhance the Diffuse Optical Tomography experimental system. The DC modulation 
voltages applied to different laser diodes of 850 nm and 780 nm wavelengths and spacing between the 
source and detector are the two factors operating on three optimization parameters that predicted 
the result through two-dimensional tissue image contours. The analysis of the Variance (ANOVA) 
model developed was substantial (R2 =  > 0.954). The experimental results indicate that spacing and 
wavelength were more influential factors for rebuilding image contour. The position of the tumor 
in soft tissues is inspired by parameters like absorption coefficient and scattering coefficient, which 
depend on DC voltages applied to the Laser diode. This regression method predicted the values 
throughout the studied parameter space and was suitable for enhancement learning of diffuse optical 
tomography systems. The range of residual error percentage evaluated between experimental and 
predicted values for mua, mus, and phi was 0.301%, 0.287%, and 0.1%, respectively.

The brain and soft breast tissues of the human body are affected by carcinoma cells. The mass screening for brain 
and breast tumor cells through non-invasive imaging is a prerequisite for detection at an early stage and further 
treatment. Tumor detection in the brain and breast is realized by a new morphological imaging modality known 
as diffuse optical tomography. Diffuse optical tomography is a non-invasive, non-ionizing, functional imaging 
model which is worth employing in Near-Infra-Red (NIR) wavelengths 700–1100 nm. The NIR light from the 
laser source illuminated the soft tissues of the brain from different locations. The light propagated through the 
tissue was measured using multiple photodetectors located on the surface of the phantom. Biological tissue 
strongly scatters at NIR wavelengths in diffuse optical tomography, which makes the tissue parameters at the 
boundary suffer from a highly nonlinear problem1. Experimental system2 is supported by passing an ultra-short 
pulse in the time domain or continuous intensity modulation in the frequency domain. Reconstructed image3 in 
spatial distribution with tissue parameters can be related directly to substantial properties4, such as blood and 
tissue oxygenation state. Image reconstruction from optical properties of tissue5 in diffuse optical tomography 
solves two individual problems, namely the forward and inverse problems. Forward problem6 predicts the light 
distribution at the detectors using light dissemination through the tissue. Inverse problem7 estimates the optical 
tissue properties, which reduces the similarity8 between the experimental and model-predicted measurements. 
The robust scattering characteristic of tissues in near-infrared wavelength ranges (700–1100) nm impairs the 
reconstructed picture quality, resulting in poor resolution. Because light scattering is strong, photons follow 
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random trajectories. Further, it suggests that reconstruction is challenging since the arbitrary optical coefficient 
distribution results in an ill-posed issue. Thus, regularisation allows computing modeling 9 to solve the inverse 
issue but not the forward model. As a result, we use the regression model in Response Surface Methodology 
(RSM), particularly the ANOVA (Analysis of Variance) approach, to address the forward model problem by 
improving the experimental design. The associated study explains Culver’s Diffuse Optical Tomography optimiza-
tion approaches. Corlu et al. Yalavarthy et al., Xu et al., Chen, and Dehghani Chen et al., as well as Karkala et al.

The foremost aim of RSM is to use a sequence of designed experiments to obtain an optimal response. RSM 
is practical9, economical, and relatively easy for modeling, examination, and improving the experimental setup. 
The arithmetic prototype developed by RSM, then its competence is cross-verified by the Analysis of Variance 
(ANOVA) technique10,11. Response surface method12 is a collection of mathematical and statistical analysis13 
of problems, wherein numerous unconditional variables x1,x2,…xk called factors are impacted by a conditional 
variable ‘y’ called a response, and its objective is to optimize the result. The response surface methodology can 
be expressed as

The unconditional variables are assumed to be continuous and controlled with a minor error to optimize 
the response variable y14. The resultant or the conditional variable is accepted as a random variable. The choice 
of experimental design radically influences the efficiency of the response surface analysis15. Central Composite 
Design (CCD)16 and Box–Behnken Design (BBD) are the categories of RSM17 chosen for our experimental 
design. Central Composite Design is realistic for a detailed forecast of all response variable averages concerning 
quantities measured during experiments. Box–Behnken Design18 is generally used to perform non-sequential 
experiments. These methodologies developed a second-order quadratic relationship between the experimental 
factors and responses. First and second-order coefficients are estimated efficiently from the design. Compared 
to the Central Composite design, the Box–Behnken design demands a lesser numeral of design points with a 
low cost to run.

Axial points are not present in Box–Behnken design19; thus, it is positive that all design points20 fall within 
the safe operating zone. The fitted second-order polynomial regression model, recognized as the quadratic model 
in RSM evaluation is used to approximate the response y21. The quadratic model is specified as

where y is the answer (conditional variable), xi is the input factors (unconditional variable), a0 is the constant 
regression coefficient, ai is the first order coefficient, aii is the pure quadratic coefficient, and aij is the interaction 
term coefficient. ǫ is a random error that is assumed to be individually allocated. The Eq. (2) is valid until xi is 
equal to xk.

The estimated response ŷ  is constructed on the second-order model. Accurate predictions occur from the 
second-order response model owing to the influence of a single factor; quadratic term and their interaction 
effects are studied.

Related works
Optimization in Diffuse Optical Tomography is demanding since it employs a variety of Diffuse Optical Tomog-
raphy devices. Measurements are performed in a diversity of fields, including time domain, frequency domain, 
and continuous wave, using various measurement geometries, sampling densities, regularisation methods, and 
inversion techniques with varying signal-to-noise levels. Culver et al.22 states a numerical singular value analysis 
for a linear Diffuse Optical Tomography. The forward solution provides an obvious relation between signal, noise, 
regularization, and resolution in Diffuse Optical Tomography systems. Corlu et al.23 investigates wavelength-
conditional tissue properties. They present a multispectral method for the reconstruction of tissue chromophore 
concentrations. The reconstructed variables are wavelength-conditional, and this approach effectively reduces 
the number of unknowns and produces better constrained on the inverse problem. The optimal wavelengths 
are 780 nm and 850 nm, which were investigated and proved in their experimental setup. Therefore, we chose 
these wavelengths for the experimental design of the forward model. Typically, there are three kinds of lasers, 
specifically red, blue, and green, where green and blue are consumed in industrial applications. Red lasers are 
used for biomedical applications as they are harmless. Xu et al.24 optimizes the fiber positions on the skull, and 
the hypothesis was examined on the head. They hypothesized the position of optical fibers on the side of the 
skull nearest to the brain is superior to arranging them likewise spaced around the entire head to maximize the 
sensitivity of brain tissue. Yalavarthy et al.25 specifically worked on mesh resolution in both the forward and 
inverse calculations. They investigated that quantitative accuracy increases with a better number of quantities in 
circular tomography imaging. Chen and Chen26 have used Cramer-Rao lower bound analysis to optimize source-
detector arrangements. The quantitative estimation of lower bounds was constructed by certain parameters, 
such as reconstructed perturbation depths at different noise levels, which are estimated directly without solving 
the inverse problem. Dehghani et al.27 presented numerical simulations using the Finite Element Method on 
an adult head. Diffuse optical tomography was evaluated with different source-detector distances ranging from 
1.3 to 5.5 cm; such hypothetical systems had higher sensitivity and imaging depths. Karkala et al.28 provided an 
optimum data-collection strategy that designs the data resolution matrix. They provided specific information 
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about individual quantities, and their choice of using unconditional measurements does not compromise the 
image quality. A novel method of optimization of experimental design analysis for the Diffuse Optical Tomogra-
phy system was accomplished using Regression analysis, introduced by the author outage the other optimization 
techniques by reducing error percentage.

Experimental analysis and design
The Diffuse Optical Tomography is a time-resolved experimental setup, as shown in Fig. 1. block diagram 
comprises six sets of laser diodes besides photo-detectors mounted on the mimic human head through a head-
band, and its implementation is exhibited in Fig. 229. The phantom tested in human brain soft tissue is a mimic 
phantom. The OPV310 (850 nm) and D7805I (780 nm) 28 laser diodes are utilized, by a switching period of 
3.3 ms. The laser diode operates within the 1.1 MHz and 1.2 MHz RF ranges, respectively. At NIR wavelengths, 
the innocuous red laser sources cause an incident in brain tissue. To exclude the crosstalk, OPT101 photo-
detectors were arranged beside the six sources with an optimal separation of 2 cm. The OPT101 photodiode’s 
trans-impedance amplifier boosts output voltage linearly as a function of illumination strength. Figure 3 depicts 
the shift of the laser-diode collection operated by the AT89C51 microcontroller, which in turn triggers the shift 
period by an operating indicator through MAX232. MAX232 is exhausted, to transmit data from the photodetec-
tor to the microcontroller; and from the microcontroller to the laser diode power source. Human cell tissue is not 
exercised in the study; instead, deformable Tissue Mimicking Materials (TMM), namely Polymethyl methacrylate 
(PMMA) and resins, are involved instead of human cells. TMMs match the absorption and scattering properties 
of soft tissues staunchly, hence, we employed them in the study. The geometry of the mimic phantom taken for 
study follows elliptical which is analogous to human brain features.

OPT101 
Photodetector

Laser diode 
OPV310 (850)nm

Laser diode 
D7805I (780)nm

Signal   
conditioning 
circuit

Microcontroller 
AT89C51

Switching Circuit

Personal 
Computer
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Figure 1.   Diffuse optical tomography experimental model.

Figure 2.   Laser sources and photo-detectors.
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The occurrence voltage of OPV310 was 2.2 V, and D7805I was 3.5 V besides a limit of 1.1 mW and 5 mW of 
power. To attain, elevated rectilinear results at low dark currents, the photodiode operates in photo-conductive 
mode. The low pass filter in the signal processing circuit filters the noise voltages from the photo-diode. The 
filtered photodiode voltage is forwarded via RS232C to the ongoing interface of a personal computer, and30 
becomes accumulated on the MATLAB workstation. The Lambert–Beer law similarity was deployed on the 
recorded photo-diode voltages. MATLAB 2013a was used to determine the absorption coefficient (mua cm−1), 
reduced scattering coefficient (mus cm−1), and photon flux (phi in arbitrary unit (a.u.)). The phantom picture 
was recreated through mua, mus, and phi computed by MATLAB, and suffers31 on dimensional outcome owing 
to forward challenge in the investigational model. Therefore, the Response Surface Methodology was related to 
the system design and analyzed using Box–Behnken Design.

A three-level Box–Behnken Design (BBD)32 of trials were tested with three unconditional variables which 
were coded to experimental values. The design was composed of 18 factorial designs (runs 1–18), 6 midpoints, 
and a group of points two-faced at the midpoint of every boundary of the multifaceted block that outlines the 
target area. The investigational data was analyzed33 using statistical methods, namely regression which appropri-
ates the experimental design to obtain the optimum photonic flux. The nonlinear computer generated a quadratic 
model34 for three-level designs is given as

y is measured response35, a0 is the intercept, a1 to a33 regression factors, x1, x2, x3 are the implicit level of individual 
variables where the input voltages of 850 nm laser diode, 780 nm laser diode and spacing between the array. The 
unconditional and conditional variables used in the design were listed in Table 1.

The design response of the conditional variables for each input (unconditional) variable is demonstrated 
in Table 1. The unconditional input variable low, medium, and high-level ranges with units are specified. The 
experimental analysis is presented in Table 2. which displays the response of photodetector voltages (Ph1–Ph6), 
obtained from the experimental setup. The results based on response voltages will be optimized, by adjusting 
optical parameters such as the absorption coefficient (mua), reduced scattering coefficient (mus), and photonic 
flux (phi). The design matrix was constructed, on the experimental result, for each run of the recorded factors. 
Minimizing the result of inconsistency in the detected result was owing to irrelevant elements; the experiments 
were arbitrarily conducted.

Analysis of ANOVA.  The test significance of the regression model, individual model coefficient, and test 
for lack of fit is summarized in ANOVA Tables 3, 4, and 5. The result summary shows the quadratic example 
response was probabilistically substantial under two dissimilar conditions. The model terms are noteworthy at 
a 95% significance level. To investigate the dependability and accuracy of the standard, the integrity of fitting 
was computed from R2 (coefficient of correlation) and CV (Coefficient of variation). Degrees of freedom were 
expressed as the numeral values that change unconditionally from each other. The regressive exclusion process 
spontaneously reduces the relations that are not substantial; thus subsequent ANOVA36 table is associated with 
a reduced Quadratic model for absorption coefficient (mua), reduced scattering coefficient (mus), and photonic 
flux (phi).

(4)
y = a0 + a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3

+ a23x2x3 + a11x
2

1 + a22x
2

2 + a33x
2

3 + ǫ

Figure 3.   Switching and signal processing circuit.
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In the model table, the probability better than the F (probability > F) parameter is less than 0.05, indicating 
a substantial model since it specifies that the model terms have a substantial response. Model terms A is the 
modulation voltage of 850 nm, B is the modulation voltage of 780 nm, and C is the spacing between Laser Diodes. 
C, A2, and B2 are the substantial model terms. The principal result of second-order wavelength is that extremely 
trivial element exists along with photonic flux. Design-Expert software suggests that a quadratic model offers a 
satisfactory fit, and the design is obtained to have an insubstantial Lack of fit.

Absorption coefficient (mua).  Table 3 Model F-value of 49.04 denotes that the design is substantial, and 
the Model value is around 0.01%. In line with a random value, this value is well-built, and standards with “prob-
ability > F” less than 0.05 imply that the model terms are substantial. The model terms, in this case, C, A2, and 
B2 are substantial. Values higher than 0.1000 specifies the design terms are insubstantial37. The F-value of 0.027 
denotes the lack of fit is irrelevant compared to theoretical error. If the lack of fit value is considerable, it could 

Table 1.   Box–Behnken experimental design variables.

Unconditional variables

Levels used (coded)

Units Low (− 1) Medium (0) High (+ 1)

850 nm x1 volts 1.9 2.05 2.2

780 nm x2 volts 1.6 2 2.4

Space x3 cm 2 3 4

Conditional variables

 Photodetector Ph1 volts

 Photodetector Ph1 volts

 Photodetector Ph2 volts

 Photodetector Ph3 volts

 Photodetector Ph4 volts

 Photodetector Ph5 volts

 Photodetector Ph6 volts

 Absorption coefficient cm−1

 Scattering coefficient cm−1

 Photonic flux a.u.

Table 2.   Design matrix concerning each response variable.

Experiment no

Factors Response

Laser source

Space, cm x3

Photo-detector, volts

Absorption and 
reduced Scattering 
coefficient cm−1

Optical flux, phi a.u.
850 nm
x1

780 nm
x2 Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 mua mus

1 1.90 1.60 3 27.93 25.185 25.304 28.41 25.258 28.236 0.0908357 3.72849 0

2 2.20 1.60 3 26.592 28.905 28.852 25.987 28.95 28.563 0.0907061 3.70844 5.21822E−016

3 1.9 2.40 3 26.827 29.888 28.236 25.963 29.235 28.963 0.0905769 3.68851 1.16486E−015

4 2.20 2.40 3 26.818 26 26.987 25.872 25.21 25.389 0.0904481 3.66872 1.80328E−015

5 1.9 2.0 3 29.485 25.409 28.236 27.478 27.63 29.89 0.0903196 3.64906 2.43333E−015

6 2.20 2.0 2 27.382 26.483 26.963 26.963 26.358 29.963 0.0901915 3.62953 3.05431E−015

7 1.9 2.0 2 28.547 28.811 27.952 27.235 27.698 25.365 0.0900637 3.61013 3.66606E−015

8 2.20 2.0 4 27.328 27.34 26.563 29.689 25.954 27.365 0.0899364 3.59086 4.2686E−015

9 2.05 1.6 4 25.483 28.489 25.365 29.87 26.36 29.298 0.0898093 3.57171 4.862E−015

10 2.05 2.4 2 26.201 27.321 26.956 28.41 27.365 28.862 0.0896827 3.55269 5.44633E−015

11 2.05 1.6 2 29.017 25.594 29.985 25.456 29.63 29.986 0.0895563 3.53379 6.02171E−015

12 2.05 2.4 4 25.943 29.583 26.456 25.658 28.654 28.365 0.0894304 3.51502 6.58826E−015

13 2.05 2.0 4 27.333 27.291 29.562 28.562 25.963 26.258 0.0893048 3.49637 7.14607E−015

14 2.05 2.0 3 25.865 29.9 25.963 25.265 28.21 29.412 0.0891795 3.47784 7.69527E−015

15 2.05 2.0 3 25.491 28.594 25.562 29.789 26.63 25.589 0.0890546 3.45943 8.23597E−015

16 2.05 2.0 3 28.944 25.094 27.561 27.563 29.96 28.987 0.0889301 3.44114 8.76828E−015

17 2.05 2.0 3 26.4 28.287 28.506 27.985 28.639 28.41 0.0888059 3.42297 9.29232E−015

18 2.05 2.0 3 29.295 25.345 29.963 29.258 25.368 25.365 0.088682 3.40492 9.80819E−015
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not occur due to noise. Non-substantial lack of fit is good since we want the model to fit. “Pred-R-squared” of 
0.9452 is in rational treaty with “Adj-R-Squared” of 0.9443. Adequate accuracy determines the signal-to-noise 
ratio and a factor higher than 4 is suitable, whereas a ratio of 18.178 denotes a satisfactory indication. The value 
of R2 is 96.40%, and the adjusted R2 is 94.43%, which means the regression model delivers an outstanding eluci-
dation on the correlation among the unconventional variables (factors) and results.

Model P-value is smaller than 0.05 ((i.e.) α = 0.05 or 95% confidence), thus the design is regarded as proba-
bilistically substantial. The quadratic model for the absorption coefficient regarding coded elements is set as

Table 3.   ANOVA for response Surface Quadratic Model of mua.

Source Sum of squares Df Mean square F value
p-value
prob > F

Model 7.496E−006 6 1.249E−006 49.04  < 0.0001

A-A 3.301E−008 1 3.301E−008 1.3 0.2791

B-B 7.401E−008 1 7.401E−008 2.91 0.1163

C-C 1.291E−007 1 1.291E−007 5.07 0.0911

A2 5.076E−006 1 5.076E−006 199.25  < 0.0001

B2 1.420E−006 1 1.420E−006 55.73  < 0.0001

C2 1.392E−008 1 1.392E−008 0.55 0.4753

Residual 2.802E−007 8 2.547E−008

Lack of fit 8.732E−009 3 1.455E−009 0.027 0.9998

Pure error 2.715E−007 5 5.430E−008

Cor total 7.776E−006 17

Table 4.   ANOVA for Response Surface Quadratic Model of mus.

Source Sum of squares Df Mean square F value
p-value
Prob > F

Model 0.17 6 0.028 51.4  < 0.0001

A-A 7.733E−004 1 7.733E−004 1.04 0.2616

B-B 1.725E−003 1 1.725E−003 3.13 0.1048

C-C 2.934E−003 1 2.934E−003 5.31 0.0417

A2 0.12 1 0.12 208.30  < 0.0001

B2 0.032 1 0.032 58.11  < 0.0001

C2 2.202E−004 1 2.202E−004 0.40 0.5406

Residual 6.073E−003 11 5.521E−004

Lack of fit 2.201E−004 6 3.669E−005 0.031 0.997

Pure error 5.853E−003 5 1.171E−003

Cor total 0.18 17

Table 5.   ANOVA for Response Surface Quadratic Model of phi.

Source Sum of squares Df Mean square F value p-value prob > F

Model 1.239E−014 6 2.056E−015 43.25  < 0.0001

A-A 2.195E−016 1 2.195E−016 4.62 0.0547

B-B 4.711E−016 1 4.711E−016 9.91 0.0093

C-C 1.668E−016 1 1.668E−016 3.51 0.0878

A2 7.902E−015 1 7.902E−015 166.26  < 0.0001

B2 2.641E−015 1 2.641E−015 55.56  < 0.0001

C2 2.906E−016 1 2.906E−016 6.11 0.0310

Residual 5.228E−016 11 4.753E−017

Lack of fit 3.757E−016 6 6.261E−016 2.13 0.2124

Pure error 1.471E−016 5 2.942E−017

Cor total 1.286E−014 17
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Reduced scattering coefficient (mus).  Table  4 Model F-value 51.4 denotes it is substantial, and the 
model terms are C, A2, and B2. The lack of fit F-value 0.031 denotes it is irrelevant to the theoretical inaccuracy. 
The "R-squared" suitable value is 0.9654; "Pred-R-squared" of 0.9470 is of a rational treaty with “Adj-R-squared” 
of 0.9465. The P-value is smaller than 0.0001; therefore, the model reliability is rationalized. The quadratic model 
for reduced scattering coefficient regarding coded elements is given as

Photonic flux (phi).  Table 5 Model F-value 43.25 denotes it is substantial, and the model terms are B, A2, 
B2, and C2. The lack of fit F-value 2.13 specifies that it is irrelevant to the theoretical inaccuracy. The "R-squared" 
suitable value is 0.9593; "Pred-R-squared" of 0.8666 is of a rational treaty with “Adj-R-squared” of 0.9372. The 
P-value is smaller than 0.0001; therefore, the model reliability is rationalized. The quadratic model for reduced 
scattering coefficient regarding coded elements is set as

Response surface analysis design.  Figure  4a–c display the normal probability design of remainders 
declining at a rectilinear line, which denotes that the faults are typically and unconditionally allocated. To com-
pute the efficacy of the investigational model, the first test error terms ei

′

s was assumed to be typically and indi-
vidually scattered with zero mean and variance s2 . The regularity in the hypothesis was suited to the Residual 
chart near the 45° line. The error obtained is the dissimilarity relating the experimental value yi and the equiva-
lent fixed value ŷ  . (i.e.) ei = yi − ŷi.

Figure 5a–c depict the plot of the actual response value predicted for absorption coefficient (mua), reduced 
scattering coefficient (mus), and photonic flux (phi). The predicted values and the actual values were realized to 
be statistically similar. Each examined rate was assessed by the forecasted rate, which is specifically computed 
on the standard. All the points dropped uniformly on both sides of the 45° line. The regression standard satis-
factorily suits the experimental results. The observations yi were typically and unconditionally distributed. The 
statistical regression model predicted provides optimum result; hence the experimental verification confirms 
the forecast value to be optimum.

2D contour and 3D surface plots.  Contour plots shown in Fig.  6a–c were 2D illustrations of results 
designed for certain elements. 2D contour plots, which are bound to be elliptical, show substantial results in the 
optimization of the experimental setup. The primary goal based on the model was to find the adaptable target 
rates when the result is minimized. Every curve characterizes an unbounded quantity of probable permutations 
of the test variables, besides others kept at zero limits. In this contour diagram, the highest anticipated value was 
characterized by a tiny eclipse, and the elliptical contour measures the ideal relationships between unconditional 
variables.

The optimum value from the 2D contours was projected when the input voltages to laser diodes 850 nm 
and 780 nm were 2.05 and 2 V, respectively. The spacing between the arrays was 3 cm, the predicted values for 
absorption coefficient (mua) were 0.08899, the reduced scattering coefficient (mus) was 3.45044, and the optical 
flux phi was 9.6101E−08. The interaction between the input parameter voltages was realized to be less profound 
and linked to spacing which contributes to optimum prediction.

Figure 7a–c predict the 3D contour plots with input interaction factors of laser diode input voltage in the 
ranges of 1.9–2.2 V and 1.6–2.4 V. Typically the spacing is optimized to 3 cm to prevent the crosstalk of the sig-
nals transmitted from the laser diode array, and then scattered rays are detected by the photodetector array. 3D 
surface design for the attained response was illustrated by the typical polynomial functions measuring the vari-
ation of the response surface. 3D design explains the connection relating to the results (conditional variable) and 
factors (unconditional variables). The design met the optimum condition with lower and upper bound ranges.

Figure 7a depicts the output absorption coefficient mua, in the range of 0.0885 to 0.0909, which is acquired by 
varying A and B factors within the span. Based on the desirability, the upper bound has 99.9% of the maximum 
scale value of the plot.

In Fig. 7b, the scattering coefficient mus was measured in the range of 3.4 to 3.73, which is attained by vary-
ing the interaction factors with a spacing of 3 cm. The upper bound predicts the desirability range of 99.9%.

Figure 7c depicts the variation in photonic flux by the interaction of unconditional variables A and B. 3D plot 
interaction scales the upper and lower bound values as 1.19E−08 to 9.27E−08, exhibits the trend of variation of 
responses within the selected range of A, B, and C parameters and the influence of each parameter over another 

(5)

mua = 0.089− 6.424E − 005 ∗ A− 9.618E − 005 ∗ B

− 1.270E − 004 ∗ C + 1.079E − 003 ∗ A2 + 5.704E

− 004 ∗ B2 + 5.647E − 005 ∗ C2

(6)
mus = 3.45− 9.831E − 003 ∗ A− 0.015 ∗ B− 0.019 ∗ C

+ 0.16 ∗ A2 + 0.086 ∗ B2 + 7.104E − 003 ∗ C2

(7)

ArcSin(Sqrt(phi)) = 9.201E − 008+ 5.238E − 009 ∗ A

+ 7.674E − 009 ∗ B+ 4.566E − 009 ∗ C − 4.7255E − 008 ∗ A2

− 2.460E − 008 ∗ B2 + 8.160E − 009 ∗ C2
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Figure 4.   (a) The normal probability plot of residuals for mua—checks the mua data points are linear and 
follow the straight line (normal). (b) The Normal Probability plot of residuals for mus—checks the mus data 
points are linear and follow the straight line (normal). (c) The Normal Probability plot of residuals for phi—
checks the phi data points are linear and follow the straight line (normal).



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2406  | https://doi.org/10.1038/s41598-023-29063-4

www.nature.com/scientificreports/

Figure 5.   (a) Actual versus the Predicted value of mua—checks precise fit of actual response and prediction of 
mua for a set of values. (b) Actual versus the Predicted value of mus—checks precise fit of actual response and 
prediction of mus for a set of values. (c) Actual versus the predicted value of phi—checks precise fit of actual 
response and prediction of phi for a set of values.
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Figure 6.   (a) Contour plot of two-factor interaction for mua—2D design produces mua response on variation 
in numeric input elements. (b) Contour plot of two-factor interaction for mus—2D design produces mus 
response on variation in numeric input factors. (c) Contour plot of two-factor interaction for phi—2D design 
produces phi response on variation in numeric input elements.
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Figure 7.   (a) 3D plot interaction of A and B for mua—displays the response mua based on the interaction of 
three numeric factors. (b) 3D plot interaction of A and B for mus—displays the results of mus based on the 
interaction of three numeric factors. (c) 3D plot interaction of A and B for phi—displays the response phi based 
on the interaction of three numeric factors.
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parameter. The region of optimum conditions was achieved with an upper bound value lying in the desirability 
range. The optimum value of photonic flux was 7.346E−08 which is in the desirability range of 99.9%.

Desirability function.  The desirability function d(yi) was worth optimizing the output parameter in the 
experimental result. The transfer function is given as

where x1, x2,…xk is total unconditional variables and i = 1,2,…p represent the multiple responses. 
The di = di

(
yi
)
= di

(
yi(x)

)
 desirability function will assign values between 0 and 1. Possible values of yi 

concerning di
(
yi
)
= 0 & di(yi) = 1 , are the most desirable and undesirable values of yi . Individual desirability 

d(yi) is associated with each requirement in yi . The arithmetic mean of each discrete desirability function that 
exists in every multiple response problem is represented by desirability factor D. From, Fig. 8 Ramp functional 
chart provides the desirability result d(yi) = 0.999 . Subsequently, the photonic flux of the forward model was 
organized to be maximized to obtain the high-resolution image in diffuse optical tomography41,42.

The desirability of 0.999 was obtained by setting input voltages of laser diodes 850 nm (x1) and 780 nm (x2) 
in ranges of 2.15 V and 2.24 V. Along with spacing (x3) of 2.19 cm, we obtain the optimum value of absorption 
coefficient mua in the target range as 0.0897298, scattering coefficient mus as 3.56021and photonic flux phi in 
the span of 7.34661E−008. In this experimental analysis, desirability must be close to 1 to maximize the outputs 
to reduce the forward model problem.

Results and discussion
Confirmation experiments were accomplished to validate quadratic model adequacy. The residual error percent-
age was computed from the predicted value and actual experimented value with a prediction interval of 95%

The test results from experimental verification was displayed in Table 6; the error % lies between − 0.493% 
to 0.483% for absorption coefficient (mua), − 0.783% to 0.287% for reduced scattering coefficient (mus), and 
-0.751% to 0.651% for photonic flux (phi). The experimental test result lies within 95% of the confidence interval.

Table 7 compares the expected error percentage 36 figures to the three current 37 systems 38. The proposed 
system error % for Absorption coefficient mua was 0.301 and for scattering coefficient mus was 0.287. A perfor-
mance comparison of the proposed system with the existing system is displayed in Fig. 9.

Conclusion
The Box–Behnken architecture was exercised in an experimental program to maximize the forward model 
parameters. The response surface approach, which has been effective, may be used to access the three important 
Diffuse Optical Tomography input components. The factors were the input voltages of 850 nm (x1), 780 nm 
(x2), and space between the arrays (x3) in the forward model; the output response parameters were absorption 

(8)yi(x) = fi(x1, x2, ......xk), i = 1, .., p

(9)Error% =
Experimental − PrPredicted

PrPredicted
× 100

Figure 8.   Ramp functional graph for optimum results—displays simple interpretation of input values to 
produce an optimized desirable response of 99.9%.
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coefficient (mua), reduced scattering coefficient (mus) and photonic flux (phi). The spacing (x3) between the 
array of laser diodes and the photo-detector has implications for determining the optimum values of the results. 
Statistical Regression model equations were obtained by the software package Design Expert 7.0. The experi-
mental data was justified, by the competency of an analytical model. The forecast value and experimental value 
were realized to be in perfect agreement. The optimum process parameters were attained when the input voltages 
of a laser diode as 2.15 V, and 2.24 V, and the spacing was 2.19 cm. The optimum results were an absorption 
coefficient (mua) value of 0.089 cm−1, reduced scattering coefficient (mus) value of 3.5 cm−1, and photonic flux 
value7.3E−08a.u. The value of R2 (0.95) is close to 1, specifying an extraordinary measure of correspondence 
relating to the result and unconditional variables, which was exposed by five experimental verification responses 
displayed in Table 6. The optimized formulations produced experimental values for the response variables that 
are linearly close to the predictions. Figure 8 proves that our proposed system exhibits better performance in 
similarity with the existing system.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Table 6.   Optimization Process for mua, mus, phi-RSM versus Experimental. Significant values are in bold.

Factors Response

850 nm X1 volts 780 nm X2 volts Space X3 cm

mua cm−1 mus cm−1 phi a.u.

Experimental Predicted Error% Experimental Predicted Error % Experimental Predicted Error %

1.94 1.83 2.88 0.089430 0.089 0.483 3.708437 3.70 0.228 9.27E−15 9.21E−15 0.651

2.15 2.24 2.19 0.089729 0.090 − 0.301 3.560210 3.55 0.287 7.34E−08 7.33E−08 0.136

2.05 2 3 0.090577 0.091 − 0.465 3.515017 3.51 0.142 9.25E−15 9.23E−15 0.216

2 2 3 0.090706 0.091 − 0.323 3.441142 3.45 − 0.256 8.97E−15 8.93E−15 0.447

1.93 2.16 3 0.089556 0.09 − 0.493 3.422974 3.45 − 0.783 9.3E−15 9.32E−15 − 0.214

2 1.6 3 0.089683 0.09 − 0.353 3.53379 3.54 − 0.175 9.24E−15 9.31E−15 − 0.751

Table 7.   Comparison of the proposed system with the existing system. Significant values are in bold.

System Optical parameters (cm−1) Measured (cm−1) Predicted (cm−1) Error

Sultana et al.38
µs

′ 11.57000 9.300 0.240

µa 0.036000 0.034 0.050

Ilias et al.39
µs

′ 9.700000 9.300 0.040

µa 0.107000 0.034 2.100

Eiji and David40
µs

′ 9.100000 9.300 0.210

µa 0.140000 0.034 3.110

Optical property extraction system
µs

′ 3.560210 3.550 0.287

µa 0.089729 0.090 0.301

0

0.5

1

1.5

2

2.5

 System 1   System 2  System 3 Proposed 
System 

Absorption coefficient mua Error % 

Scattering coefficient mus Error % 

Comparison of Error % with existing system

Er
ro

r %

Figure 9.   Comparison of error % with the existing system.
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