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Gut microbial signature in lung 
cancer patients highlights specific 
taxa as predictors for durable 
clinical benefit
Yael Haberman 1,2,4, Iris Kamer 3, Amnon Amir 1, Sapir Goldenberg 3, Gilat Efroni 1, 
Inbal Daniel‑Meshulam 3, Anastasiya Lobachov 3, Sameh Daher 3, Rotem Hadar 1, 
Hadas Gantz‑Sorotsky 3, Damien Urban 3, Tzipi Braun 1 & Jair Bar 3,4*

We aimed to determine microbial signature linked with lung cancer (LC) diagnosis and to define taxa 
linked with durable clinical benefit (DCB) of advanced LC patients. Stool samples for microbial 16S 
amplicon sequencing and clinical data were collected from 75 LC patients (50 of which were treated 
with checkpoint inhibitors) and 31 matched healthy volunteers. We compared LC to healthy controls 
and patients with DCB to those without. LC patients had lower α-diversity and higher between-
subject diversity. Random Forests model to differentiate LC cases from controls ROC-AUC was 0.74. 
Clostridiales, Lachnospiraceae, and Faecalibacterium prausnitzii taxa abundance was decreased in LC 
compared to controls. High Akkermansia muciniphila correlated with DCB (HR 4.26, 95% CI 1.98–9.16), 
not only for the immunotherapy-treated patients. In addition, high Alistipes onderdonkii (HR 3.08, 
95% CI 1.34–7.06) and high Ruminococcus (HR 7.76, 95% CI 3.23–18.65) correlated with DCB.Our 
results support the importance of gut microbiome in LC. We have validated the apparent predictive 
value of Akkermansia muciniphila, and highlighted Alistipes onderdonkii and Ruminococcus taxa 
correlation with DCB. Upon additional validations those can be used as biomarkers or as targets for 
future therapeutic interventions.

Lung cancer (LC) is the number one cause of cancer-related death world-wide. Despite significant advances in the 
care of non-small cell LC (NSCLC) as well as small cell LC, the majority of patients will die within the first year 
or two from diagnosis. There is a clear need for earlier diagnosis and for insights into the biology of this disease. 
Host microbiome composition has been extensively studied for correlation with specific disease states1 including 
LC. One such report regarding gut microbial composition included 30 LC patients2—and another study included 
18 LC patients3. In addition, data from a set of 95 locally advanced NSCLC patients including gut microbiome and 
urine metabolomics demonstrated high accuracy in differentiating between LC and normal controls4. Analysis 
of 76 early stage NSCLC patients’ gut microbiome identified a signature differentiating between cancer patients 
and healthy controls with an accuracy of 76.4% in the validation cohort5. Salivary microbiome was also found 
to have a distinct composition in LC patients compared to controls6. However, considering the geographic and 
ethnic variability of gut microbiome composition7, such studies require multiple validations.

Fecal microbiome transplant experiments from human cancer patients to mice demonstrated that gut micro-
biome impacts the response to checkpoint inhibitors (CPIs)8–10 and to adoptive cell transfer11. The presence or 
relative abundance of specific microbes such as Akkermansia muciniphila or Bifidobacterium12,13 correlated 
with response to anti-PD-1 or anti-PD-L1 checkpoint inhibitors in humans. Interestingly, chemotherapy effi-
cacy has also been linked to microbiome composition14, with most data relating to cyclophosphamide and 
oxaliplatin15–17, as well as cisplatin18. This association may be related to the role of the immune system in chemo-
therapy efficacy19,20. It can be speculated that targeted agents might also modulate the immune system through 
specific signaling pathways as well as by exposing immunogenic cancer antigens from dying cells21. Two clinical 
studies of fecal microbial transplant (FMT) combined with CPIs, for CPIs-resistant melanoma and renal cell 
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carcinoma patients demonstrated a proof-of-concept clinical response22,23, providing solid evidence for the 
impact of the gut microbiome on the cancer response to CPIs. In the melanoma study, FMT induced gut gene 
sets related to antigen presenting cells (APCs) activity, innate immunity, and interleukin-12, as well as increased 
CD68+ APC cells. Tumor analysis demonstrated enhanced immune-related genes including Interferon-γ signal-
ing and T cell activation, as well as intra-tumoral CD8+ T cell infiltration22. The randomized renal cell carcinoma 
study improved efficacy of the microbe-treated group was accompanied by elevation of circulating inflam-
matory cytokine blood levels23. Considering the expected variations in microbiome composition in different 
populations7, we aimed to profile gut microbiome in LC patients treated in our institution in comparison to 
age-matched local healthy individuals. The Israeli population is mostly Caucasian, but stemming from various 
continents and mostly of Jewish ancestry, thus represents a genetically different cohort from western or Asian 
populations24. The most prevalent diet is Mediterranean, which differs from many of previously reported studies 
of LC patients25. We further evaluated in our cohort the correlation between specific bacterial amplicon sequence 
variants (ASVs) and the long-term disease outcome among the LC patients.

Methods
Study design and samples collection.  This cohort study was conducted between 2018 and 2021 at the 
Sheba Medical Center, Institute of Oncology. Consecutive LC patients were recruited, samples and data were col-
lected prospectively. Inclusion criteria were a diagnosis of LC and availability of a stool sample collected prior to 
any systemic anti-cancer treatment (besides treatments given for earlier stage cancer regarding patients recruited 
with advanced disease). Healthy volunteers were recruited in parallel; excluded if exposed to antibiotics within 
six weeks prior to the time of requested sample collection. Fecal samples were obtained using sterile swabs col-
lected from all participants within several hours prior to arrival to the hospital26,27. Samples were immediately 
frozen at − 80 °C upon arrival to the lab until further analyses. Samples from controls and LC patients with or 
without treatment-related durable clinical benefit (DCB; see below), were handled and processed similarly and 
included in the same batches. Negative controls (extraction and PCR blanks) were prepared similarly and ana-
lyzed together with the rest of the samples. The study was conducted and is currently reported according to the 
STORMS guidelines28.

Clinical data collection.  Clinical and pathological data were collected from medical charts and from 
questionnaires filled by the participants. Body mass index (BMI) was calculated as weight (kilograms) divided 
by square height (meters). Performance status was scored by the treating physicians according to the Eastern 
Cooperative Oncology Group (ECOG-PS) scale (0—no limitations in activity; 4—bedridden). Ethnicity was 
self-reported, diet or religious group was not collected. Driver mutations were collected when available based on 
standard-of-care tests performed for advanced NSCLC. Clinical stage was determined based on the American 
Joint Committee on Cancer (AJCC) staging version 8. Questionnaires regarding antibiotic usage and specific 
diets were filled out by all study participants at time of sample collection. Response to treatment for LC patients 
was determined by the treating physicians according to response evaluation criteria for solid tumors (RECIST) 
version 1.1. Focusing on long-term survival, rate of progression free survival (PFS) at one year was chosen as an 
endpoint that is more clinically significant than median PFS. Evaluation of disease was performed as part of the 
standard of care, usually consisting of computerized tomography scans every two to three months.

16S rRNA gene amplicon sequencing and bioinformatic analyses.  DNA extraction and PCR 
amplification of the variable region 4 (V4) of the 16S rRNA gene using Illumina adapted universal primers 
515F/806R was conducted using the direct PCR protocol [Extract-N-Amp Plant PCR kit (Sigma-Aldrich, 
Inc.)]26,27,29. PCRs were conducted and amplicons were pooled in equimolar concentrations into a composite 
sample that was size selected (300–500 bp) using agarose gel to reduce non-specific products from host DNA. 
Sequencing was performed on the Illumina MiSeq platform with the addition of 15% PhiX, generating paired 
end reads of 175b in length in each direction. Reads were processed using QIIME 227,29 version 2019.7. Qual-
ity control was performed by truncating reads after three consecutive Phred scores lower than 20. Reads with 
ambiguous base calls or shorter than 150 bp after quality truncation were discarded. Amplicon sequence variants 
(ASVs) detection was done using Deblur30, resulting in 149 samples with median of 19,716 reads/sample (mean 
of 28,911 reads/sample). Taxonomic classification was assigned using a naive Bayes fitted classifier, trained on 
the August 2013 Greengenes database as the main taxonomy, and additionally on the SILVA release 138 data-
base, for 99% identity31,32. For Akkermansia muciniphila abundance we calculated the sum of all ASVs matching 
by taxonomic classification. All samples were rarefied to 3200 reads for α and β-diversity analysis. α rarefaction 
curves and an additional plot indicating the number of samples left after different rarefaction is shown in Fig-
ure S1. The threshold of 3200 reads/samples was chosen to maximize the samples used. Unweighted UniFrac 
distance was used as a measure of β-diversity, or between sample diversity, and Faith’s phylogenetic diversity 
was used as a measure of microbial richness, or within sample α-diversity. ASVs heatmaps were generated using 
Calour version 2019.5.133,34.

Quantifications of microbiome composition variance were calculated using PERMANOVA (Permutational 
multivariate analysis of variance) with the adonis2 function in the R package Vegan35, on the rarefied Unweighted 
UniFrac distance values. The total variance explained by each variable was calculated while accounting for age 
and gender in the model. False discovery rates (FDR) were calculated using Benjamini–Hochberg FDR cor-
rections. The random forest analysis was performed in R package randomForest36 version 4.6-14 with default 
parameters. ASVs of 75 LC and 31 age matched control samples were used, including one sample per subject. 
R AUC package version 0.3.0 was used to calculate the Receiver operating characteristic (ROC) curve and the 
ROC area under the curve (AUC). MaAsLin2 (Multivariate Association with Linear Models) R package version 
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1.4.0 was used with default parameters to find ASVs significantly associated with diagnosis or with DCB, after 
controlling for gender, age, and antibiotic usage, and accounting for samples from the same subject as indicated.

Statistical analyses.  Mann–Whitney U and Yate’s Chi squares tests were used to test the statistical differ-
ences while using Benjamini Hochberg method to correct for multiple comparisons as needed.

The major outcome measure was 12-months progression free survival, defined as DCB. Kaplan–Meier analy-
ses were done for PFS, evaluating time from treatment initiation till disease progression or death, and censuring 
patients that were alive with no progression of disease at the last follow up. Hazard ratios for PFS per individual-
ized microbial variation’s Youden most accurate points were computed. Survival/events plots for disease control 
and related statistics were generated and analyzed using Prism GraphPad version 9.3.1.

Ethics.  All research was performed in accordance with relevant guidelines/regulations. Informed consent 
was obtained from all participants and/or their legal guardians. The study was performed in accordance with 
the Declaration of Helsinki and was approved by the Sheba Medical Center ethics committee (approvals #0226-
13SMC).

Results
Participants and cohort characteristics.  LC patients (n = 75), mostly NSCLC, were included in the 
study. The clinical characteristics are shown in Table 1. All participants (LC patients and controls) were Cau-
casians. The first sample was collected prior to treatment initiation. A second sample was available from 32 
patients, taken on treatment (mean of 40 days on treatment, range 14–111 days). In addition, 31 healthy vol-
unteers with matched median age were recruited as controls. Of these 31, 11 controls have provided a second 
sample. The total number of samples was 149, originating from 106 subjects. The reasons for failure to collect the 
second sample were technical (mostly participants’ refusal or neglect).

LC patients were similar to the healthy control group in terms of age and BMI but had a higher rate of smok-
ing (Table 1). The characteristics of the LC cohort were in general representative of LC patients in terms of age 
and being mostly males with a high rate of smoking. Most patients had an ECOG PS of 0–1, mostly NSCLC, 
adenocarcinoma histology and stage IV disease. Driver mutation analysis was available for 68 (90.7%) of the 
patients. A small subgroup of the NSCLC patients had driver mutations (mostly EGFR). Out of the total 107 
samples collected from the LC group, 26% had been collected within six weeks of antibiotics exposure (Dataset 
S1 includes the biome table with ASVs and taxonomy as well as the indicated metadata).

Gut microbiome composition of LC patients differs from healthy controls.  To characterize dif-
ferences between LC patients and controls we included only one sample per subject and in the case of LC patients 
this was the sample obtained prior to treatment initiation (75 LC samples and 31 controls, Fig. 1A). To visually 
explore the variation and similarity between samples’ microbial composition, an unweighted UniFrac based 
Principal Coordinates Analysis (PCoA) analysis of the cohort was performed (Fig. 1B). Healthy controls pre-
dominantly clustered on the right side of the plot and LC samples were mostly on the left as indicated by the 
respective median PC1 values of 0.093 in controls (IQR: − 0.028 to 0.16) and − 0.028 (IQR: − 0.15 to 0.098) in LC 
samples (p = 0.001, Mann Whitney U test).

β-diversity was significantly higher among LC patients compared to the diversity among controls, meaning a 
lower degree of similarity among patients’ gut bacterial composition (Fig. 1C, PERMANOVA P = 0.001 with 999 
permutations) To confirm that this effect does not stem from the difference in group size, we redid the analysis 
using 100 random subsets of 31 LC patients each, to match the number of controls. The resulting p values ranged 
from 0.001 to 0.004 (data not shown). α-diversity was also assessed, using Faith’s phylogenetic diversity37 as a 
measure of within-sample diversity or microbial richness. A significantly lower within-sample diversity was 
found in LC cases in comparison to controls (Fig. 1D, Mann Whitney U test P = 0.037).

To evaluate the microbiome as a potential diagnostic tool, we used a supervised learning Random Forests 
model. To avoid over-fitting bias, only the first sample per patient was used. A receiver operating characteristic 
(ROC) area under the curve (AUC) of 0.74 was obtained when using 75 LC and 31 control samples (Fig. 1E). 
The 20 amplicon sequence variants (ASV) taxa with the highest contribution to the classification, as calculated 
by mean decreased gini36 are shown (Fig. 1F; the full list in Dataset S2). The three highest ranking ASV taxa were 
Clostridiales Lachnospiraceae (ASV09564), Clostridiales (ASV10280), and the short chain fatty acid (SCFA) 
producer Faecalibacterium prausnitzii (ASV00260) all demonstrating decreased abundance in LC patients in 
comparison to controls (see Dataset S2 for exact ASV sequences).

Multivariate analysis was performed by MaAsLin2 (Multivariate Association with Linear Models) linking 
specific bacterial ASVs with LC diagnosis vs. controls while controlling for gender, age, and antibiotic usage, and 
accounted for samples from the same subject allowing using the total 149 samples included in the cohort. This 
analysis showed consistent results with the random forest bacteria ASVs prioritization and resulted in 31 bacterial 
ASVs linked with LC (p < 0.008 and FDR q ≤ 0.25; Dataset   S3), of which 12 ASV were with P < 0.001 and FDR 
q < 0.1 (Fig. 2A,B). Most ASVs showed reduced abundance in LC patients vs. controls (27/31). Those included 
ASVs from the Clostridiales order including Lachnospiraceae (the highest ranking; ASV09564, p = 2.32E-07, 
q = 0.0005) and the above mentioned Faecalibacterium prausnitzii (ASV00260, p = 0.0004, q = 0.045) (Fig. 2B,C 
and Dataset S3). In contrast, Ruminococcus torques (ASV15337, p = 0.0008, q = 0.075) showed higher relative 
abundance in subjects with LC (Fig. 2A–C). This analysis also highlighted 21 ASVs associated with age, 14 ASVs 
with gender, and 13 ASVs with antibiotics use (Dataset S3).
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Table 1.   Cohort characteristics. All numbers indicate N (%) besides age data. &P-value non-significant 
(Fisher’s exact test or t-test); #P-value < 0.001 (Fisher’s exact test); both for comparison of lung cancer patients 
and healthy volunteers. *Durable clinical benefit; 12 months progression free survival. NA non-applicable.

Parameters Lung cancer Healthy

N (%) 75 (100) 31 (100)

Age—median (range), years& 67 (42–87) 67 (50–81)

Males& 41 (55) 15 (48)

Smoking#

 Never 13 (17) 20 (64)

 Stopped more than 10 years ago 18 (24) 3 (10)

 Stopped 1–10 years ago 14 (19) 0 (0)

 Current smoker 30 (40) 4 (13)

 NA 0 (0) 4 (13)

BMI&

 Underweight ≤ 18.5 4 (5.3) 0 (0)

 Normal weight = 18.5–24.9 31 (41.3) 8 (26)

 Overweight = 25–29.9 28 (37.3) 11 (35)

 Obesity = BMI of 30 or greater 12 (16) 3 (10)

 NA 0 (0) 9 (29)

Weight loss

 Weight loss more than 5% in 1 year 23 (31) NA

 ECOG PS NA

  0 38 (51)

  1 31 (41)

  2 5 (6.6)

  3 1 (1.3)

 Lung cancer histology NA

  Adenocarcinoma 58 (77.3)

  Squamous cell carcinoma 11 (14.6)

  Large cell/Neuroendocrine 2 (2.6)

  NSCLC—NOS 2 (2.6)

  Small cell carcinoma 2 (2.6)

 Mutations NA

  EGFR 8 (10.6)

  ALK 2 (2.6)

  ROS1 1 (1.3)

  KRAS 14 (18.6)

  Other or NA 24 (32)

  No driver mutations found 26 (34.6)

 Clinical stage NA

  IIB 1 (1.3 )

  III 25 (33.3)

  IV 49 (65.3)

 Durable clinical benefit* NA

  Yes 39 (52)

  No 30 (40)

  NA 6 (8)

 Number of samples 107 (100) 42 (100)

  1st sample pre-treatment 75 (70) 31 (74)

  2nd sample On treatment 32 (30) 11 (26)

Antibiotic exposure (last 6 weeks)

 Yes 28 (26) 0

 No 76 (71) 42 (100)

 NA 3 (2.8) 0
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Figure 1.   Gut microbial composition is altered in patients with lung cancer (LC). (A) Scheme of samples 
collected design. 106 subjects (75 LC patients and 31 controls) submitted pretreatment fecal samples and had 
V4 16S amplicon sequencing. (B) Unweighted UniFrac PcoA plots colored by disease/healthy (left) and boxplots 
demonstrating the PC1 and PC2 separation of the groups (right). (C) Unweighted UniFrac β-diversity within 
LC and controls is plotted by diagnosis using only one sample (first sample)/subject (PERMANOVA test, 
p = 0.001, 999 permutations). (D) α-diversity (Faith’s phylogenetic diversity) plotted by diagnosis using only 
one sample/subject (Mann–Whitney, p = 0.037). (E) and (F) Random Forest machine learning classification of 
LC cases from controls using gut microbiome dataset. (E) ROC curve of random forest result, differentiating 
between 75 LC and 31 age matched controls, with an AUC of 0.74. (F) Top 20 ASVs used for the random forest 
result differentiating between 75 LC and 31 age-matched controls (Full list in Dataset S2). Box and whisker 
plots (C–D) with central line indicating median, box margins representing upper and lower interquartile region 
(IQR), and whisker indicates additional 1.5*IQR.
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Higher Akkermansia muciniphila abundance is associated with DCB.  Focusing on LC patients, 
we were interested to find a potential correlation between specific components of the gut microbiome and long-
term disease control. One-year progression free survival (PFS) was chosen as the relevant outcome measure, 
defined as DCB. The distribution of patients with or without DCB in our study between the treatment groups as 
well as antibiotic exposure is presented in supplementary Table S1, full data is in Dataset S1. Since Akkermansia 
muciniphila was previously shown to be linked with outcome, we tested if Akkermansia muciniphila abundance 
is linked with DCB also in our cohort. Importantly, higher Akkermansia muciniphila abundance was associated 
with DCB as demonstrated in Fig. 3A, for all LC patients (i) as well as only regarding CPIs-treated patients 
(ii). In the sub-group of LC patients not treated by CPIs (n = 21) there was a trend toward better response by 
Akkermansia abundance (Fig. 3Aiii). We could not find evidence for the recently reported bi-phasic impact of 
Akkermancia muciniphila abundance on outcome of CPIs-treated patients38. We calculated a Youden point of 
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Figure 2.   Specific bacterial ASVs linked with LC, after controlling for age, antibiotics, and gender in a 
multivariate analysis. MaAsLin2 (Multivariate Association with Linear Models) was used to link ASVs to LC 
in a multivariate model controlling for subject, age, gender, antibiotics. This resulted in 31 bacterial ASVs that 
showed significant relative differential abundance between LC and controls (FDR correction < 0.25, Dataset 
S3). (A) A heatmap showing the specific bacterial ASV found to be significantly associated with age, gender, 
antibiotic exposure and LC diagnosis in the model with FDR < 0.1. (B) Heatmap of all 31 bacterial ASVs that 
showed differential abundance between LC and controls (FDR correction < 0.25). Each column represents an 
individual subject, and each row represents a different bacterial ASV. Color scale indicates the relative frequency 
out of the normalized reads per sample. ASVs heatmaps were generated using Calour software version 2019.5.1. 
(C) Bar graph highlighting the relative abundance in LC vs. controls of the indicated 3 ASVs linked with 
LC. Box and whisker plots with central line indicating median, box margins representing upper and lower 
interquartile region (IQR), and whisker indicates additional 1.5*IQR.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2007  | https://doi.org/10.1038/s41598-023-29136-4

www.nature.com/scientificreports/

0.0074 to best discriminate between DCB+ and DCB− patients and accordingly stratified the 69 patients with 
available data to Akkermansia muciniphila low or high, comparing them by Kaplan–Meier PFS analysis. The 
patients with high Akkermansia muciniphila had significantly higher odds for DCB [Log-rank (Mantel-Cox) test 
P value = 0.003, and Hazard Ratio 4.26 (95% CI of ratio 1.98–9.16)] (Fig. 3B).

Specific ASVs linked with DCB after controlling for factors linked with microbial variance.  To 
quantify the contribution of different factors affecting the gut microbial composition, we used a PERMANOVA 
test (Fig. 4; Dataset S4). PERMANOVA was applied after controlling for age and gender for each parameter, 
except when evaluating for the role of age and gender (in which cases we controlled for either gender or age). 
Figure 4A demonstrates the factors significantly linked to microbial variance as well as the level of explained 
variance. As expected, when including all samples of the LC group, inter-patient variance was the predominant 
factor. To control for the contribution of the subject, we limited our further analyses and included only one sam-
ple per subject. Importantly, when only the first sample of each patient was included, as well as when focusing 
on patients that have received immunotherapy and on those that did not receive antibiotics, gender and DCB 
remain significantly associated with microbial composition while most other factors do not. Patients with and 
without DCB did not show differences in within-sample α-diversity (data not shown). However, multivariate 
analysis (using MaAsLin2) linking specific bacterial ASVs with DCB while controlling for gender, age, and 
accounting for samples from the same subject identified four ASVs that remain significantly correlated with 
DCB (after controlling also for age and gender, Fig. 4B,C, Dataset S5). Those included higher Alistipes indis-
tinctus (ASV03617), Ruminococcus (ASV08171) and Alistipes onderdonkii (ASV05119) in those with DCB and 
higher Clostridium citroniae (ASV09473) in those without DCB.

Figure 3.   Higher Akkermansia muciniphila abundance is associated with durable clinical benefit (DCB). (A) 
Bar graph indicates pretreatment Akkermansia muciniphila abundance stratified by patients with and without 
DCB in all patients for which this data was available (n = 69; i), only in the group treated with immunotherapy 
(n = 48; ii), or the sub-group of LC patients not treated by CPIs (n = 21, iii). * Indicates p < 0.05 using t-test. (B) 
Patients with and without DCB for which this data was available (n = 69) were included. Youden point of 0.0074 
was calculated to discriminate between those with and without DCB. Based on that value 69 patients were 
stratified to Akkermansia muciniphila low or high (above 0.0074) for Kaplan–Meier PFS analyses [Log-rank 
(Mantel-Cox) test P value = 0.003, and Hazard Ratio 4.26 (95% CI of ratio 1.98–9.16)].
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We then calculated a Youden point that best discriminates between DCB+ and DCB− patients for those four 
bacterial ASVs taxa and accordingly stratified the 69 patients with available data to low or high abundance of 
each indicated ASV for Kaplan–Meier PFS comparison. Two of these four, Alistipes onderdonkii (ASV05119) 
Ruminococcus (ASV08171) (Fig. 5) showed significant results in Kaplan–Meier PFS, supporting the importance 
of these taxa. For Alistipes onderdonkii, Youden point of 0.00018 was calculated to discriminate between those 
with and without progression free survival (PFS) at 12 months. Patients with high Alistipes onderdonkii had 

Figure 4.   Specific ASVs linked with DCB in a multivariate model. (A) PERMANOVA analysis of factors 
explaining microbiome variance. Inter-individual sample variation explains most of the microbiome 
composition variation (left column, all 107 samples). When considering only one sample per patient in all the 
LC group (n = 75), those receiving immunotherapy, and those not receiving antibiotics, gender and DCB remain 
significant. Variance is estimated for each feature independently, while accounting for age, gender besides 
for when considering age or gender (see “Methods”) (Dataset S4). Included n for each subgroup is shown in 
brackets. (B) MaAsLin2 (multivariate association with linear models) was used to link ASVs to age, gender, and 
to DCB (controlling for subject, age, gender) in a multivariate model (Dataset S5). This resulted in 4 bacterial 
ASVs that showed significant relative differential abundance between DCB+ and DCB− patients. (Results after 
FDR correction < 0.25, p < 0.005). (C) Bar plot of those 4 ASVs taxa are shown.
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significantly higher odds for DCB [Log-rank (Mantel-Cox) test P value = 0.0003, and Hazard Ratio 3.08 (95% CI 
of ratio 1.34–7.06)]. Youden point of 0.0004 was used to stratify Ruminococcus abundance. Patients with high 
Ruminococcus had significantly higher odds for DCB [Log-rank (Mantel-Cox) test P value = 0.007, and Hazard 
Ratio 7.76 (95% CI of ratio 3.23–18.65)]. The other two ASVs taxa did not demonstrate significant difference 
when comparing the high and low groups in the Kaplan–Meier PFS analyses.

Discussion
We report here the results of a cohort of LC patients with detailed clinical and gut microbiome analysis including 
75 highly phenotyped LC patients and 31 controls. We have captured significant differences between LC patients 
and controls at the community and taxonomy levels (α- and β-diversity). We have identified lower within-sample 
α-diversity in LC samples vs. controls, as reported previously2, and reduction of ASVs from the Clostridiales order 
including Lachnospiraceae and the short-chain fatty acids producer Faecalibacterium prausnitzii. Importantly, 
we demonstrate a significant correlation within the LC patients group between the gut microbiome composi-
tion and patients’ outcome. Interestingly, this effect was not limited to the CPIs-treated group; out of 69 patients 
for which outcome data was available, 48 had received CPIs while 21 did not. In fact, patients’ outcome (DCB) 
was one of the most significantly correlated factors with gut microbial composition within the LC population as 
shown in the PERMANOVA analyses, explaining 3.4–5.2% of the microbial variation. This level is higher than 
the variance explained by antibiotics treatment prior to sampling. Our data demonstrates associations between 
the gut microbiome and LC as well as its potential use as a biomarker for response to treatments, or alternatively 
as a prognostic marker. Importantly, our data supports the gut microbiome as a possible therapeutic target that 
can be manipulated specifically to improve outcome.

Figure 5.   Higher Alistipes onderdonkii (ASV05119) and Ruminococcus (ASV08171) abundance is associated 
with durable clinical benefit (DCB). 69 patients with available data were included. (A) Regarding Alistipes 
onderdonkii (ASV05119) data, a Youden point of 0.00018 was calculated to discriminate between DCB+ and 
DCB− patients; based on that value 69 patients were stratified to low or high (above 0.00018) for a Kaplan–
Meier DCB analysis [Log-rank (Mantel–Cox) test P value = 0.0003, and Hazard Ratio 3.08 (95% CI of ratio: 
1.34–7.06)]. (B) Regarding Ruminococcus (ASV08171), a Youden point of 0.0004 was calculated to discriminate 
between DCB+ and DCB− patients; based on that value 69 patients were stratified to low or high (above 0.0004) 
for a Kaplan–Meier DCB analysis [Log-rank (Mantel–Cox) test P value = 0.007, and Hazard Ratio 7.76 (95% CI 
of ratio: 3.23–18.65)].
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Previous studies regarding specific bacteria association with LC diagnosis identified several relevant species. 
Clostridiales Lachnospiraceae was reported to be decreased in gut microbiome of LC cases (n = 30) compared to 
controls (n = 16)2 similar to our results. This microbe was also found lower in salivary microbiome of LC cases 
(n = 20) versus healthy individuals (n = 10)6. Faecalibacterium prausnitzii was also reported as lower in the gut 
microbiome of LC (n = 34, 30)5,14 as was seen here. In contrast, Ruminococcus torques which was higher in LC 
cases in our study has not been reported so far to be related to LC diagnosis. Other microbial correlations with 
LC reported here are novel. This may be explained by geographical, diet and ethnic variation and emphasize the 
need for additional studies including diverse populations.

The benefit from CPIs in advanced NSCLC has been previously found to correlate with certain bacterial spe-
cies in the gut microbiome, some of them also identified in our current study, most prominent of those being 
Akkermansia muciniphila. Interestingly, in multivariate analysis including all identified microbes from our study, 
microbes other than Akkermansia muciniphila correlated to a higher extent with DCB. The cohort-dependent 
correlation of specific gut microbes with CPIs-benefit was recently highlighted in a multi-cohort melanoma 
study39. Examples for microbes found to strongly and positively correlate with DCB in our study include Rumi-
nococcaceae, which was also reported to be enriched in the gut of advanced Japanese NSCLC patients (n = 70) 
surviving longer than 12 months40. Ruminococcaceae species were also common in melanoma patients (n = 38, 
stage III) gut samples among responders to neoadjuvant anti-PD1 and anti-CTLA4 combination41. Alistipes 
indistinctus, another prominent microbe in our results was more abundant in stool samples of responders vs. 
non-responders in a set of 56 NSCLC patients8, similar to our results. In a mouse model, this bacterium restored 
responsiveness to CPIs when given to non-responders8. Another study conducted in China with patients with 
advanced NSCLC (n = 37) undergoing anti-PD-1 immunotherapy, identified enrichment of a different species 
of Alistipes, Alistipes putredinis, in addition to Bifidobacterium longum, and Prevotella copri in patients respond-
ing to this treatment42. These bacteria were not found to be correlated with DCB in our study, again highlight-
ing the importance of geographic and ethnic variability in gut microbiome and its role in cancer. It should be 
noted also that response to treatment was the endpoint of some of the studies8,42, which is not equivalent to 
DCB, the endpoint we chose to focus on, considering DCB to be clinically more important. Along those lines, 
higher Clostridium citronia was found in our data to be linked with poorer prognosis, which was not previously 
reported. Interestingly, Alistipes onderdonkii, significantly correlated with DCB in our dataset, was found to be 
attenuated in the gut of a mouse model of pancreatic cancer, and the supernatant of this microbe suppressed the 
proliferation of the pancreatic cancer cells43.

The involved mechanisms linking treatment efficacy and gut microbiome are not clear. In general, the gut 
microbiome thrives in close association with the local gut immune system, and through local interactions or 
systemically circulating derivates, can impact the host immune system in multiple manners44. A few gut microbes 
induce antigen-specific T-cell responses. One of those is Akkermansia muciniphila, where specific T cell expan-
sion can occur, dependent on the context of a conventional microbiota45. Akkermansia muciniphila has also 
been reported to present a membrane protein (Amuc-1100) that can activate immune Toll-like receptor 246. 
Additional suggested mechanisms for microbiome influence on the immune system and on the efficacy of 
anti-cancer drugs include impact on dendritic cell activity in the gut lamina propria47 and in tumor-draining 
lymph nodes12, systemic activity of metabolic bacterial products47, molecular mimicry between specific bacteria 
and cancer antigens48,49, or migration of bacteria from the gut to lymphatic organs or to the tumor itself16,47,50. 
Bacterial-produced metabolites such as short-chain fatty acids (SCFA; mostly acetate (C2), propionate (C3) and 
butyrate (C4)) might be specific mediators of the effect of some bacteria and immune cells51, shown to inhibit 
the effect of anti-CTLA-4 in a melanoma model. The correlation of microbiome components and response to 
non-immunotherapy drugs suggested by our study may occur also through the impact of the gut microbiome on 
the immune system. It can be speculated that targeted agents might also modulate the immune system through 
specific signaling pathways as well as by exposing immunogenic cancer antigens from dying cells21. The correla-
tion of Akkermansia muciniphila with DCB across various cohorts supports the importance of this microbe for 
cancer control. Akkermansia muciniphila should be further investigated as a potential therapeutic tool for LC 
patients, by gut microbial transplant procedures or by use of specific components of this taxa.

Our study has several strengths and some limitations. The use of a relatively large, prospective and longitu-
dinally cohort with detailed clinical and microbial characterization has enabled identifying microbial factors 
linked to diagnosis and outcome of LC patients. Limitations of this study include the heterogeneity of the cohort 
and the mixture of administered treatments. However, the reproduction of previously reported results in this 
cohort despite these limitations lends further credibility to our data. Another limitation is the use of 16S rRNA 
amplicon sequencing (rather than shotgun data) which limits our ability to identify associated bacterial metabolic 
pathways and functions, and to get resolution at the species level52. The size of our study group is one of the largest 
among the reported studies; however, larger studies in diverse populations are required to provide robust data 
about some of our findings that did not reach strong statistical value. Another potential limitation is that only 
in the control arm antibiotic exposure within six weeks prior to the time of sample collection was an exclusion 
criteria. Prolonged longitudinal sampling of the gut microbiome of our patients, correlating the persistence of 
specific taxa of interest with DCB is lacking. A recognized limitation of microbiome studies is the multiplicity 
of potential confounding factors. For example, smoking could impact microbiome composition53, a factor we 
could not control for in the comparison between LC and healthy volunteers. In addition, various medications 
could impact the microbiome54, another example of a feature we did not control for. Nevertheless, multivariate 
analysis of our data retains the significant correlation between certain microbes and LC diagnosis as well as 
the outcome of LC patients. The molecular mechanisms underlying these correlations require further studies.

To conclude, we have profiled the gut microbiome and identified specific microbial taxa differentiating LC 
patients from age and gender-matched healthy individuals. Within LC patients we identified specific bacterial 
amplicon sequence variants (ASVs) linked with the long-term disease outcome, including Alistipes onderdonkii 
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(ASV05119) and Ruminococcus (ASV08171). Our data and other reports39 suggest specific microbes’ roles in 
cancer might be geographically, diet and/or ethnically-specific. Nevertheless, we have validated in our cohort, 
which is different geographically and ethnically from previous cohorts and includes patients treated with and 
without CPIs, that Akkermansia muciniphila correlates with better outcome38. After additional validations, these 
microbes can be used as biomarkers for treatment response or possibly of overall better outcome regardless of 
the type of treatment. Additionally, those can potentially be used as targets for therapeutic manipulations.

Data availability
The study datasets were deposited at the National Center for Biotechnology Information as BioProject 
PRJNA805069. Reviewers’ link: https://​datav​iew.​ncbi.​nlm.​nih.​gov/​object/​PRJNA​805069?​revie​wer=​1fddk​cjvbn​
e55q9​0n7c8​830mmp.

Received: 23 August 2022; Accepted: 31 January 2023

References
	 1.	 Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
	 2.	 Liu, F. et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int. J. Biol. Sci. 15, 2381 (2019).
	 3.	 Wang, R. P., Wang, X. H., Li, Z. M. & Sun, J. R. Changes in serum inflammatory factors, adiponectin, intestinal flora and immunity 

in patients with non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 24, 10566 (2020).
	 4.	 Qiu, B. et al. Diagnostic signatures for lung cancer by gut microbiome and urine metabolomics profiling. J. Clin. Oncol. 39, e20514 

(2021).
	 5.	 Zheng, Y. et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes 11, 1030–1042 (2020).
	 6.	 Yan, X. et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5, 3111 (2015).
	 7.	 Gaulke, C. A. & Sharpton, T. J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. https://​

doi.​org/​10.​1038/​s41591-​018-​0210-8 (2018).
	 8.	 Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 

(2018).
	 9.	 Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 1979(350), 1079–1084 

(2015).
	10.	 Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 

97–103 (2018).
	11.	 Uribe-Herranz, M. et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight 3, 66 

(2018).
	12.	 Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 1979(350), 

1084–1089 (2015).
	13.	 Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-

small-cell lung cancer. Nat. Med. 28, 315–324 (2022).
	14.	 Gui, Q. et al. The association between gut butyrate-producing bacteria and non-small-cell lung cancer. J. Clin. Lab Anal. 34, e23318 

(2020).
	15.	 Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 

(2013).
	16.	 Daillère, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immu-

nomodulatory effects. Immunity 45, 931–943 (2016).
	17.	 Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 

967–970 (2013).
	18.	 Gui, Q. F., Lu, H. F., Zhang, C. X., Xu, Z. R. & Yang, Y. H. Well-balanced commensal microbiota contributes to anti-cancer response 

in a lung cancer mouse model. Genet. Mol. Res. 14, 5642–5651 (2015).
	19.	 Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction 

of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).
	20.	 Bracci, L., Schiavoni, G., Sistigu, A. & Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the 

design of novel and rationale-based combined treatments against cancer. Cell Death Differ. https://​doi.​org/​10.​1038/​cdd.​2013.​67 
(2014).

	21.	 Liu, P. et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat. Commun. 10, 1486 (2019).
	22.	 Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 

1979(371), 602–609 (2021).
	23.	 Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: 

a randomized phase 1 trial. Nat. Med. https://​doi.​org/​10.​1038/​s41591-​022-​01694-6 (2022).
	24.	 Ostrer, H. A genetic profile of contemporary Jewish populations. Nat. Rev. Genet. https://​doi.​org/​10.​1038/​35098​506 (2001).
	25.	 Zbeida, M. et al. Mediterranean diet and functional indicators among older adults in non-mediterranean and mediterranean 

countries. J. Nutr. Health Aging 18, 411418 (2014).
	26.	 Braun, T. et al. Individualized dynamics in the gut Microbiota precede Crohn’s disease flares. Am. J. Gastroenterol. 114, 1142–1151 

(2019).
	27.	 Braun, T. et al. Fecal microbial characterization of hospitalized patients with suspected infectious diarrhea shows significant 

dysbiosis. Sci. Rep. 7, 1088 (2017).
	28.	 Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. https://​doi.​org/​10.​1038/​

s41591-​021-​01552-x (2021).
	29.	 Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 

6, 1621–1624 (2012).
	30.	 Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).
	31.	 Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 

3, e00021-18 (2018).
	32.	 Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids 

Res. 41, D590–D596 (2013).
	33.	 Jiang, L. et al. Discrete false-discovery rate improves identification of differentially abundant microbes. mSystems 2, e00092-17 

(2017).
	34.	 Xu, Z. Z. et al. Calour: An interactive, microbe-centric analysis tool. mSystems 4, e00269-18 (2019).
	35.	 Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-7. R 2.5 (2020).

https://dataview.ncbi.nlm.nih.gov/object/PRJNA805069?reviewer=1fddkcjvbne55q90n7c8830mmp
https://dataview.ncbi.nlm.nih.gov/object/PRJNA805069?reviewer=1fddkcjvbne55q90n7c8830mmp
https://doi.org/10.1038/s41591-018-0210-8
https://doi.org/10.1038/s41591-018-0210-8
https://doi.org/10.1038/cdd.2013.67
https://doi.org/10.1038/s41591-022-01694-6
https://doi.org/10.1038/35098506
https://doi.org/10.1038/s41591-021-01552-x
https://doi.org/10.1038/s41591-021-01552-x


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2007  | https://doi.org/10.1038/s41598-023-29136-4

www.nature.com/scientificreports/

	36.	 Svetnik, V. et al. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. 
Inf. Comput. Sci. 43, 1947–1958 (2003).

	37.	 Faith, D. P. The role of the phylogenetic diversity measure, PD, in bio-informatics: Getting the definition right. Evol. Bioinform. 2, 
66 (2006).

	38.	 Derosa, L. et al. Intestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients 
treated with anti-PD-1 antibodies: Results a phase II study. J. Clin. Oncol. 39, 66 (2021).

	39.	 Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. 
Nat. Med. https://​doi.​org/​10.​1038/​s41591-​022-​01695-5 (2022).

	40.	 Hakozaki, T. et al. The Gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-
small cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).

	41.	 Batten, M. et al. Abstract 5734: Gut microbiota predicts response and toxicity with neoadjuvant immunotherapy. Cancer Res. 
https://​doi.​org/​10.​1158/​1538-​7445.​am2020-​5734 (2020).

	42.	 Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy 
in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 66 (2019).

	43.	 Lee, K. et al. Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model 
of pancreatic cancer, suppressing its proliferation. Appl. Microbiol. Biotechnol. 105, 8343–8358 (2021).

	44.	 Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943 (2017).
	45.	 Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–

1184 (2019).
	46.	 Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism 

in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).
	47.	 Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).
	48.	 Bessell, C. A. et al. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight 5, 66 (2020).
	49.	 Fluckiger, A. et al. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 

369, 936–942 (2020).
	50.	 Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 

(2020).
	51.	 Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 

https://​doi.​org/​10.​1038/​s41467-​020-​16079-x (2020).
	52.	 Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by 

extensive metagenomic assembly. Genome Biol. 22, 209 (2021).
	53.	 Prakash, A. et al. Tobacco smoking and the fecal microbiome in a large, multi-ethnic cohort. Cancer Epidemiol. Biomark. Prev. 30, 

1328–1335 (2021).
	54.	 Daisley, B. A. et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant 

prostate cancer patients. Nat. Commun. 11, 4822 (2020).

Acknowledgements
We thank all the participants of our study.

Author contributions
J.B.: conception and design, analysis and interpretation of data, writing original draft. I.K.: acquisition of data, 
analysis and interpretation of data. A.A.: analysis and interpretation of data. S.G.: acquisition of data. G.E.: acqui-
sition of data. I.D.M.: acquisition of data. A.L.: acquisition of data. S.D.: acquisition of data. R.H.: acquisition 
of data. H.G.S.: acquisition of data. D.U.: acquisition of data. T.B.: acquisition of data, review & editing of draft. 
Y.H.: conception and design, analysis and interpretation of data, writing original draft. All authors participated 
in the drafting of this article and provided approval to the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​29136-4.

Correspondence and requests for materials should be addressed to J.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41591-022-01695-5
https://doi.org/10.1158/1538-7445.am2020-5734
https://doi.org/10.1038/s41467-020-16079-x
https://doi.org/10.1038/s41598-023-29136-4
https://doi.org/10.1038/s41598-023-29136-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Gut microbial signature in lung cancer patients highlights specific taxa as predictors for durable clinical benefit
	Methods
	Study design and samples collection. 
	Clinical data collection. 
	16S rRNA gene amplicon sequencing and bioinformatic analyses. 
	Statistical analyses. 
	Ethics. 

	Results
	Participants and cohort characteristics. 
	Gut microbiome composition of LC patients differs from healthy controls. 
	Higher Akkermansia muciniphila abundance is associated with DCB. 
	Specific ASVs linked with DCB after controlling for factors linked with microbial variance. 

	Discussion
	References
	Acknowledgements


