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Comparing bound entanglement 
of bell diagonal pairs of qutrits 
and ququarts
Christopher Popp * & Beatrix C. Hiesmayr 

We compare the classification as entangled or separable of Bell diagonal bipartite qudits with positive 
partial transposition (PPT) and their properties for different dimensions. For dimension d ≥ 3 , a 
form of entanglement exists that is hard to detect and called bound entanglement due to the fact 
that such entangled states cannot be used for entanglement distillation. Up to this date, no efficient 
solution is known to differentiate bound entangled from separable states. We address and compare 
this problem named separability problem for a family of bipartite Bell diagonal qudits with special 
algebraic and geometric structures and applications in quantum information processing tasks in 
different dimensions. Extending analytical and numerical methods and results for Bell diagonal qutrits 
( d = 3 ), we successfully classify more than 75% of representative Bell diagonal PPT states for d = 4 . 
Via those representative states we are able to estimate the volumes of separable and bound entangled 
states among PPT ququarts ( d = 4 ). We find that at least 75.7% of all PPT states are separable, 1.7% 
bound entangled and for 22.6% it remains unclear whether they are separable or bound entangled. 
Comparing the structure of bound entangled states and their detectors, we find considerable 
differences in the detection capabilities for different dimensions and relate those to differences of the 
Euclidean geometry for qutrits ( d = 3 ) and ququarts ( d = 4 ). Finally, using a detailed visual analysis 
of the set of separable and bound entangled Bell diagonal states in both dimensions, qualitative 
observations are made that allow to better distinguish bound entangled from separable states.

Quantum technology leverages quantum phenomena for better performance than classical methods for applica-
tions like computing, communication, simulation, metrology and cryptography1–5. Quantum information theory 
provides the theoretical formalism for processing tasks using quantum mechanical systems6. One of the charac-
teristic properties of a quantum system that allows realizing information processing with superior performance 
compared to classical systems is entanglement. Besides its relevance for our general understanding of nature 
and the interpretation of quantum theory7–9 it provides one of the main resources to realize applications in vari-
ous fields ranging from quantum teleportation to medical applications for the detection of cancer cells10–13. The 
simplest system to observe entanglement is the bipartite system of two two-level quantum systems, called qubits. 
Currently, most applications are based on these quantum systems of dimension d = 2 , but recently, interest in 
higher dimensional systems like “qutrits” for d = 3 , “ququarts” for d = 4 or “qudits” for general d is growing 
due to potential advantages and new observable phenomena14,15. Bell states16 are special sets of entangled states 
which can be used as basis for the corresponding Hilbert space. They are highly relevant for applications due to 
the fact that they are maximally entangled states. Originally introduced for d = 2 , they can be generalized for 
higher dimensions17–19.

In this paper we analyze mixtures of maximally entangled bipartite Bell states, with focus on d = 3 and d = 4 . 
Those states are locally maximally mixed, meaning that there is no correlation in the respective subsystems. 
Depending on the mixing probabilities of the d2 pure Bell basis states, a general mixed state can be entangled or 
not, in which case it is separable. The Peres-Horodecki criterion, also known as PPT (positive partial transposi-
tion) criterion20,21, provides an efficient method to detect a state as entangled, if the partially transposed density 
matrix of a given quantum state has at least one negative eigenvalue, in which case the state is called “NPT”. Oth-
erwise it is called “PPT”. For d = 2 , all entangled states are NPT, but for d ≥ 3 , also PPT entangled states exist22. 
While NPT entangled states can be “distilled”22 to result in fewer strongly entangled states, this process is not 
possible for PPT entangled ones. For this reason PPT entanglement is also called “bound” entanglement, which 
has been extensively investigated since its discovery by the Horodecki family, e.g. in Refs.23–33. 2014, it has also 
been observed in experiment, using photons entangled in their orbital angular momentum34. Many applications 
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like teleportation or superdense coding6 require strongly entangled states for reliable performance. However, if 
a given state is transformed to a bound entangled one, this resource is bound for immediate application, since 
it cannot be used to distill strongly entangled states. For this reason, it is important to know about structure of 
bound entanglement in a given system and to be able to detect those states reliably, so that operations that result 
in binding the resource entanglement in certain states can be avoided. However, the “separability problem” to 
differentiate separable and PPT entangled states has been proved to be NP-hard35,36 in general and lacks an effi-
cient solution if the dimension of the system is not small. Existing methods to detect PPT entangled states27–33 
are often strongly limited in the number of states they can detect and are not efficient in higher dimensions. 
Likewise, no efficient method to decide whether a PPT state is separable or bound entangled states is known 
for Bell diagonal qudits, which are known to be highly relevant for practical applications37. However, special 
families of these states have strong symmetries that can be leveraged for the analytical and numerical analysis 
of its properties regarding the entanglement structure19,34,38. In particular, the analytical structure of mixed Bell 
states generated by Weyl-Heisenberg transformations18 allows to derive several criteria to detect separability and 
entanglement19,38. Furthermore, an efficient geometric representation of the states, symmetries and entanglement 
witnesses39,40 makes the system well applicable for numerical methods.

Recently, analytical and numerical methods were combined to solve the separability problem for the system 
in three dimensions in an “almost complete” way41. Given any unknown PPT state, the developed methods allow 
the classification of this state as separable or bound entangled with a probability of success of 95% . Moreover the 
classification allows the determination of the relative volumes of separable, PPT and NPT entangled states. It was 
further shown, that a significant share of the PPT states of bipartite, Bell diagonal qutrits are bound entangled (at 
least 13.9% ), making this system exceptionally well suited to study this exotic form of entanglement regarding 
its detection, use in information processing tasks and implications for nature. It is expected that the dimension 
of the system has a large influence on the structure and the relative shares of entanglement classes, which is a 
focus of this contribution. While approximations of the relative volumes of separable states in general systems in 
dependence on the dimension exist42,43, the precise numbers depend on the specific system and are not known.

The aim of this work is to extend and apply those methods, used to successfully characterize the system for 
qutrits41, for d = 4 , to draw conclusions about the structure of entangled and separable states as well as the effec-
tiveness of their detectors and to compare the results to d = 2 and d = 3 . The paper is organized as follows: First, 
the system to be analyzed is defined and relevant methods to generate states and to investigate its entanglement 
structure are presented for general dimension. Second, we analyze the set of PPT states for d = 4 . We quantify the 
share of this set in the total system and the relative volumes of separable and (bound) entangled states within and 
compare to other dimensions. Then, the applied criteria to detect separability and entanglement are compared for 
their effectiveness in different dimensions. Finally, we leverage the special properties of the system to visualize 
the set of separable and bound entangled states for d = 3 and d = 4 . The visual analysis demonstrates relations 
between the algebraic structure of Bell diagonal mixtures and geometric restrictions on the set of separable 
and bound entangled states. This might be leveraged for the detection of bound entanglement and separability.

Methods
Consider the Hilbert space H = H1 ⊗H2 for the bipartite system of two qudits of dimension d. In this work 
we analyze mixtures of maximally entangled orthonormal Bell states |�k,l� ∈ H with k, l = 0, 1, . . . , (d − 1) 
generated by applying the Weyl operators18 Wk,l to one qudit of the shared maximally entangled state 
|�00� ≡ 1√

d

∑d−1
i=0 |ii�:

where Wk,l ≡
∑d−1

j=0 wj·k|j��j + l (mod d)|, w = e
2π i
d  . Mixing the density matrices, or “Bell projectors”, 

Pkl ≡ |�k,l���k,l| with mixing probability ck,l defines Bell diagonal states with respect to the above defined Weyl 
operators and the system of interest for this work:

By taking the partial trace with respect to one of the subsystems, the reduced state of any state in Md is maximally 
mixed, so all information is in the correlation of the combined state and not in the subsystems themselves. States 
with this property are called “locally maximally mixed”. Any state of Md is equivalent to a point in d2 dimensional 
Euclidean space by identifying the mixing probabilities ck,l with coordinates in real space. Due to the normaliza-
tion of the ck,l , the set of these points forms a standard simplex. Referring to the “magic Bell basis” of Wootters 
and Hill44 Md is also known as “magic simplex”19,38,45.

The properties of the Weyl operators Wk,l imply a linear ring structure or “discrete phase space” for operators 
indexed by the tuples (k, l) based on succeeding application of these operators19. This can be seen via the Weyl 
relations18 (addition defined modulo d):

In Figs. 1 and 2 we visualize this phase space as lattice of d × d vertices, each vertex corresponding to the Weyl 
operator (and thus also to a Bell state via eq.(1)) with according indices (k, l). Depending on the dimension d, 
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several subgroups exist and for this work subgroups containing d elements are of special relevancy, as they can 
be related to the structure of the sets of separable and bound entangled states. In general, a subgroup is defined 
by its generating elements. In case d is prime, all subgroups of d elements are generated by one of the Weyl 
operators. Highlighting the vertices (here red and blue) corresponding to a subgroup generated by Wk,l induces 
“lines” in the discrete phase space (see Fig. 1). This is different for non-prime dimensions, where subgroups of 
d elements can additionally be generated by two Weyl operators whose indices contain proper divisors of d in 
which case “sublattices” are formed in the phase space (see e.g. Fig. 2). For more details, consult Ref.19. We can 
also use Figs. 1 and 2 to specify “subgroup states” by assigning each highlighted subgroup to a state which consists 
of equal mixtures of all corresponding Bell states.

Relevant subsets.  The properties of Md allow the definition of special subsets related to the entangle-
ment properties of contained states, which have been investigated with respect to separability and (bound) 
entanglement45,47.

Enclosure polytope.  The enclosure polytope is a superset of all states with positive partial transposition. It was 
shown19 that all states that have at least one mixing probability ck,l exceeding 1/d are necessarily entangled and 
can be detected by the Peres-Horodecki criterion (PPT criterion). As NPT entangled states they can be dis-
tilled by local operation and classical communication (LOCC), and are therefore called “free” and not “bound” 
entangled22. The enclosure polytope is defined as:

Using the representation of Md in Euclidean space, Ed forms a bounded polytope.

Kernel polytope.  For each of the subgroups of d elements induced by the Weyl operators (indexed by α ), a 
special “subgroup” or “sublattice state” ρα can be defined, which is known to be a separable state19. In general, 
these subgroup states are equal mixtures of d Bell states corresponding to a subgroup with probability 1/d, e.g. 
the line state ρα1 = 1

d

∑d−1
k=0 Pk,0 (see also Figs. 1 and 2). This gives rise to a kernel polytope Kd , which is defined 

as convex mixture of these separable line or sublattice states with d elements:

(5)Ed ≡ {ρ =
d−1
∑

k,l=0

ck,lPk,l |
d−1
∑

k,l=0

ck,l = 1, ck,l ∈ [0,
1

d
]}

Figure 1.   Phase space and exemplary induced subgroups called “lines” for d = 3 . Figure created with Ref.46.

Figure 2.   Phase space and exemplary induced subgroups called “lines” and “sublattices” for d = 4 . Figure 
created with Ref.46.
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All states in the kernel polytope are convex combinations of separable states, consequently each state in Kd 
is by construction separable and the center corresponds to the maximally mixed state.

Bell diagonal state generation in arbitrary dimension.  Using the geometric representation of Md 
in Euclidean space, any state can be generated by specifying its d2 coordinates ck,l . Random sampling as well as 
deterministic procedures can be used to generate states. It was shown41 that via random sampling, uniformly 
distributed states in Md can be generated and used to estimate the relative volumes of the entanglement classes 
of separable, bound entangled and free entangled states in M3 . The same method can be used for d > 3 to gener-
ate states in Md and Ed by drawing the first d2 − 1 coordinates from a uniform distribution in the range [0, 1] 
for Md or [0, 1/d] for Ed respectively. The remaining coordinate is then chosen according to the normalization 
condition. If this is not possible with a non-negative probability, the coordinates do not represent a normalized 
physical state and is therefore rejected. This form of rejection sampling becomes less effective with growing 
dimension d because the probability of a random state being rejected increases rapidly for d ≥ 5 . However, 
several methods exist to sample uniformly distributed points on the standard simplex and thus in Md in any 
dimension (see Ref.48 and the references therein), but these methods are not accessible for sampling of states 
located only in the polytopes Ed or Kd.

Symmetries and their generation.  The ring structure of the Weyl operators Wk,l can be used to define 
linear symmetry transformations19,38 acting on states in Md . These transformations act as permutations on the 
Bell basis projectors Pk,l or equivalently as permutations of the coordinates ckl of a state in Md . These symmetry 
transformations form a group and are known to conserve both the PPT property and entanglement. Together 
these properties imply the conservation of the entanglement class41, meaning that the subsets of separable, 
bound entangled and free entangled states are mapped to themselves. For numerical implementations as well as 
for understanding their action on a given state, any linear symmetry s can be characterized by their action on the 
basis projectors s : Pk,l → Pk′ ,l′ . All elements of this symmetry group can be generated by combined application 
of the following group generators (all mathematical operations on the indices are defined as(mod d)):

•	 Momentum inversion: m : Pk,l → P−k,l
•	 Quarter rotation: r : Pk,l → Pk,−l
•	 Vertical sheer: v : Pk,l → Pk+l,l
•	 Translation: tp,q : Pk,l → Pk+p,l+q for p, q ∈ (0, . . . , d − 1)

Note that the translation of a Bell diagonal state can also be realized by applying a corresponding Weyl operator 
to the mixed state. This is not the case for the other generators, as their action on each Bell state that contributes 
to the mixture depends on that state. Due to the finite number of elements (k, l) in the phase space induced by 
the Weyl operators Wk,l , the number of distinct symmetries generated by the generators above is finite as well 
and can be generated numerically. The number of existing symmetries grows quickly with the dimension. For 
d = 2 , 24 distinct symmetries can be generated, for d = 3 , 432 and for d = 4 already 1536 symmetries of this 
group exist. Taking these symmetries into account is essential for the numerical methods to be effective in the 
d2 dimensional space.

Criteria for the detection of entanglement and separability.  The separability problem to decide 
whether a given mixed quantum state is separable or entangled has been shown to be NP-hard with respect 
to the dimension d as complexity measure35,36 and lacks an efficient general solution by polynomial in time 
algorithms, which is also the case for states in Md for general dimension d. It is currently unclear, whether an 
efficient general solution exists for the separability problem in Md . For d = 2 , however, all entangled states can 
be detected by the PPT criterion20,21 and recently, an almost complete solution was presented41 for d = 3 , in the 
sense that any random unknown PPT state in M3 can be classified numerically with a probability of success of 
95% . The methods used in this work can be equivalently used or extended to be applicable for d > 3 . In the fol-
lowing we introduce those methods shortly. For more detailed information, the reader is referred to Ref.41 and 
the references therein.

E1: PPT criterion.  The “Positive Partial Transpose (PPT)” or “Peres-Horodecki” criterion20 detects entangle-
ment for a bipartite state if it has at least one negative eigenvalue (in which case it is said to be “NPT”). For d = 2 
it detects all entangled states, but for d ≥ 3 it is only sufficient due to the existence of PPT- or bound entangled 
states. The partial transpose Ŵ acts on the basis states of a bipartite state as (|i��j| ⊗ |k��l|)Ŵ ≡ |i��j| ⊗ |l��k|.

E2: Realignment criterion.  The realignment operation R is defined as (|i��j| ⊗ |k��l|)R ≡ |i��k| ⊗ |j��l| . The rea-
lignment criterion49 states that if the sum of singular values of the realigned state σR are larger than 1, then σ is 
entangled. Like the PPT criterion it is only sufficient for entanglement. Bound entangled states can be detected 
by this criterion, but it does not detect all NPT states in general.

E3: Quasi‑pure concurrence criterion.  The quasi-pure approximation47 Cqp of the concurrence50 allows the effi-
cient detection of entanglement including its bound form. The approximation takes an explicit form for states 

(6)Kd ≡ {ρ =
∑

α

�αρα | �α ≥ 0,
∑

α

�α = 1}
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in Md : A state ρ =
∑

d−1
k,l=0 ck,lPk,l ∈ Md is entangled if Cqp(ρ) = max(0, Snm −

∑

(k,l)�=(n,m) Sk,l) > 0 where the 
Sk,l are explicitly given by47

and (n, m) is a multi-index of the coordinate of the largest value {ck,l}.

E4: MUB criterion.  A set of orthonormal bases {Bk} and Bk = {|ik� | i = 0, . . . , (d − 1)} is called “mutually 
unbiased bases (MUB)” if ∀k �= l : |�ik�jl|2 = 1

d ∀i, j = 0, . . . , (d − 1) . At most d + 1 MUBs exist51,52, in which 
case it was shown34,53,54 that the sum of “mutual predictabilities” obeys

for all separable states (ρs) , when defining

Here, s = 0, 1, . . . , (d − 1) and i∗k denotes the complex conjugate vector element. The MUB criterion thus indi-
cates that if any state violates (8), it is entangled. If s > 0 and s  = d/2 the MUB criterion allows the detection of 
PPT entangled states53, which was also experimentally demonstrated for entangled photons34 in the case d = 3 . 
Note, that other, inequivalent MUBs exist, including extendible or unextendible sets of bases that contain less 
than d + 1 elements55. The set of entangled states that are detected by the MUB criterion generally depends on 
the used MUB. For this work, we use MUBs of d + 1 elements as given in the Appendix A1 and set s = 2 for 
d = 3 and s = 3 for d = 4.

E5: Numerically generated entanglement witnesses.  An entanglement witness39 (“EW”) W is an observable 
which implies an upper bound U and also a lower bound40 L ( U , L ∈ R ), for separable states ρs:

A state ρ is “detected by W” to be entangled, if tr[ρW] /∈ [L,U] . For the system Md , EWs of the form 
W =

∑d−1
k,l=0 κk,lPk,l with κk,l ∈ [−1, 1] can detect all entangled states19. In this case ρ =

∑

d−1
k,l=0 ck,lPk,l ∈ Md 

and tr[ρW] =
∑d−1

k,l=0 ck,lκk,l ≡ c · κ using the standard scalar product of the d2-dimensional vectors c and κ 
with coefficients ck,l and κk,l . Using the geometric representation of Md , an EW defines two (d2 − 1)-dimensional 
hyper-planes via cL · κ = L and cU · κ = U  and induced halfspaces. Any point in the simplex but outside of 
the intersection of these halfspaces is entangled. An parameterization of unitaries56 can be used to numerically 
determine the bounds for any EW defined by its coefficients κk,l to create EWs for states in Md numerically.

Leveraging the geometric characterization of Md , also sufficient criteria to detect separable states have been 
developed and used to analyze M3

41. They can be applied for d > 3 as well and are shortly stated here:

S1: Extended kernel criterion.  The convexity of the set of separable states can be used to check if an unknown 
state is contained in the separable hull of known separable states via linear programming. For this work, the 
implementation of Ref.57, was used to check an unknown state for separability based on the convex hull of a 
given set of separable states. Using known separable states in Md as vertices, they form a polytope which approx-
imates the convex set of all separable states in Md . The effectiveness of this criterion depends on the quality of 
this approximation. More separable vertices for the polytope to improve the approximation increase the prob-
ability to detect new separable states, but on the other hand the complexity of the linear program also increases. 
It is therefore important to use vertices that are spatially uniformly distributed and as close to the surface of the 
set of separable states as possible. The sublattice states ρα of the kernel polytope Kd meet those requirements19 
and by using the entanglement-class-conserving symmetries, more vertices to extend the separable kernel can 
be generated.

S2: Weyl/Spin representation criterion.  Based on the Weyl relations18

one can see that the Weyl operators form an orthogonal basis in the space of d × d matrices with respect to the 
trace norm �A,B� ≡ tr[A†B] . Representing a density matrix σ as σ = 1

d

∑d−1
k,l=0 sk,lWk,l defines the coefficients 

(7)Sk,l =

√

d

2(d − 1)
ck,l[(1−

2

d
)cn,mδk,nδl,m +

1

d2
c(2n−k)mod d,(2m−l)mod d]

(8)Id+1(ρs) =
d+1
∑

k=1

Ck(ρs) ≤ 2

(9)C1(ρ) =
d−1
∑

i=0

�i1| ⊗ �(i1 + s)∗|ρ|i1� ⊗ |(i1 + s)∗�,

(10)Ck(ρ) =
d−1
∑

i=0

�ik| ⊗ �i∗k |ρ|ik� ⊗ |i∗k �, k = 2, . . . , d + 1.

(11)L ≤ tr[ρsW] ≤ U

(12)Wk1,l1Wk2,l2 =w
l1k2Wk1+k2,l1+l2

(13)W
†
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=w
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of this “Weyl representation” as sk,l = tr[W†
k,l
σ ] . For bipartite states, Wµ,ν ≡ Wµ1,ν1 ⊗Wµ2,ν2 the coefficients 

are indexed as sµ,ν . It was shown58 that if 
∑

µ,ν |sµ,ν | ≤ 2 , then ρ is separable. This criterion for separability is 
named “Weyl” or “spin representation criterion”.

Symmetry classification.  The group of entanglement class conserving symmetries (see “Symmetries and 
their generation”) provide further methods to determine the entanglement class of a given unknown state in Md . 
First,the set all symmetric states, i.e. the orbit of the unknown state, is generated by application of the according 
transformation for all generated symmetries. Then, this set is analyzed with respect to the available criteria. If 
the entanglement class is determined for one of the symmetric states, then all symmetric states are certainly of 
the same class. This method can additionally be used to generate more states of a certain class for further inves-
tigations.

Results
Volume of PPT states.  A first application leveraging the presented methods is to determine the relative 
volume of states with positive partial transposition in Md . It was shown42,43 that the volume of general separable 
and bound entangled quantum states decreases exponentially with the dimension of the system. Here, we deter-
mine the relative volumes for Bell diagonal states.

As described in section “Relevant subsets”, all states with positive partial transposition are necessarily located 
in the enclosure polytope Ed (5) when represented in Euclidean space. This property of Md yields an upper 
bound of the relative share of PPT states in the simplex by comparing the total volume of Md to the volume of 
Ed . The enclosure polytope generally contains both PPT and NPT states, but the ratio depends on the dimension 
d. For d = 2 , all states of E2 are known to be separable and thus PPT59, no PPT/bound entangled states exist. For 
d = 3 it was numerically shown41 that approximately 60.0% of the states in E3 ( 39% of all states in M3 ) are PPT. 
In order to determine the relative volumes of PPT, we generate a large number of uniformly distributed states 
for dimensions d = 2, . . . , 10 and check if they are in the enclosure polytope and if they are PPT. The results are 
summarized in Fig. 3.

The analysis demonstrates that despite of the fact that the relative volume of the enclosure polytope grows 
with increasing dimension, the relative number of PPT states quickly decreases. For d = 4 , 11.6% are PPT and 
the enclosure polytope E4 makes up 79.0% of M4 . For d = 5 , the relative PPT volume reduces to 7.3% and already 
for d = 6 , less than 1% are PPT, although 97.1% of states in M6 are located in E6.

Entanglement classification of PPT states in E
d

.  In order to compare the entanglement properties 
of mixed Bell diagonal states for the dimension d = 2, 3, 4 , we use uniformly generated random states in Ed 
and classify them with the criteria for separability and entanglement presented above in order to estimate the 
share of each entanglement class. As mentioned in section “Volume of PPT states”, the classification of bipartite 
qubits can be completely characterized by the PPT criterion (E1): all states in E2 are PPT and separable, no PPT 
entangled states exist. For d = 3 , we take the results of the previous investigation41, in which 96.1% of generated 
states in E3 have been successfully classified. To determine the relative volumes of entanglement classes among 
the PPT states for d = 4 with comparable precision, 40000 random states are generated in E4 out of which 96.7% 
can be successfully classified.

The 60% of states in E3 and 14.6% of E4 that have positive partial transposition are labeled as “SEP” or 
“BOUND” if they are detected as separable or entangled by the criteria E2–E5 or S1–S2. If none of the criteria 
allows classification, the state is labeled “PPT-UNKNOWN”. Table 1 summarizes the results:

Figure 3.   Relative volumes of the enclosure polytope Ed and PPT states in Md for different dimensions d. 
Figure created with Ref.46.
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Comparing the numerical classifications for d = 3 and d = 4 , three noteworthy differences can be seen: First, 
the relative number of PPT-UNKNOWN states is significantly higher for d = 4 ( 22.6% ) than for d = 3 ( 5.1% ), 
although the success rates ( 96.7% and 96.1% ) for the classification with respect to the total number of generated 
states in E4 and E3 are similar. Second, the share of separable states in d = 4 ( 75.7% ) among the PPT states is 
quite high, in spite of the large number of yet to be classified PPT states. Third, the number of detected bound 
entangled states in d = 4 ( 1.7% ) is significantly lower than for d = 3 ( 13.9% ). Although it is possible that a large 
part of the PPT-UNKNOWN states are in fact BOUND and thus could potentially be detected by criterion E5, 
this shows that the detection capability of the analytical criteria (E2–E4) is more limited for d = 4 than for d = 3.

Detection capabilities and relations of applied criteria.  The detection and thus differentiation 
between bound entangled and separable states is the core of the separability problem. Hence, the detection 
capabilities of the presented detectors for the classes SEP and BOUND are of special interest. Table 2 shows for 
each relevant criterion and dimension d the share of detected states among all SEP, respectively BOUND, clas-
sified states.

On the one hand, one notices that the strongest detectors for bound entangled Bell diagonal qutrits are 
also the most successful detectors in d = 4 , namely E2 and E5. Relative to the total amount of detected bound 
entangled states, E2 seems to perform equally well in both dimensions. However, due to the large amount of 
PPT-UNKNOWN states, the relative detection power could be much worse. Still, E2 is clearly the strongest 
applied analytical criterion for d = 3 and d = 4 . The criterion based on combining many numerically generated 
witnesses, E5, detects a large share of the identified BOUND states for both analyzed dimensions, however, the 
share is lower for d = 4 ( 86.6% for d = 3 , 68.7% for d = 4 ). Considering the PPT-UNKNOWN states, the true 
detection capability of this criterion might be even below the determined share of 68.7% for d = 4 , even though 
more EWs were used for d = 4 (approximately 22700 compared to 16700 for d = 3 ). This indicates that a single 
randomly generated numerical EW most likely is a weaker detector for the higher dimension.

On the other hand, the other detectors are clearly weaker in d = 4 compared to d = 3 . The second strongest 
criterion in d = 3 , E3, detects 19.1% of the BOUND qutrits in, while only 2.2% in d = 4 . Again, the true detection 
capability is likely even below that due to the large number of unclassified PPT states. E4 detects a significant 
share ( 13.5% ) of bound entangled qutrits while no PPT entangled qudits for d = 4 . Likewise, S2 detects no states 
as separable for d = 4.

These differences are also clearly reflected when comparing the criteria E2–E5 pairwise as shown in Figs. 4 
and 5. The only criteria that have a significant number of jointly detected states in d = 4 are the detectors E2 and 
E5 ( 44.4% of combined detected states), although the share is smaller than for d = 3 ( 67.7% ), confirming the 
reduced effectiveness of numerical EWs in the higher dimension. For d = 4 , the other pairs are rather trivial, 
because of the very low number of detected states by E3 and E4. It should be noted, however that E3 detects one 
bound state that is neither detected by E2 nor by E5. Interestingly, this criterion also detects significant shares 
of bound entanglement that are not detected jointly by E2 or E5 in d = 3.

A final remark can be made related to the purity trρ2 of detected bound entangled states ρ . For d = 3 , the least 
pure states were detected by the criterion E3 but not E2 or E4. The few detected states for d = 4 do not allow to 
confirm this observation, although it can be noted that the least pure bound state is also uniquely detected by E3.

Visual analysis of separable and bound entangled states in M
3
 and M

4
.  In this section we analyze 

and compare the structure of the set of separable and PPT entangled Bell diagonal states in dimension d = 3 and 
d = 4 . Analyzing the geometric properties of those sets helps to improve geometric methods of entanglement 
detection or to provide new insights about the geometry of such quantum states in general (see e.g. Ref.60). For 

Table 1.   Relative volumes of entanglement classes among the PPT states for d = 2, 3, 4.

Entanglement class Share of PPT for d = 2 (%) Share of PPT for d = 3 (%) Share of PPT for d = 4 (%)

SEP 100 81.0 75.7

BOUND 0 13.9 1.7

PPT-UNKNOWN 0 5.1 22.6

Table 2.   BOUND and SEP detectors and their detection shares for d = 3 and d = 4.

Entanglement class Criterion Share in class for d = 3 (%) Share in class for d = 4 (%)

SEP S1 100 100

SEP S2 1.7 0

BOUND E2 74.9 74.7

BOUND E3 19.1 2.2

BOUND E4 13.5 0

BOUND E5 86.6 68.7
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d = 2 , the geometric properties have been analyzed in detail before59. Here, we visualize d dimensional projec-
tions of PPT states in Md to demonstrate clear patterns that relate the geometric structure of the set of separable 
or bound entangled states to the algebraic structure of the Weyl operators and related Bells states. In particular, 
we make two qualitative observations:

•	 (Figs. 6, 7, 8 and 9):
	   The set of separable states in Md is geometrically strongly restricted by the d element subgroup structure 

of the Weyl operators. More precisely, the more probability of a separable mixed state is concentrated on d 
Bell states, the closer it needs to be to a subgroup state (for definition see Figs. 1, 2 and related discussion).

•	 (Fig. 10):

Figure 4.   Pairwise comparison of number of exclusively (blue and green) and jointly (red) detected states for 
d = 3 . Figure created with Ref.46.

Figure 5.   Pairwise comparison of number of exclusively (blue and green) and jointly (red) detected states 
d = 4 . Figure created with Ref.46.

Figure 6.   (c0,0, c1,0, c2,0, c0,1) for optimized separable states for d = 3 , demonstrating strong correlations of 
on-line coordinates. Figure created with Ref.46.
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	   Similar restrictions related to this subgroup structure are present for bound entangled states, but certain 
restrictions are stronger for separable states than for bound entangled states. This difference can potentially 
be leveraged to detect bound entanglement.

The set of separable states in Md forms a convex geometric body when represented as set of points in d2 dimen-
sional Euclidean space via their coordinates ck,l . Naturally, not all coordinates of the d2 dimensional space can 
be visualized at once, however, the symmetries (see section “Symmetries and their generation”) allow to capture 

Figure 7.   (c0,0, c1,0, c2,0, c3,0) for optimized separable states for d = 4 , demonstrating strong correlations of 
on-line and additionally on-sublattice coordinates. Figure created with Ref.46.

Figure 8.   (c0,0, c1,0, c0,1, c2,2) for optimized separable states for d = 3 , demonstrating necessity of full-line 
mixing for separability of states that concentrate most probability on 3 Bell states. Figure created with Ref.46.

Figure 9.   (c0,0, c1,0, c2,1, c2,2) for optimized separable states for d = 4 , demonstrating necessity of full-line 
mixing for separability of states that concentrate most probability on 4 Bell states. Figure created with Ref.46.
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some essential geometric properties, even if only d coordinates are shown. The reason for this are d-element 
subgroups that are induced by the underlying ring structure of the Weyl operators (see Figs. 1 and 2). Sub-
groups can always be mapped onto each other with a corresponding symmetry transformation19. Since these 
transformations conserve the entanglement class and act as permutations on the coordinates ck,l , different sets 
of d coordinates will show the same geometric properties if they are symmetric. Here, we consider the special 
subgroups represented by lines19,38 in the discrete phase space that are induced by the consecutive application of 
simple translations tp,q . For example in d = 3 , the indices (k, l) of the first three coordinates (c0,0, c1,0, c2,0) form 
a line (red markers in Fig. 1), because they are related by the translation t1,0 . The geometric properties of these 
coordinates are then equivalent to e.g. those of (c0,0, c1,1, c2,2) (blue markers in Fig. 1), as a suitable symmetry 
transformation relates the collections.

For visualizations we use separable states, which are specifically optimized to be close to the surface of the set 
of separable states, and random samples of PPT entangled states. We use three coordinates for a 3D-visualization 
and encode a fourth coordinate by color. Note that all PPT states are contained in the enclosure polytope, so it 
suffices to limit the range of the coordinates to [0, 1/d].

To demonstrate the first observation, we compare the projections of separable states for d = 3 and d = 4 
to d coordinates that relate either all to the same d-element subgroup or not. Figure 6 shows the geometric 
distribution of the first three coordinates on a line and a fourth coordinate encoded by the color for d = 3 
from two point of views. A structure similar to a cone spanned by the corners of the enclosing polytope E3 
{(1/3, 0, 0), (0, 1/3, 0), (0, 0, 1/3)} and the subgroup state {(1/3, 1/3, 1/3)} is visible, while no correlation with 
the off-line coordinate c0,1 can be identified. Note that there are no separable states, for which two coordinates 
of the line, i.e.. c0,0 and c1,0 , are large, while the remaining line coordinate, i.e.. c2,0 , is small.

Similar observations can be made for d = 4 , when projecting to the on-line coordinates (c0,0, c1,0, c2,0, c3,0) 
in Fig. 7. Several correlations between the coordinates can be seen. Corresponding to the yellow cone, we see 
an accumulation of separable states that have high mixing probabilities for all of the four Bell states on the line. 
The blue cone pointing to the point (1/4, 0, 1/4), on the other hand, relates to a different subgroup with indices 
{(0, 0), (2, 0), (0, 2), (2, 2)} (red markers in Fig. 2). Finally, there is no symmetric cone and thus no separable states 
in the vicinity of (0, 1/4, 1/4). Note that there is also no corresponding subgroup that contains the indices (1, 0) 
and (2, 0) but excludes the remaining line elements (0, 0) and (3, 0).

The visualizations above demonstrate that for each d-element subgroup, there is an accumulation of separable 
states in the vicinity of the corresponding subgroup state.

Consider now that d Bell states share most of the probability of a mixed state. We demonstrate that if those 
Bell states do not all correspond to the same subgroup, then the mixed state cannot be separable. First, note that 
if all probability is concentrated on less than d states, than at least one probability must exceed 1/d, in which case 
the state cannot be PPT and therefore must be (NPT) entangled (see “Enclosure polytope” on p.4). Below, we 
visualize projections to coordinates, of which two relate to the same line and remaining coordinates are chosen to 
be part of different lines. Consider for d = 3 the projection to the line coordinates defined by (c0,0, c1,0) together 
with the off-line coordinates c0,1 and c0,2 (Fig. 8). No separable states are present for large values of both on-line 
coordinates (c0,0, c1,0) and large off-line values for c0,1 or c2,2.

The same observation can be made for d = 4 . Choosing again two coordinates (c0,0, c1,0) to define a subgroup 
and two coordinates that are not part of it, one sees a similar structure in Fig. 9. Again, if the values of the line 
coordinates c0,0 and c1,0 are large, there is no separable state for large values of the off-line coordinates c2,1 or c2,2.

Due to the discussed symmetries, these characterizations hold for all coordinates that have a similar relation 
regarding their corresponding subgroups. We have therefore demonstrated the first observation: Considering 
mixed states that concentrate most of the probability on d Bell states, similarity to the subgroup states is necessary 

Figure 10.   Comparison of projections to on-line (left) vs. off-line (right) coordinates for separable (blue) and 
bound entangled (orange) states in d = 3 . Off-line projections show weaker geometric restrictions for bound 
entangled states in certain regions. Figure created with Ref.46.
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for separability. Most mixed separable states have their probabilities distributed on all Bell states and are there-
fore centered around the maximally mixed state. In this case they are likely contained in the convex hull of the 
subgroup states that define the kernel polytope. We have therefore shown that this linear approximation also 
captures the relevant geometrical structure of the whole set of separable states in Md . In addition, the observed 
restrictions allow to construct more effective approximations, which focus on the areas, in which the surface 
of the set of separable states is curved (see e.g. Fig. 6 (left)) and the linear approximation fails. This can help to 
improve existing methods of detecting separability (e.g. the extended kernel criterion S1).

We conclude this section by demonstrating the second observation, which states that the geometric restric-
tions induced by the subgroup structure of the Weyl operators are also present for bound entangled states, but 
can be distinguished from those for separable states in certain cases.

Consider d = 3 , for which a significant amount of bound entangled states can be classified. In Fig. 10, we 
again visualize d dimensional projections of separable states but also include the detected bound entangled states. 
Here, we show separable states in blue and bound entangled states in orange. The graphic on the left of Fig. 10 
shows the projection to the coordinates (c0,0, c1,0, c2,0) that relate to the same subgroup (line). One can see that 
the projections of the bound entangled states are restricted to the same area as the separable states (also compare 
Fig. 6 (right)). The described dependence of on-line projections on the related subgroups seems therefore to be 
a feature of all PPT states.

On the right hand, the visualization of the projection to three coordinates (c0,0, c1,0, c0,1) , that do not all belong 
to the same line, shows a relevant difference. The general form of visualized PPT states is still dominated by the 
convex combination of subgroup states (compare Fig. 8). There are no bound entangled states that concentrate 
most of the mixing probabilities on three Bell states that do not belong to the same subgroup. Crucially, however, 
there is a clearly visible region, in which only bound entangled states are present. For given on-line coordinate 
values (c0,0, c1,0) , this region is characterized by higher off-line coordinate values c0,1 than those accessible for 
separable projections.

For d = 3 , this demonstrates the second observation: On the one hand, the subgroup structure imposes 
restrictions on all PPT states that determine the dominant shape of d dimensional projections of separable 
and bound entangled states. On the other hand, there exist d dimensional projections under which a subset of 
bound entangled states is mapped to regions, which do not contain any projected separable states. In principle, 
knowledge about these regions can be used to construct suitable entanglement witnesses of rank d to detect those 
PPT entangled states in d2 dimensions.

For d = 4 the number of classified bound entangled states is not large enough to confirm similar character-
istics, although none of the classified bound entangled states indicate a qualitative difference to the observations 
made for d = 3.

Discussion and conclusion
In this work we analyzed states of the bipartite system of mixed Bell states, which are related by Weyl transforma-
tions, with focus on subsystems with dimension 2, 3 and 4. The entanglement class of these locally maximally 
mixed states depends on the mixing probabilities and can be separable, NPT/free entangled or for d > 2 also 
PPT/bound entangled.

In order to investigate the properties for d = 4 , i.e. bipartite ququarts, we extended the applied methods 
recently used to analyze the system of bipartite qutrits41. Leveraging a geometric representation, a random sam-
pling of uniformly distributed states can be used to estimate the relative sizes of the entanglement classes via 
various criteria to detect separability and entanglement, including its bound version. Using this representation 
together with a group of entanglement class preserving symmetries, related analytical properties and an efficient 
parameterization56 of states allows us to draw several conclusions about the entanglement properties of bipartite 
qudits and their dependence on the dimension for d = 2, 3 and 4.

A first observation is that the relative number of states with positive partial transposition, so either separable 
of bound entangled states, decreases very quickly with growing dimension, despite of increasing relative volume 
of the enclosure polytope Ed , known to contain all PPT states. The share of PPT states in the full “magic simplex” 
Md decreases from 50% for d = 2 to 39% for d=3 to 12% for d = 4 . For d > 5 , less than 1% of states are PPT.

The second observation is that significantly less bound entangled states can be detected, while the number of 
states that cannot be classified is considerably higher for d = 4 than for d = 3 . To determine the relative volumes 
of entanglement classes for the enclosure polytope in d = 4 and compare them to d = 3 , 40000 states in E4 have 
been created and classified with a probability of success of 96.7% . In principle, the probability of success could 
further be improved by extension of the numerical analyses and more states could easily be classified. In order 
to compare to d = 3 , however, the extend of the numerical analysis and the number of states are chosen to result 
in a similar probability of success and number of PPT states. Limited to the set of PPT states, 77.4% of states 
could be successfully differentiated between separable and bound entangled states. The developed methods can 
be efficiently and repeatedly applied to new unknown states to solve the NP-hard “separability problem” with 
a probability of success of 77.4% for Bell diagonal ququarts in the magic simplex. Out of all PPT states in the 
system M4 , at least 75.7% are determined to be separable and 1.7% are classified as bound entangled. The share 
of detected bound entangled states is clearly smaller than for d = 3 ( 13.9% ), however, compared to the results of 
d = 3 , a higher share (22.6 % vs 5.1% ) of PPT states could not be classified and it remains unclear whether they 
are separable or bound entangled.

A third result can be stated regarding the detection capabilities of the applied criteria. The applied detectors 
for separability (S1, S2) or bound entanglement (E2–E5) are either based on deterministic, analytical conditions 
(S2, E2, E3, E4) or on a combined collection of numerically generated objects, i.e., vertices for the extension of 
the kernel polytope for S1 or EW-defining hyperplanes for E5. It can be seen from the large share of unclassified 
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PPT states, as well as from the relative shares of detected states by the criteria in each class, that both types of 
detectors are less powerful for classification in d = 4 . Out of the analytical criteria for entanglement detection 
(E2–E4), for d = 4 , only E2 detects a significant amount of bound entangled states, while E3 detects very few 
and E4 none at all, though it is known that E4 can detect bound entangled Bell diagonal states in d = 453,55. This 
is in strong contrast to d = 3 , where the later two criteria allow the detection of 19.1% and 13.5% of all BOUND 
classified states. Interestingly, E3 still detects bound entanglement in d = 4 that cannot be detected with E2. This 
can also be observed for d = 3 , where E3 can detect more strongly mixed entangled states than E2. The numerical 
criteria S1 and E5 also show reduced detection capability. Although S1 detects more than 75% of the PPT states 
as separable, the large number of unclassified states suggests that many separable states might not be detected 
by the used kernel extension. In addition to the share of classified states, the reduced number of states that are 
both detected by the analytical criterion E2 and the numerical E5 is also an indication of lower detection power 
of a single randomly generated EW for d = 4 . another striking difference between d = 3 and d = 4 is that S2 
does not detect or is very unlikely to detect any separability for d = 4.

Many BOUND states that are detected by E2 are thus not confirmed by the criterion E5, which clearly shows 
that the number of generated EWs is not high enough, although more EWs were used than for d = 3 . Two main 
reasons are likely responsible for the weaker performance in d = 4 : First, the higher dimension of the Euclidean 
space and second, the different geometric properties of the set of separable states in Md related to the properties 
of the Weyl operators and their induced phase space in non-prime dimensions. Both criteria represent approxi-
mations of this convex set: S1 represents an polytope approximation from within by identifying separable vertices 
close to the surface of separable states, while E5 represents an enclosing approximation with the hyperplanes 
defined by the upper and lower bounds of the EWs. The higher the dimension of the Euclidean space, the more 
objects (vertices/hyperplanes) are needed for a sufficient approximation and a generated set of objects may not 
be sufficient to achieve a comparable probability of success. The geometric properties of the (unknown) convex 
body formed by separable states are also relevant, as they determine the results of optimization procedures over 
the set of separable states in the whole Hilbert space, on which the generation of EWs and separable vertices rely.

Finally, we used classified separable and bound entangled states to enable visual analyses concerning the 
structure of PPT states in Md . We argued that relevant information can be extracted by considering projections 
to d coordinates, due to the special symmetries in Md for d = 3 and d = 4 . Two main qualitative observations 
were made that relate the structure of separable and bound entangled states to the algebraic subgroup structure 
of the Weyl operators.

On the one hand, it was shown that the states defined by the induced subgroup structure of the Weyl opera-
tors, which are used to define the kernel polytope Kd , also determine the dominant geometric shape of the body 
of separable states. It was demonstrated for both d = 3 and d = 4 that a mixed state that concentrates most of 
the probability on d Bell states is separable, only if all Bell states relate to the same subgroup. This insights can 
be used to construct better approximations of the set of separable states and thus to improve methods to detect 
separability among PPT states.

On the other hand, we have demonstrated that similar restrictions related to the subgroups hold as well for 
the d dimensional projections of bound entangled states. Importantly, however, for some projections, these 
restrictions seem to be less strict for bound entangled states than those imposed on separable states. As a conse-
quence, there are d dimensional areas, which are not reachable for projections of separable states. In principle, 
PPT states that are projected to these areas can be classified as entangled by geometric criteria that are defined 
in d dimensional space, instead of the full (d2 − 1) dimensional Hilbert space.

In conclusion, the methods for state generation and entanglement analysis applied to the system of d = 3 
can also be successfully applied to d = 4 (with extensions), although with reduced effectiveness. Nonetheless, 
the presented methods solve the separability problem for M4 to a large extend, since any unknown state in 
M4 can efficiently be classified as separable or (bound) entangled with high probability of success. Significant 
differences in the relative volumes of the entanglement classes and in the detection capabilities of criteria for 
separability and entanglement are observed for M3 and M4 . Relating the algebraic structure of the Weyl opera-
tors to the geometry of Md , qualitative observations could be made that characterize the structure of PPT states 
and propose new potential criteria to detect bound entanglement in Md . These contributions can serve as start-
ing point to further improve the methods for classification and the general understanding of the entanglement 
structure of Bell diagonal qudits or general quantum states. On the one hand, further numerical investigations, 
extending the current results in terms of higher dimensions d ≥ 5 or the structure of bound entangled quantum 
states, are possible. The applied sampling methods remain efficient for Bell diagonal states and thus allow the 
confirmation of results concerning the exponential decrease of volume for separable general quantum states 
with growing dimension as reported in Ref.42,43 or the observation of special properties for Bell diagonal states. 
Recently, a sequentially constrained Monte Carlo sampler (SCMCS) for quantum states was proposed61, which 
allows efficient sampling of quantum states subject to constraints like PPT or detection properties for specific 
entanglement criteria. This method could be used to generate general bound entangled quantum states and 
compare their properties to those of Bell diagonal states or for the detailed investigation of detection capabilities 
of certain entanglement witnesses. On the other hand, the reported structures of separable and bound entangled 
Bell diagonal states in Md indicate properties that can be related to those of the Weyl operators and their induced 
phase space structure. The presented methods help to create, confirm or refute hypothesis about the structure 
of separable or entangled Bell diagonal states for different dimensions. Thus, they could provide a new accesses 
to the separability problem, the detection of bound entanglement or application relevant properties of quantum 
systems using entangled qudits.
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Data availability
All analyzed datasets were generated during the current study and are available from the corresponding author 
on reasonable request. The software used to generate the reported results is published as registered open source 
package “BellDiagonalQudits.jl”62 available at https://​github.​com/​kungf​ugo/​BellD​iagon​alQud​its.​jl.
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