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Comparing bound entanglement
of bell diagonal pairs of qutrits
and ququarts

Christopher Popp"? & Beatrix C. Hiesmayr

We compare the classification as entangled or separable of Bell diagonal bipartite qudits with positive
partial transposition (PPT) and their properties for different dimensions. For dimensiond > 3, a

form of entanglement exists that is hard to detect and called bound entanglement due to the fact
that such entangled states cannot be used for entanglement distillation. Up to this date, no efficient
solution is known to differentiate bound entangled from separable states. We address and compare
this problem named separability problem for a family of bipartite Bell diagonal qudits with special
algebraic and geometric structures and applications in quantum information processing tasks in
different dimensions. Extending analytical and numerical methods and results for Bell diagonal qutrits
(d = 3), we successfully classify more than 75% of representative Bell diagonal PPT states ford = 4.
Via those representative states we are able to estimate the volumes of separable and bound entangled
states among PPT ququarts (d = 4). We find that at least 75.7% of all PPT states are separable, 1.7%
bound entangled and for 22.6% it remains unclear whether they are separable or bound entangled.
Comparing the structure of bound entangled states and their detectors, we find considerable
differences in the detection capabilities for different dimensions and relate those to differences of the
Euclidean geometry for qutrits (d = 3) and ququarts (d = 4). Finally, using a detailed visual analysis

of the set of separable and bound entangled Bell diagonal states in both dimensions, qualitative
observations are made that allow to better distinguish bound entangled from separable states.

Quantum technology leverages quantum phenomena for better performance than classical methods for applica-
tions like computing, communication, simulation, metrology and cryptography'->. Quantum information theory
provides the theoretical formalism for processing tasks using quantum mechanical systems®. One of the charac-
teristic properties of a quantum system that allows realizing information processing with superior performance
compared to classical systems is entanglement. Besides its relevance for our general understanding of nature
and the interpretation of quantum theory’~ it provides one of the main resources to realize applications in vari-
ous fields ranging from quantum teleportation to medical applications for the detection of cancer cells'*-!*. The
simplest system to observe entanglement is the bipartite system of two two-level quantum systems, called qubits.
Currently, most applications are based on these quantum systems of dimension d = 2, but recently, interest in
higher dimensional systems like “qutrits” for d = 3, “ququarts” for d = 4 or “qudits” for general d is growing
due to potential advantages and new observable phenomena'*'>. Bell states!® are special sets of entangled states
which can be used as basis for the corresponding Hilbert space. They are highly relevant for applications due to
the fact that they are maximally entangled states. Originally introduced for d = 2, they can be generalized for
higher dimensions!’~"°.

In this paper we analyze mixtures of maximally entangled bipartite Bell states, with focusond = 3and d = 4.
Those states are locally maximally mixed, meaning that there is no correlation in the respective subsystems.
Depending on the mixing probabilities of the d? pure Bell basis states, a general mixed state can be entangled or
not, in which case it is separable. The Peres-Horodecki criterion, also known as PPT (positive partial transposi-
tion) criterion?*?!, provides an efficient method to detect a state as entangled, if the partially transposed density
matrix of a given quantum state has at least one negative eigenvalue, in which case the state is called “NPT”. Oth-
erwise it is called “PPT”. For d = 2, all entangled states are NPT, but for d > 3, also PPT entangled states exist*.
While NPT entangled states can be “distilled”?* to result in fewer strongly entangled states, this process is not
possible for PPT entangled ones. For this reason PPT entanglement is also called “bound” entanglement, which
has been extensively investigated since its discovery by the Horodecki family, e.g. in Refs.?**%. 2014, it has also
been observed in experiment, using photons entangled in their orbital angular momentum®. Many applications
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like teleportation or superdense coding® require strongly entangled states for reliable performance. However, if
a given state is transformed to a bound entangled one, this resource is bound for immediate application, since
it cannot be used to distill strongly entangled states. For this reason, it is important to know about structure of
bound entanglement in a given system and to be able to detect those states reliably, so that operations that result
in binding the resource entanglement in certain states can be avoided. However, the “separability problem” to
differentiate separable and PPT entangled states has been proved to be NP-hard*** in general and lacks an effi-
cient solution if the dimension of the system is not small. Existing methods to detect PPT entangled states?’-*
are often strongly limited in the number of states they can detect and are not efficient in higher dimensions.
Likewise, no efficient method to decide whether a PPT state is separable or bound entangled states is known
for Bell diagonal qudits, which are known to be highly relevant for practical applications®. However, special
families of these states have strong symmetries that can be leveraged for the analytical and numerical analysis
of its properties regarding the entanglement structure!****. In particular, the analytical structure of mixed Bell
states generated by Weyl-Heisenberg transformations'® allows to derive several criteria to detect separability and
entanglement'**®. Furthermore, an efficient geometric representation of the states, symmetries and entanglement
witnesses***” makes the system well applicable for numerical methods.

Recently, analytical and numerical methods were combined to solve the separability problem for the system
in three dimensions in an “almost complete” way*!. Given any unknown PPT state, the developed methods allow
the classification of this state as separable or bound entangled with a probability of success of 95%. Moreover the
classification allows the determination of the relative volumes of separable, PPT and NPT entangled states. It was
further shown, that a significant share of the PPT states of bipartite, Bell diagonal qutrits are bound entangled (at
least 13.9%), making this system exceptionally well suited to study this exotic form of entanglement regarding
its detection, use in information processing tasks and implications for nature. It is expected that the dimension
of the system has a large influence on the structure and the relative shares of entanglement classes, which is a
focus of this contribution. While approximations of the relative volumes of separable states in general systems in
dependence on the dimension exist*>**, the precise numbers depend on the specific system and are not known.

The aim of this work is to extend and apply those methods, used to successfully characterize the system for
qutrits*,, for d = 4, to draw conclusions about the structure of entangled and separable states as well as the effec-
tiveness of their detectors and to compare the results tod = 2 and d = 3. The paper is organized as follows: First,
the system to be analyzed is defined and relevant methods to generate states and to investigate its entanglement
structure are presented for general dimension. Second, we analyze the set of PPT states for d = 4. We quantify the
share of this set in the total system and the relative volumes of separable and (bound) entangled states within and
compare to other dimensions. Then, the applied criteria to detect separability and entanglement are compared for
their effectiveness in different dimensions. Finally, we leverage the special properties of the system to visualize
the set of separable and bound entangled states for d = 3 and d = 4. The visual analysis demonstrates relations
between the algebraic structure of Bell diagonal mixtures and geometric restrictions on the set of separable
and bound entangled states. This might be leveraged for the detection of bound entanglement and separability.

Methods
Consider the Hilbert space # = #'1 ® #  for the bipartite system of two qudits of dimension d. In this work
we analyze mixtures of maximally entangled orthonormal Bell states |2 ;) € # with k,I1=0,1,...,(d — 1)

generated1 by a;gl?lying the Weyl operators'® Wy to one qudit of the shared maximally entangled state
[Q00) = 7 > g li):

[Qp,1) = Wi 1®14]200) (1)
where Wy = Z‘:ol wk[j)(j+1 (mod d)|, w = X Mixing the density matrices, or “Bell projectors”,

Pi = |Q4,1) (2,1 with mixing probability ¢x ; defines Bell diagonal states with respect to the above defined Weyl
operators and the system of interest for this work:

-1 -1
Mg=1{p=" cxPril > cky=1ck>0) )
kI=0 k=0

By taking the partial trace with respect to one of the subsystems, the reduced state of any state in .# 4 is maximally
mixed, so all information is in the correlation of the combined state and not in the subsystems themselves. States
with this property are called “locally maximally mixed”. Any state of ./ is equivalent to a point in d? dimensional
Euclidean space by identifying the mixing probabilities ¢k ) with coordinates in real space. Due to the normaliza-
tion of the ¢k, the set of these points forms a standard simplex. Referring to the “magic Bell basis” of Wootters
and Hill** ./ ; is also known as “magic simplex”!*4,

The properties of the Weyl operators Wy ; imply a linear ring structure or “discrete phase space” for operators
indexed by the tuples (k, I) based on succeeding application of these operators'. This can be seen via the Weyl
relations'® (addition defined modulo d):

I k:
Wi s Wi, =W Wiyt +1 (3)

Wi =wH W = w (4)

In Figs. 1 and 2 we visualize this phase space as lattice of d x d vertices, each vertex corresponding to the Weyl
operator (and thus also to a Bell state via eq.(1)) with according indices (k, I). Depending on the dimension d,
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several subgroups exist and for this work subgroups containing d elements are of special relevancy, as they can
be related to the structure of the sets of separable and bound entangled states. In general, a subgroup is defined
by its generating elements. In case d is prime, all subgroups of d elements are generated by one of the Weyl
operators. Highlighting the vertices (here red and blue) corresponding to a subgroup generated by Wy ; induces
“lines” in the discrete phase space (see Fig. 1). This is different for non-prime dimensions, where subgroups of
d elements can additionally be generated by two Weyl operators whose indices contain proper divisors of d in
which case “sublattices” are formed in the phase space (see e.g. Fig. 2). For more details, consult Ref."’. We can
also use Figs. 1 and 2 to specify “subgroup states” by assigning each highlighted subgroup to a state which consists
of equal mixtures of all corresponding Bell states.

Relevant subsets. The properties of .# 4 allow the definition of special subsets related to the entangle-
ment properties of contained states, which have been investigated with respect to separability and (bound)
entanglement®>"’.

Enclosure polytope. The enclosure polytope is a superset of all states with positive partial transposition. It was
shown'? that all states that have at least one mixing probability cy ; exceeding 1/d are necessarily entangled and
can be detected by the Peres-Horodecki criterion (PPT criterion). As NPT entangled states they can be dis-
tilled by local operation and classical communication (LOCC), and are therefore called “free” and not “bound”
entangled?. The enclosure polytope is defined as:

-1 d—1
) 1
Sa={p= § k1P | E ek = Lcg € [0, E]} (5)
k=0 k=0

Using the representation of .# ; in Euclidean space, &4 forms a bounded polytope.

Kernel polytope. For each of the subgroups of d elements induced by the Weyl operators (indexed by «), a
special “subgroup” or “sublattice state” p, can be defined, which is known to be a separable state'’. In general,
these subgroup states are e?ual mixtures of d Bell states corresponding to a subgroup with probability 1/d, e.g.
the line state py, = é Z;o Py (see also Figs. 1 and 2). This gives rise to a kernel polytope # 4, which is defined
as convex mixture of these separable line or sublattice states with d elements:

A Line induced by (1,0)
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Figure 1. Phase space and exemplary induced subgroups called “lines” for d = 3. Figure created with Ref.*.
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Figure 2. Phase space and exemplary induced subgroups called “lines” and “sublattices” for d = 4. Figure
created with Ref.*.
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All states in the kernel polytope are convex combinations of separable states, consequently each state in 44
is by construction separable and the center corresponds to the maximally mixed state.

Bell diagonal state generation in arbitrary dimension. Using the geometric representation of .#4
in Euclidean space, any state can be generated by specifying its d coordinates c ;. Random sampling as well as
deterministic procedures can be used to generate states. It was shown?! that via random sampling, uniformly
distributed states in .# 4 can be generated and used to estimate the relative volumes of the entanglement classes
of separable, bound entangled and free entangled states in .#3. The same method can be used for d > 3 to gener-
ate states in .44 and &4 by drawing the first d? — 1 coordinates from a uniform distribution in the range [0, 1]
for ./ 4 or [0, 1/d] for & 4 respectively. The remaining coordinate is then chosen according to the normalization
condition. If this is not possible with a non-negative probability, the coordinates do not represent a normalized
physical state and is therefore rejected. This form of rejection sampling becomes less effective with growing
dimension d because the probability of a random state being rejected increases rapidly for d > 5. However,
several methods exist to sample uniformly distributed points on the standard simplex and thus in .#; in any
dimension (see Ref.*® and the references therein), but these methods are not accessible for sampling of states
located only in the polytopes &4 or ;.

Symmetries and their generation. The ring structure of the Weyl operators Wy can be used to define
linear symmetry transformations'®?® acting on states in .# 4. These transformations act as permutations on the
Bell basis projectors Py or equivalently as permutations of the coordinates cg; of a state in .# ;. These symmetry
transformations form a group and are known to conserve both the PPT property and entanglement. Together
these properties imply the conservation of the entanglement class*!, meaning that the subsets of separable,
bound entangled and free entangled states are mapped to themselves. For numerical implementations as well as
for understanding their action on a given state, any linear symmetry s can be characterized by their action on the
basis projectors s : Px; — Py p. All elements of this symmetry group can be generated by combined application
of the following group generators (all mathematical operations on the indices are defined as(mod d)):

Momentum inversion: m : Pi; — P_g;

Quarter rotation: r : Py; — Py _j

Vertical sheer: v : Py; — Piiqy

Translation: tp4 : Pxj — Prypiiqfor p,q € (0,...,d — 1)

Note that the translation of a Bell diagonal state can also be realized by applying a corresponding Weyl operator
to the mixed state. This is not the case for the other generators, as their action on each Bell state that contributes
to the mixture depends on that state. Due to the finite number of elements (k, [) in the phase space induced by
the Weyl operators Wy, the number of distinct symmetries generated by the generators above is finite as well
and can be generated numerically. The number of existing symmetries grows quickly with the dimension. For
d = 2, 24 distinct symmetries can be generated, for d = 3, 432 and for d = 4 already 1536 symmetries of this
group exist. Taking these symmetries into account is essential for the numerical methods to be effective in the
d? dimensional space.

Criteria for the detection of entanglement and separability. The separability problem to decide
whether a given mixed quantum state is separable or entangled has been shown to be NP-hard with respect
to the dimension d as complexity measure’*® and lacks an efficient general solution by polynomial in time
algorithms, which is also the case for states in .#; for general dimension d. It is currently unclear, whether an
efficient general solution exists for the separability problem in .# 4. For d = 2, however, all entangled states can
be detected by the PPT criterion?2! and recently, an almost complete solution was presented*! for d = 3, in the
sense that any random unknown PPT state in .43 can be classified numerically with a probability of success of
95%. The methods used in this work can be equivalently used or extended to be applicable for d > 3. In the fol-
lowing we introduce those methods shortly. For more detailed information, the reader is referred to Ref.*! and
the references therein.

EI: PPT criterion. 'The “Positive Partial Transpose (PPT)” or “Peres-Horodecki” criterion® detects entangle-
ment for a bipartite state if it has at least one negative eigenvalue (in which case it is said to be “NPT”). Ford = 2
it detects all entangled states, but for d > 3 it is only sufficient due to the existence of PPT- or bound entangled
states. The partial transpose I" acts on the basis states of a bipartite state as (i) (j| ® |k) (INT = |4 Gl ® 1) (k|-

E2: Realignment criterion. The realignment operation R is defined as (|i) (j| ® |k)(I|)r = |i) (k| ® |j) (. The rea-
lignment criterion* states that if the sum of singular values of the realigned state oy are larger than 1, then o is
entangled. Like the PPT criterion it is only sufficient for entanglement. Bound entangled states can be detected
by this criterion, but it does not detect all NPT states in general.

E3: Quasi-pure concurrence criterion. 'The quasi-pure approximation®” Cg, of the concurrence® allows the effi-
cient detection of entanglement including its bound form. The approximation takes an explicit form for states
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in. 4 4: A state p = Zkl ¢k 1Py € A 4is entangled if Cgp (0) = max(0, Sy — Z(k,l);é(n,m) Sk,) > 0where the
Sk, are explicitly given by

d 2 1
Sk1 = \/ mfk,l[(l = nmbkndim + =5 Can—kymod d.@m—Dimod dl 7)
and (n, m) is a multi-index of the coordinate of the largest value {ck }.
E4: MUB criterion. A set of orthonormal bases {Bx} and By = {lix) | i = 0,...,(d — 1)} is called “mutually

unbiased bases (MUB)” if Vk # I: |(ix)ji|* = é Vi,j=0,...,(d — 1). At mostd + 1 MUBs exist>"*?, in which
case it was shown*»*>** that the sum of “mutual predictabilities” obeys

d+1
Lii(ps) =Y Cilps) <2 (8)
k=1
for all separable states (p;), when defining
d—1
Ci(p) = Z<i1| ® (i +9)"|plit) ® |(i1 +9)7), )
i=0
d—1
Cr(p) = > _(ixl ® (iflplix) @ lif), k=2,....d + 1. (10)
i=0
Here,s = 0,1,...,(d — 1) and i} denotes the complex conjugate vector element. The MUB criterion thus indi-

cates that if any state violates (8), it is entangled. If s > O and s # d/2 the MUB criterion allows the detection of
PPT entangled states®, which was also experimentally demonstrated for entangled photons® in the case d = 3.
Note, that other, inequivalent MUBs exist, including extendible or unextendible sets of bases that contain less
than d + 1 elements®. The set of entangled states that are detected by the MUB criterion generally depends on
the used MUB. For this work, we use MUBs of d + 1 elements as given in the Appendix Al and set s = 2 for
d=3ands=3ford = 4.

E5: Numerically generated entanglement witnesses. An entanglement witness® (“EW”) W is an observable
which implies an upper bound U and also a lower bound*’ L (U, L € R), for separable states ps:

L <tr[pW] =U (11)

A state P is “detected by W” to be entangled, if tr[pW] ¢ [L, U]. For the system .# 4, EWs of the form
W= Zzl o Kk, Pr g with ki ; € [—1, 1] can detect all entangled states'. In this case p = Zzl o ki Pk € Mg
and tr[pW] = Zkl 0 Sk,1Kk,] = ¢ - k using the standard scalar product of the d?-dimensional vectors ¢ and «
with coefficients cx ; and k. Using the geometric representation of .# 4, an EW defines two (4> — 1)-dimensional
hyper-planes via ¢, - k = L and ¢y - k = U and induced halfspaces. Any point in the simplex but outside of
the intersection of these halfspaces is entangled. An parameterization of unitaries® can be used to numerically
determine the bounds for any EW defined by its coefficients «y ; to create EW's for states in .# 4 numerically.

Leveraging the geometric characterization of .# 4, also sufficient criteria to detect separable states have been
developed and used to analyze .#3*". They can be applied for d > 3 as well and are shortly stated here:

SI: Extended kernel criterion. 'The convexity of the set of separable states can be used to check if an unknown
state is contained in the separable hull of known separable states via linear programming. For this work, the
implementation of Ref.”’, was used to check an unknown state for separability based on the convex hull of a
given set of separable states. Using known separable states in .# ; as vertices, they form a polytope which approx-
imates the convex set of all separable states in .# ;. The effectiveness of this criterion depends on the quality of
this approximation. More separable vertices for the polytope to improve the approximation increase the prob-
ability to detect new separable states, but on the other hand the complexity of the linear program also increases.
It is therefore important to use vertices that are spatially uniformly distributed and as close to the surface of the
set of separable states as possible. The sublattice states pg of the kernel polytope #"; meet those requirements'’
and by using the entanglement-class-conserving symmetries, more vertices to extend the separable kernel can
be generated.

S2: Weyl/Spin representation criterion. Based on the Weyl relations'®

Lk
Wit Wio, =W Witk +1, (12)

Wi =wi W = W) (13)

one can see that the Weyl operators form an orthogonal basis in the space of d x d matrices with respect to the
trace norm (A, B) = tr[ATB]. Representing a density matrix o as o = bl Z k=0 Skl Wi defines the coefficients
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of this “Weyl representation” as sx; = tr[W]t 10 ]. For bipartite states, W, , = Wy, ® Wy, .., the coefficients
are indexed as sy,,,. It was shown™ that if ), |s,,v| < 2, then p is separable. This criterion for separability is
named “Weyl” or “spin representation criterion”

Symmetry classification. The group of entanglement class conserving symmetries (see “Symmetries and
their generation”) provide further methods to determine the entanglement class of a given unknown state in .# ;.
First,the set all symmetric states, i.e. the orbit of the unknown state, is generated by application of the according
transformation for all generated symmetries. Then, this set is analyzed with respect to the available criteria. If
the entanglement class is determined for one of the symmetric states, then all symmetric states are certainly of
the same class. This method can additionally be used to generate more states of a certain class for further inves-
tigations.

Results

Volume of PPT states. A first application leveraging the presented methods is to determine the relative
volume of states with positive partial transposition in .# 4. It was shown*>*® that the volume of general separable
and bound entangled quantum states decreases exponentially with the dimension of the system. Here, we deter-
mine the relative volumes for Bell diagonal states.

As described in section “Relevant subsets”, all states with positive partial transposition are necessarily located
in the enclosure polytope & (5) when represented in Euclidean space. This property of .# ; yields an upper
bound of the relative share of PPT states in the simplex by comparing the total volume of .# ; to the volume of
& 4. The enclosure polytope generally contains both PPT and NPT states, but the ratio depends on the dimension
d. Ford = 2, all states of & are known to be separable and thus PPT*’, no PPT/bound entangled states exist. For
d = 3 it was numerically shown*' that approximately 60.0% of the states in &3 (39% of all states in .#3) are PPT.
In order to determine the relative volumes of PPT, we generate a large number of uniformly distributed states
for dimensionsd = 2, ..., 10 and check if they are in the enclosure polytope and if they are PPT. The results are
summarized in Fig. 3.

The analysis demonstrates that despite of the fact that the relative volume of the enclosure polytope grows
with increasing dimension, the relative number of PPT states quickly decreases. For d = 4,11.6% are PPT and
the enclosure polytope &4 makes up 79.0% of .# 4. For d = 5, the relative PPT volume reduces to 7.3% and already
for d = 6, less than 1% are PPT, although 97.1% of states in .# ¢ are located in &’.

Entanglement classification of PPT states in &4. In order to compare the entanglement properties
of mixed Bell diagonal states for the dimension d = 2, 3,4, we use uniformly generated random states in &4
and classify them with the criteria for separability and entanglement presented above in order to estimate the
share of each entanglement class. As mentioned in section “Volume of PPT states’, the classification of bipartite
qubits can be completely characterized by the PPT criterion (E1): all states in &, are PPT and separable, no PPT
entangled states exist. For d = 3, we take the results of the previous investigation*!, in which 96.1% of generated
states in &3 have been successfully classified. To determine the relative volumes of entanglement classes among
the PPT states for d = 4 with comparable precision, 40000 random states are generated in &4 out of which 96.7%
can be successfully classified.

The 60% of states in &3 and 14.6% of &4 that have positive partial transposition are labeled as “SEP” or
“BOUND?” if they are detected as separable or entangled by the criteria E2-E5 or S1-S2. If none of the criteria
allows classification, the state is labeled “PPT-UNKNOWN?” Table 1 summarizes the results:

A A Y PPT states
A T T States |
7S A Statesin
A enclosure polytope
A
Y
0 Y
e Y Y Y Y
3 4 5 6 7 8 9 10
d

Figure 3. Relative volumes of the enclosure polytope &4 and PPT states in .# 4 for different dimensions d.
Figure created with Ref.*®.
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Entanglement class Share of PPT ford = 2 (%) | Share of PPT ford = 3 (%) | Share of PPT for d = 4 (%)
SEP 100 81.0 75.7

BOUND 0 13.9 1.7

PPT-UNKNOWN 0 5.1 22.6

Table 1. Relative volumes of entanglement classes among the PPT states ford = 2, 3,4.

Comparing the numerical classifications for d = 3 and d = 4, three noteworthy differences can be seen: First,
the relative number of PPT-UNKNOWN states is significantly higher for d = 4 (22.6%) than for d = 3 (5.1%),
although the success rates (96.7% and 96.1%) for the classification with respect to the total number of generated
states in &4 and &3 are similar. Second, the share of separable states in d = 4 (75.7%) among the PPT states is
quite high, in spite of the large number of yet to be classified PPT states. Third, the number of detected bound
entangled states in d = 4 (1.7%) is significantly lower than for d = 3 (13.9%). Although it is possible that a large
part of the PPT-UNKNOWN states are in fact BOUND and thus could potentially be detected by criterion E5,
this shows that the detection capability of the analytical criteria (E2-E4) is more limited for d = 4 than ford = 3.

Detection capabilities and relations of applied criteria. The detection and thus differentiation
between bound entangled and separable states is the core of the separability problem. Hence, the detection
capabilities of the presented detectors for the classes SEP and BOUND are of special interest. Table 2 shows for
each relevant criterion and dimension d the share of detected states among all SEP, respectively BOUND, clas-
sified states.

On the one hand, one notices that the strongest detectors for bound entangled Bell diagonal qutrits are
also the most successful detectors in d = 4, namely E2 and E5. Relative to the total amount of detected bound
entangled states, E2 seems to perform equally well in both dimensions. However, due to the large amount of
PPT-UNKNOWN states, the relative detection power could be much worse. Still, E2 is clearly the strongest
applied analytical criterion ford = 3and d = 4. The criterion based on combining many numerically generated
witnesses, E5, detects a large share of the identified BOUND states for both analyzed dimensions, however, the
share is lower for d = 4 (86.6% for d = 3, 68.7% for d = 4). Considering the PPT-UNKNOWN states, the true
detection capability of this criterion might be even below the determined share of 68.7% for d = 4, even though
more EWs were used for d = 4 (approximately 22700 compared to 16700 for d = 3). This indicates that a single
randomly generated numerical EW most likely is a weaker detector for the higher dimension.

On the other hand, the other detectors are clearly weaker in d = 4 compared to d = 3. The second strongest
criterion ind = 3, E3, detects 19.1% of the BOUND qutrits in, while only 2.2% in d = 4. Again, the true detection
capability is likely even below that due to the large number of unclassified PPT states. E4 detects a significant
share (13.5%) of bound entangled qutrits while no PPT entangled qudits for d = 4. Likewise, S2 detects no states
as separable for d = 4.

These differences are also clearly reflected when comparing the criteria E2-E5 pairwise as shown in Figs. 4
and 5. The only criteria that have a significant number of jointly detected states in d = 4 are the detectors E2 and
E5 (44.4% of combined detected states), although the share is smaller than for d = 3 (67.7%), confirming the
reduced effectiveness of numerical EWs in the higher dimension. For d = 4, the other pairs are rather trivial,
because of the very low number of detected states by E3 and E4. It should be noted, however that E3 detects one
bound state that is neither detected by E2 nor by E5. Interestingly, this criterion also detects significant shares
of bound entanglement that are not detected jointly by E2 or E5ind = 3.

A final remark can be made related to the purity trp? of detected bound entangled states p. For d = 3, the least
pure states were detected by the criterion E3 but not E2 or E4. The few detected states for d = 4 do not allow to
confirm this observation, although it can be noted that the least pure bound state is also uniquely detected by E3.

Visual analysis of separable and bound entangled statesin.Zs and .#. In this section we analyze
and compare the structure of the set of separable and PPT entangled Bell diagonal states in dimension d = 3and
d = 4. Analyzing the geometric properties of those sets helps to improve geometric methods of entanglement
detection or to provide new insights about the geometry of such quantum states in general (see e.g. Ref.?°). For

Entanglement class Criterion | Share in class ford = 3 (%) | Share in class for d = 4 (%)
SEP S1 100 100

SEP S2 1.7 0

BOUND E2 74.9 74.7

BOUND E3 19.1 22

BOUND E4 13.5 0

BOUND E5 86.6 68.7

Table 2. BOUND and SEP detectors and their detection shares ford = 3and d = 4.
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Figure 4. Pairwise comparison of number of exclusively (blue and green) and jointly (red) detected states for

d = 3. Figure created with Ref.*®.
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Figure 5. Pairwise comparison of number of exclusively (blue and green) and jointly (red) detected states
d = 4. Figure created with Ref.*.

d = 2, the geometric properties have been analyzed in detail before®. Here, we visualize d dimensional projec-
tions of PPT states in .# 4 to demonstrate clear patterns that relate the geometric structure of the set of separable
or bound entangled states to the algebraic structure of the Weyl operators and related Bells states. In particular,
we make two qualitative observations:

e (Figs.6,7,8and9):
The set of separable states in ./ is geometrically strongly restricted by the d element subgroup structure
of the Weyl operators. More precisely, the more probability of a separable mixed state is concentrated on d

Bell states, the closer it needs to be to a subgroup state (for definition see Figs. 1, 2 and related discussion).
e (Fig. 10):
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Figure 6. (co,0, ¢1,0, €2,0, C0,1) for optimized separable states for d = 3, demonstrating strong correlations of
on-line coordinates. Figure created with Ref.*.
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Figure 7. (co,0, €1,0, €2,0> €3,0) for optimized separable states for d = 4, demonstrating strong correlations of
on-line and additionally on-sublattice coordinates. Figure created with Ref.*.

Figure 8. (co,0, €1,0 €0,1> ¢2,2) for optimized separable states for d = 3, demonstrating necessity of full-line
mixing for separability of states that concentrate most probability on 3 Bell states. Figure created with Ref..

Figure 9. (co,0, 1,0, €2,1, ¢2,2) for optimized separable states for d = 4, demonstrating necessity of full-line
mixing for separability of states that concentrate most probability on 4 Bell states. Figure created with Ref.*.

Similar restrictions related to this subgroup structure are present for bound entangled states, but certain
restrictions are stronger for separable states than for bound entangled states. This difference can potentially
be leveraged to detect bound entanglement.

The set of separable states in ./ forms a convex geometric body when represented as set of points in d? dimen-
sional Euclidean space via their coordinates cy . Naturally, not all coordinates of the d> dimensional space can
be visualized at once, however, the symmetries (see section “Symmetries and their generation”) allow to capture

Scientific Reports|  (2023) 13:2037 | https://doi.org/10.1038/s41598-023-29211-w nature portfolio



www.nature.com/scientificreports/

k AL' Q\J

Figure 10. Comparison of projections to on-line (left) vs. oft-line (right) coordinates for separable (blue) and
bound entangled (orange) states in d = 3. Off-line projections show weaker geometric restrictions for bound
entangled states in certain regions. Figure created with Ref.*.

some essential geometric properties, even if only d coordinates are shown. The reason for this are d-element
subgroups that are induced by the underlying ring structure of the Weyl operators (see Figs. 1 and 2). Sub-
groups can always be mapped onto each other with a corresponding symmetry transformation'. Since these
transformations conserve the entanglement class and act as permutations on the coordinates cx j, different sets
of d coordinates will show the same geometric properties if they are symmetric. Here, we consider the special
subgroups represented by lines'?® in the discrete phase space that are induced by the consecutive application of
simple translations ¢, 4. For example in d = 3, the indices (k, I) of the first three coordinates (co,, c1,0, ¢2,0) form
a line (red markers in Fig. 1), because they are related by the translation ¢, o. The geometric properties of these
coordinates are then equivalent to e.g. those of (o, c1,1, ¢2,2) (blue markers in Fig. 1), as a suitable symmetry
transformation relates the collections.

For visualizations we use separable states, which are specifically optimized to be close to the surface of the set
of separable states, and random samples of PPT entangled states. We use three coordinates for a 3D-visualization
and encode a fourth coordinate by color. Note that all PPT states are contained in the enclosure polytope, so it
suffices to limit the range of the coordinates to [0, 1/d].

To demonstrate the first observation, we compare the projections of separable states ford = 3and d = 4
to d coordinates that relate either all to the same d-element subgroup or not. Figure 6 shows the geometric
distribution of the first three coordinates on a line and a fourth coordinate encoded by the color ford = 3
from two point of views. A structure similar to a cone spanned by the corners of the enclosing polytope &3
{(1/3,0,0),(0,1/3,0),(0,0,1/3)} and the subgroup state {(1/3,1/3,1/3)} is visible, while no correlation with
the off-line coordinate cy,; can be identified. Note that there are no separable states, for which two coordinates
of the line, i.e.. cp,p and ¢y g, are large, while the remaining line coordinate, i.e.. c2,0, is small.

Similar observations can be made for d = 4, when projecting to the on-line coordinates (co 9, ¢1,0, €2,0, €3,0)
in Fig. 7. Several correlations between the coordinates can be seen. Corresponding to the yellow cone, we see
an accumulation of separable states that have high mixing probabilities for all of the four Bell states on the line.
The blue cone pointing to the point (1/4, 0, 1/4), on the other hand, relates to a different subgroup with indices
{(0,0), (2,0, (0,2), (2,2)} (red markers in Fig. 2). Finally, there is no symmetric cone and thus no separable states
in the vicinity of (0, 1/4, 1/4). Note that there is also no corresponding subgroup that contains the indices (1, 0)
and (2, 0) but excludes the remaining line elements (0, 0) and (3, 0).

The visualizations above demonstrate that for each d-element subgroup, there is an accumulation of separable
states in the vicinity of the corresponding subgroup state.

Consider now that d Bell states share most of the probability of a mixed state. We demonstrate that if those
Bell states do not all correspond to the same subgroup, then the mixed state cannot be separable. First, note that
if all probability is concentrated on less than d states, than at least one probability must exceed 1/d, in which case
the state cannot be PPT and therefore must be (NPT) entangled (see “Enclosure polytope” on p.4). Below, we
visualize projections to coordinates, of which two relate to the same line and remaining coordinates are chosen to
be part of different lines. Consider for d = 3 the projection to the line coordinates defined by (co,0, c1,0) together
with the off-line coordinates co,; and ¢y » (Fig. 8). No separable states are present for large values of both on-line
coordinates (cg,0, ¢1,0) and large off-line values for ¢y ; or ¢z.2.

The same observation can be made for d = 4. Choosing again two coordinates (c,0, c1,0) to define a subgroup
and two coordinates that are not part of it, one sees a similar structure in Fig. 9. Again, if the values of the line
coordinates co,0 and c; g are large, there is no separable state for large values of the off-line coordinates ¢z ; or ¢3.5.

Due to the discussed symmetries, these characterizations hold for all coordinates that have a similar relation
regarding their corresponding subgroups. We have therefore demonstrated the first observation: Considering
mixed states that concentrate most of the probability on d Bell states, similarity to the subgroup states is necessary
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for separability. Most mixed separable states have their probabilities distributed on all Bell states and are there-
fore centered around the maximally mixed state. In this case they are likely contained in the convex hull of the
subgroup states that define the kernel polytope. We have therefore shown that this linear approximation also
captures the relevant geometrical structure of the whole set of separable states in .# ;. In addition, the observed
restrictions allow to construct more effective approximations, which focus on the areas, in which the surface
of the set of separable states is curved (see e.g. Fig. 6 (left)) and the linear approximation fails. This can help to
improve existing methods of detecting separability (e.g. the extended kernel criterion SI).

We conclude this section by demonstrating the second observation, which states that the geometric restric-
tions induced by the subgroup structure of the Weyl operators are also present for bound entangled states, but
can be distinguished from those for separable states in certain cases.

Consider d = 3, for which a significant amount of bound entangled states can be classified. In Fig. 10, we
again visualize d dimensional projections of separable states but also include the detected bound entangled states.
Here, we show separable states in blue and bound entangled states in orange. The graphic on the left of Fig. 10
shows the projection to the coordinates (co,, ¢1,0, ¢2,0) that relate to the same subgroup (line). One can see that
the projections of the bound entangled states are restricted to the same area as the separable states (also compare
Fig. 6 (right)). The described dependence of on-line projections on the related subgroups seems therefore to be
a feature of all PPT states.

On the right hand, the visualization of the projection to three coordinates (co 0, ¢1,0, ¢o,1), that do not all belong
to the same line, shows a relevant difference. The general form of visualized PPT states is still dominated by the
convex combination of subgroup states (compare Fig. 8). There are no bound entangled states that concentrate
most of the mixing probabilities on three Bell states that do not belong to the same subgroup. Crucially, however,
there is a clearly visible region, in which only bound entangled states are present. For given on-line coordinate
values (co,0, ¢1,0), this region is characterized by higher off-line coordinate values ¢o,; than those accessible for
separable projections.

For d = 3, this demonstrates the second observation: On the one hand, the subgroup structure imposes
restrictions on all PPT states that determine the dominant shape of d dimensional projections of separable
and bound entangled states. On the other hand, there exist d dimensional projections under which a subset of
bound entangled states is mapped to regions, which do not contain any projected separable states. In principle,
knowledge about these regions can be used to construct suitable entanglement witnesses of rank d to detect those
PPT entangled states in d> dimensions.

For d = 4 the number of classified bound entangled states is not large enough to confirm similar character-
istics, although none of the classified bound entangled states indicate a qualitative difference to the observations
made ford = 3.

Discussion and conclusion

In this work we analyzed states of the bipartite system of mixed Bell states, which are related by Weyl transforma-
tions, with focus on subsystems with dimension 2, 3 and 4. The entanglement class of these locally maximally
mixed states depends on the mixing probabilities and can be separable, NPT/free entangled or for d > 2 also
PPT/bound entangled.

In order to investigate the properties for d = 4, i.e. bipartite ququarts, we extended the applied methods
recently used to analyze the system of bipartite qutrits*. Leveraging a geometric representation, a random sam-
pling of uniformly distributed states can be used to estimate the relative sizes of the entanglement classes via
various criteria to detect separability and entanglement, including its bound version. Using this representation
together with a group of entanglement class preserving symmetries, related analytical properties and an efficient
parameterization® of states allows us to draw several conclusions about the entanglement properties of bipartite
qudits and their dependence on the dimension for d = 2,3 and 4.

A first observation is that the relative number of states with positive partial transposition, so either separable
of bound entangled states, decreases very quickly with growing dimension, despite of increasing relative volume
of the enclosure polytope & 4, known to contain all PPT states. The share of PPT states in the full “magic simplex”
M 4 decreases from 50% for d = 2 to 39% for d=3 t012% for d = 4. For d > 5, less than 1% of states are PPT.

The second observation is that significantly less bound entangled states can be detected, while the number of
states that cannot be classified is considerably higher for d = 4 than for d = 3. To determine the relative volumes
of entanglement classes for the enclosure polytope in d = 4 and compare them to d = 3, 40000 states in &4 have
been created and classified with a probability of success of 96.7%. In principle, the probability of success could
further be improved by extension of the numerical analyses and more states could easily be classified. In order
to compare to d = 3, however, the extend of the numerical analysis and the number of states are chosen to result
in a similar probability of success and number of PPT states. Limited to the set of PPT states, 77.4% of states
could be successfully differentiated between separable and bound entangled states. The developed methods can
be efficiently and repeatedly applied to new unknown states to solve the NP-hard “separability problem” with
a probability of success of 77.4% for Bell diagonal ququarts in the magic simplex. Out of all PPT states in the
system ./ 4, at least 75.7% are determined to be separable and 1.7% are classified as bound entangled. The share
of detected bound entangled states is clearly smaller than for d = 3 (13.9%), however, compared to the results of
d = 3, a higher share (22.6 % vs 5.1%) of PPT states could not be classified and it remains unclear whether they
are separable or bound entangled.

A third result can be stated regarding the detection capabilities of the applied criteria. The applied detectors
for separability (S1, S2) or bound entanglement (E2-E5) are either based on deterministic, analytical conditions
(S2, E2, E3, E4) or on a combined collection of numerically generated objects, i.e., vertices for the extension of
the kernel polytope for S1 or EW-defining hyperplanes for E5. It can be seen from the large share of unclassified
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PPT states, as well as from the relative shares of detected states by the criteria in each class, that both types of
detectors are less powerful for classification in d = 4. Out of the analytical criteria for entanglement detection
(E2-E4), for d = 4, only E2 detects a significant amount of bound entangled states, while E3 detects very few
and E4 none at all, though it is known that E4 can detect bound entangled Bell diagonal states in d = 4°>%*. This
is in strong contrast to d = 3, where the later two criteria allow the detection 0f19.1% and 13.5% of all BOUND
classified states. Interestingly, E3 still detects bound entanglement in d = 4 that cannot be detected with E2. This
can also be observed for d = 3, where E3 can detect more strongly mixed entangled states than E2. The numerical
criteria S1 and E5 also show reduced detection capability. Although S1 detects more than 75% of the PPT states
as separable, the large number of unclassified states suggests that many separable states might not be detected
by the used kernel extension. In addition to the share of classified states, the reduced number of states that are
both detected by the analytical criterion E2 and the numerical E5 is also an indication of lower detection power
of a single randomly generated EW for d = 4. another striking difference between d = 3 and d = 4 is that S2
does not detect or is very unlikely to detect any separability for d = 4.

Many BOUND states that are detected by E2 are thus not confirmed by the criterion E5, which clearly shows
that the number of generated EW's is not high enough, although more EWs were used than for d = 3. Two main
reasons are likely responsible for the weaker performance in d = 4: First, the higher dimension of the Euclidean
space and second, the different geometric properties of the set of separable states in .#; related to the properties
of the Weyl operators and their induced phase space in non-prime dimensions. Both criteria represent approxi-
mations of this convex set: S1 represents an polytope approximation from within by identifying separable vertices
close to the surface of separable states, while E5 represents an enclosing approximation with the hyperplanes
defined by the upper and lower bounds of the EWs. The higher the dimension of the Euclidean space, the more
objects (vertices/hyperplanes) are needed for a sufficient approximation and a generated set of objects may not
be sufficient to achieve a comparable probability of success. The geometric properties of the (unknown) convex
body formed by separable states are also relevant, as they determine the results of optimization procedures over
the set of separable states in the whole Hilbert space, on which the generation of EWs and separable vertices rely.

Finally, we used classified separable and bound entangled states to enable visual analyses concerning the
structure of PPT states in .# 3. We argued that relevant information can be extracted by considering projections
to d coordinates, due to the special symmetries in .# 4 for d = 3 and d = 4. Two main qualitative observations
were made that relate the structure of separable and bound entangled states to the algebraic subgroup structure
of the Weyl operators.

On the one hand, it was shown that the states defined by the induced subgroup structure of the Weyl opera-
tors, which are used to define the kernel polytope 4", also determine the dominant geometric shape of the body
of separable states. It was demonstrated for both d = 3 and d = 4 that a mixed state that concentrates most of
the probability on d Bell states is separable, only if all Bell states relate to the same subgroup. This insights can
be used to construct better approximations of the set of separable states and thus to improve methods to detect
separability among PPT states.

On the other hand, we have demonstrated that similar restrictions related to the subgroups hold as well for
the d dimensional projections of bound entangled states. Importantly, however, for some projections, these
restrictions seem to be less strict for bound entangled states than those imposed on separable states. As a conse-
quence, there are d dimensional areas, which are not reachable for projections of separable states. In principle,
PPT states that are projected to these areas can be classified as entangled by geometric criteria that are defined
in d dimensional space, instead of the full (4> — 1) dimensional Hilbert space.

In conclusion, the methods for state generation and entanglement analysis applied to the system of d = 3
can also be successfully applied to d = 4 (with extensions), although with reduced effectiveness. Nonetheless,
the presented methods solve the separability problem for .#4 to a large extend, since any unknown state in
M 4 can efliciently be classified as separable or (bound) entangled with high probability of success. Significant
differences in the relative volumes of the entanglement classes and in the detection capabilities of criteria for
separability and entanglement are observed for .#3 and .# 4. Relating the algebraic structure of the Weyl opera-
tors to the geometry of .# 4, qualitative observations could be made that characterize the structure of PPT states
and propose new potential criteria to detect bound entanglement in .# ;. These contributions can serve as start-
ing point to further improve the methods for classification and the general understanding of the entanglement
structure of Bell diagonal qudits or general quantum states. On the one hand, further numerical investigations,
extending the current results in terms of higher dimensions d > 5 or the structure of bound entangled quantum
states, are possible. The applied sampling methods remain efficient for Bell diagonal states and thus allow the
confirmation of results concerning the exponential decrease of volume for separable general quantum states
with growing dimension as reported in Ref.*>* or the observation of special properties for Bell diagonal states.
Recently, a sequentially constrained Monte Carlo sampler (SCMCS) for quantum states was proposed®', which
allows efficient sampling of quantum states subject to constraints like PPT or detection properties for specific
entanglement criteria. This method could be used to generate general bound entangled quantum states and
compare their properties to those of Bell diagonal states or for the detailed investigation of detection capabilities
of certain entanglement witnesses. On the other hand, the reported structures of separable and bound entangled
Bell diagonal states in .# ; indicate properties that can be related to those of the Weyl operators and their induced
phase space structure. The presented methods help to create, confirm or refute hypothesis about the structure
of separable or entangled Bell diagonal states for different dimensions. Thus, they could provide a new accesses
to the separability problem, the detection of bound entanglement or application relevant properties of quantum
systems using entangled qudits.
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