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Nonlinear Rayleigh wave
propagation in a layered half-space
in dual-phase-lag

A. A.Youssef'™, N. K. Amein?, N. S. Abdelrahman?, M. S. Abou-Dina2 & A. F. Ghaleb?

We investigate nonlinear Rayleigh wave propagation in a layered thermoelastic medium composed
of a slab rigidly bonded to the surface of a half-space under prescribed external thermal boundary
conditions within the dual-phase-lag theory. The heat conduction coefficient for both the slab and
the matrix have a linear dependence on temperature. Our aim is to assess the effect of temperature
dependence of the heat conductivity, as well as the thermal relaxation times, on the process of wave
propagation in the layered medium. Poincaré expansion of the solution in a small parameter and the
generation of higher harmonics allow to evaluate the coefficient of this nonlinear coupling in the slab
through heat wave propagation measurement. For the used numerical values, the results show that
some characteristics of the problem, e.g. the temperature, heat flux and one stress component suffer
jumps at the interface, while the other stress components are continuous there. The jump in the heat
flux is noticeable only in the first order of nonlinearity. The existence of jumps at the interface may be
of interest for measurements. Comparison with the case of the half-space showed that the presence of
the slab contributes to faster damping of the solution with depth in the half-space.

There has been an increasing interest in the past few decades in the study of materials, especially those with
complex structure, or metamaterials. Specific properties of such materials allow to manipulate elastic waves and
to achieve particular goals, for example vibration attenuation or suppression, otherwise impossible to reach
with natural materials. In particular, it is a problem of great significance to ensure the integrity of parts in the
different devices that use such materials.

Examples of elastic metamaterials are the phononic crystals which have witnessed a rapid development
in the past few decades. They are presently considered as an important component in science and technology
due to their numerous applications as smart materials in intelligent microstructures in acoustic and vibration
engineering, particularly in the field of acoustic filters and transducers, as well as advanced materials for noise
control. Complex structures involving models of phononic crystals in linear or in nonlinear elastic media were
explored in'~ on the basis of nonlocal theories in order to put in evidence the existence of frequency band gaps,
wave energy distribution among the frequencies, effect of elastic nonlinearity and initial stresses, and the diode
non-reciprocal transnission which prohibits wave propagation in certain directions.

One of the most reliable ways to extract useful information is to use Rayleigh waves travelling at ultrasonic
speeds in the bulk and at the surfaces of materials to detect flaws in the microstructure, assess the level of micro-
scale damage and degradation, and evaluate different material parameters. Nonlinear Rayleigh waves and higher
order harmonic generation can be efficiently applied to study the nonlinearities occuring in the medium due
to different couplings and the dependence of the various material parameters on strain, temperature and other
factors as well. Generally, the nonlinearity parameters have higher sensitivity than linear ultrasonic parameters
to changes in the microstructure. Different applications of nonlinear Rayleigh wave propagation in elastic media
may be found in®.

In many cases, bulk metamaterial substrates are covered by thin layers of a different material. Such layered
material may have interesting features and various applications, e.g. signal processing, construction engineering,
energy harvesting and other (c.f.1-12).

The study of wave propagation in media with microstucture is best carried out within the theory of extended
thermodynamics. In fact, the latter provides a richer set of thermodynamical variables compared to classical ther-
modynamics. Heat flux is now independent of temperature and has its own evolution equation which replaces the
classical Fourier law for heat conduction. In dual-phase-lag (DPL), there are two thermal relaxation times, one for
each of the heat flux and temperature, which may account for different relaxational and dissipative phenomena in
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the thermoelastic medium. Extensive work exists on wave propagation in solids of various geometries in extended
thermodynamics. Only a few are cited here for reference. Ramadan'® proposed a semi-analytical solution for
linear transient heat transfer in multi-layered thermoelastic media within the framework of dual-phase-lag.
Askarizadeh and Ahmadikia'* solved a linear problem of heat transfer in a thermoelasstic slab with periodic
surface heat flux with DPL. Sur and Kanoria®® investigated thermoelastic interactions in a three-dimensional
homogeneous and isotropic sandwich structure in DPL under time-dependent thermal load within the linear
theory. Ahmed and Abou-Dina'® studied linear wave propagation in a piezo-thermoelastic slab within DPL. Ai
et al.'” analyzed the linear thermo-mechanical problem for multi-layered media in extended thermodynamics
based on Lord-Shulman model. Ahmed et al.'®!° considered a linear, two-dimensional initial-boundary-value
problem of heat wave propagation in a thick slab of anisotropic thermal conductor within the dual-phase-lag
model. Lately, Youssef et al.?’ investigated the nonlinear Rayleigh wave propagation in a half-space of a ther-
moelastic material within dual-phase-lag, with temperature dependent thermal conductivity using Poincaré
small parameter expansion.

The present work is an extension of* to the case of a layered thermoelastic medium consisting of a thick layer
rigidly bonded to a half-space, with temperature dependent thermal conductivity for both. The main difference
between the present work and the above reference consists of considering a layered medium with an interface,
instead of a single half-space. In both cases, the considered system of equations is linear, except for a single
nonlinearity in the evolution law for heat flux, pertaining to the temperature dependence of heat conductivity.
Other potential nonlinear mechanical or thermomechanical couplings were disregarded for the sake of brevity.
The nonlinear Rayleigh wave propagation here may be used to test the response of the layer, when the half-space
(the matrix) is a material with known properties. The applied boundary conditions at the interface are those
commonly derived from the field equations by well-known procedures of general Continuum Mechanics. The
solution is expressed as a Poincaré expansion in a small parameter and only the first two orders of approximation
are retained for the present purposes. The generation of higher harmonics allows to evaluate the coeflicient of the
nonlinear coupling in the slab through heat wave propagation measurement. The obtained particular solution
allows to explain the main features under consideration. However, when the material has a different structure,
for example nonlinear elastic bodies or phononic crystals, and when the phenomenon under investigation is
different than that in the present work, then other solutions where the traditional small expansion method is no
more valid can be obtained by various existing methods. For the considered case study, the results show that the
temperature and one stress component along the direction of wave propagation suffer jumps at the interface,
while the other stress components are continuous there. The heat flux components are continuous at the interface
at the first approximation, but appear to have jumps there at the second approximation. The existence of jumps
at the interface may be of interest for measurements. Comparison has been carried out with the case of a half-
space recently published by the authors. In particular, it is shown that the presence of a thick slab bonded to the
half-space produces faster damping with depth of all the functions in the latter.

Problem formulation

We consider nonlinear Rayleigh wave propagation in a layered half-space of transversely isotropic thermoelastic
materials composed of a slab rigidly bonded to a half-space substrate. The problem is described in a system of
orthogonal Cartesian coordinates (x, y, z) with origin O placed on the boundary of the half-space, the y-coordi-
nate being directed into the depth of the material, as shown in Fig. 1. Moreover, there is no dependence of the
solution on z-coordinate.

Basic equations

In the following, uy, u, denote the mechanical displacement components, vy, v,- the corresponding velocity
components, Oy, Oyy, Oxy—the in-plane stress components, f—the temperature as measured from a reference
temperature 6 and gy, gy- the heat flux components. All other stress components vanish identically.

Body forces and heat sources are disregarded. The dimensionless equations of plane thermoelasticity for a
transversely isotropic material within the theory of extended thermodynamics to be considered are expressed
in'**. They involve the equations of motion, the equation of energy, the evolution laws for the heat flux com-
ponents and the generalized Hooke’s laws differentiated w.r.t. time. More details may be found in these two
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Figure 1. Geometry of the problem.
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references. The characteristic quantities for temperature, length, time and heat flux used in the dimension analysis
are respectively given by:

‘[()K() ,OC K()
O =06y, L= . To=10, Q=00 —0,
pCe 70

by which it is seen that the characteristic velocity

To B pCe ﬁ

is closely related to the velocity of second sound. Here, p denotes the mass density, Kp—a characteristic heat
conductivity, C, —the specific heat and rp—a characteristic thermal relaxation time.

The system of governing equations to be considered here below in dimensionless form is given in®. It is for-
mulated within the theory of extended thermodynamics and involves eight first-order partial differential equa-
tions: Two equations of motion, the equation of energy, two evolution laws for the heat flux components and three
constitutive relations for the identically non-vanishing stress components (these are differentiated w.r.t. time).
The relaxation times have been taken the same for both spatial directions for simplicity. Eight unknown functions
are involved in this system of equations: Two velocity components, temperature, two components of heat flux
and three stress components. The mechanical displacement components may then be determined by quadrature
after the eight basic unknown functions have been obtained. Details may be found in the above reference.

The system of equations reads:
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Here, p is the mass density, 4, j1- Lamé coefficients, y- the thermoelastic coefficient, K11, K2,- the coeflicients of
heat conduction and 74, 74- the relaxation times related to temperature and heat flux respectively. Nonlinearity
appears only in the evolution equations for heat flux Egs. (4) and (5) in connection with the dependence on
temperature of the heat conduction coefficients.

Particular solution. The propagation of nonlinear waves has attracted a great deal of attention in the past
few years because of many important applications. Different theoretical approaches have been proposed to tackle
problems of nonlinear elastic wave propagation in complex structured media, for example granular materials
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and phononic crystals. One may refer here to the incremental harmonic balance method? that is an efficient
replacement of the traditional perturbation methods for treating problems involving materials with strongly
nonlinear periodic structures. Such techniques are basically related to nonlocal theories of Continuum Mechan-
ics and are expected to explain a broader spectrum of phenomena.

For the present purposes, when nonlinearity is of the type explained above and shown in the evolution equa-
tions for heat flux, it is sufficient to look for a particular solution for all the unknowns of the problem to describe
Rayleigh wave propagation, for which the amplitude decreases exponentially in depth into the medium, in the
form of usual Poincaré expansions in a small parameter ¢, say. The effect of the first order of nonlinearity will
appear separately in the presented figures. Subsequent orders of approximation will add much smaller terms
to the solution, and therefore need to be taken in consideration only when the need for increasing precision
arises. In what follows, only the frst two orders of approximation will be considered. The approximate solution
takes the form:

(Vx> vy, 0, 0xx, 0y, Oy 4> Gy} (X, 95 1) =
kx—w; rt
eV vy, 0%,05 075,00, 4 41 () 07 ©)

e {Vx ,V** 9**’0x’0y’ xy’qx ’qy }()’) eZz(kxfwit)fza)rt +..,

where the “starred” and the “double-starred” quantities denote the amplitudes of the corresponding functions at
the first and the second approximations respectively, and ¢ is an adequately chosen positive small parameter rep-
resenting the amplitude of variation of the temperature as measured from the reference temperature ®y. Here, k
denotes the wavenumber, w,- the frequency and w;- the time damping, or attenuation coeflicient. The dependence
of some of the unknowns on the others is taken into account in the forthcoming relations. As the only considered
nonlinearity arises from a linear dependence of the heat conductivity on temperature, it is sufficient to limit the
small parameter expansions of the unknown functions to the first two orders of approximation as noted earlier.

In the present work, the normal mechanical load and the temperature have prescribed values at the bounda-
ries. In order to concentrate our attention on the nonlinearity of the equations, we simply find particular solu-
tions for the linear approximation for selected wave number, frequency and attenuationg coefficient, rather
than analyzing in detail the arising dispersion relation. The influence on surface wave propagation of the linear
dependence of the heat conduction coefficient on temperature, as well as thermal relaxatlon times, is investigated.

Substituting from Eq. (9) into the basic Egs. (1)-(8) and denoting D = d , one is left with a system of
homogeneous linear ordinary differential equations of the first order, and a system of non-homogeneous linear
ordinary differential equations of the first order, in the first two orders of approximation respectively. In this
procedure, we have set

K11(0) = K22(0) = Ko(1 + n6), (10)

thus allowing for a linear dependence of the heat conduction coefficient on temperature in the half-space. For
the slab, a similar dependence on temperature is assumed, with Kj replaced by K. Such a dependence may be
relevant, especially at high temperatures when the material characteristics are no longer constants. We assume
that parameter 7 has order of magnitude equal to unity.

Wave amplitude and parametery. From (10) it follows that

dKy1  dKp
o~ do o (an
so that parameter n only serves to modulate the value Ky, and may be determined experimentally from the slope
of the curve for function Kj; (0). As to the small parameter ¢, it is taken as a measure of the amplitude of the
propagating linear waves. The wave amplitude of the nonlinear component is £, and its contribution is therefore
expected to be much smaller than that of the linear wave. The effect of the nonlinear wave on the behavior of the
solution, and more precisely on the heat flux, will appear subsequently while discussing the numerical results.

Governing equations at the first two orders of approximation. The system of homogeneous linear
differential equations of the first order:

Dvy =44 V;f + A0, (12)
Dv}’f =A3vi + Ay 0; , (13)
Do* =As g, (14)
Doy, =Ag vy + A1 0y, + A7 gy, (15)
Doy, =Ag vy + A9 0" + Azoy, (16)
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Dq;/k :AIOQ* +A11 V:+A120‘;, (17)

together with
U:x =A3 V;+A140;: (18)
gy =A156". (19)

The system of non-homogeneous linear differential equations of the first order:

Dvi* =Aiev)" + A1y 0y, (20)
Dv;* =A13vy" + Ao Uy**: (21)
D6™* =Ay ¢* + A3 6°D6", (22)
Doy =An vy + Ats 0y + Ang,™ + A36* D6, (23)
Doy =Ax vy + A2 0™ + Az oy, (24)
Dq;‘j* =A5 0™ + Ay vi* + Ay U;j,* + A33 0%, (25)
together with
ox =Axvy" + Aoy, (26)
a5 =A300™ + A36™2 (27)

and Aj,j = 1,2, ..., 34 are constants listed in Supplementary Appendix A. It clearly appears that quadratic expres-
sions in 0* will be responsible for the generation of the solution at the second order of approximation.

Solution of the problem
The homogeneous system. Half-space.

Dvy 0 A0 0 A0 ve
Dvy A3 0 0 As 0 O vy
De* | o 0 0 0 0 As 0*
Doy [T 10 40 0 A 4 || o5 (28)
DO’;} Ag 0 A9 A3 0 0 O‘;:y
Dq;y A0 A A0 0 q;

Assuming a solution of the form €5, the characteristic equation for the eigenvalues &, for this system of equa-
tions is obtained as:

£0 — A+ BgE —C =0, (29)

where A, B and C are constants listed in Supplementary Appendix A.

Only three roots of this equation, &,, n = 1,2, 3 with positive real parts, will contribute to the bounded
solution. Following Eq. (29), any imaginary part of &, will result in a circular function of sine or cosine in the
solution, i.e. an amplitude that is oscillating in y while damped exponentially in y. In the end, only the real part
of the solution will have physical meaning. The solution of the system of equations (28) may be written conveni-
ently in the form:

3
V;k = Z Vinh Mnhe_gnhy’ (30)
n=1
3
vy = Z Van Myune 517, (1
n=1
3
0" =Y V3uh Mape 5, (32)
n=1
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3

U;; = Z Vanh Mnheisnhy’

n=1

3

O-;y = Z Vsnh Mnhe_gnhy:

n=1

3

q; = Z Vénh Mnhe_énhy-

n=1

(33)

(35)

where v, m = 1,2, ...,,6, n = 1,2, 3 are constants listed in Supplementary Appendix B. The remaining two
solution functions may now be calculated from Egs. (18) and (19).

Slab.  The solution of the system of equations (28) may be written conveniently in the form:

3 3
Vj; = E Vins Mnse_smy + E Vins mnseémy)
n=1 n=1

3 3
V;: = Z Vans Mnsei'émy + Z Vans mnse'émy:
n=1 n=1
3 3

0" = Z V3ns Mnse_gmy + Z Vins mnse&-nsy:

n=1

3

U;} = Z Vans Mnse_smy + Z Vans mnseémy>

n=1

3

U;y = Z V5ns Mnse_gmy + Z Visns mnse§n5y>

n=1

3

q;/k = Z Véns Mnseiénsy + Z Vens mmefns}"

n=1

n=1

3

n=1

3

n=1

3

n=1

(37)

(41)

where viys and Vips, i = 1,2, ...,6, n = 1, 2, 3 are constants listed in Supplementary Appendix C. The remaining
two solution functions may now be calculated as explained above.

Boundary conditions for the homogeneous system. There exists in the literature a multitude of boundary condi-
tions for similar problems to the one considered here (see Ramadan'®). For the present case, there are 9 bound-
ary conditions, six of them at the interface between the slab and the matrix, and three at the outer boundary of

the medium:

Boundary conditions at the interface y = d: these can be obtained from the field equations by the usual
formalism of Continuum Mechanics, under the general title of “jump conditions”. Additionally, one uses the
perfect bonding conditions between the layers. Denoting by subscripts “s” and “d” the quantities belonging to
the slab and to the half-space respectively, one has:

Vxs = Vxh
Vys = Vyh>
Oxys = Oxyh>
Oyys = Oyyh>
K 6 = K 0y,

K 6ys = Ko O yn

Boundary conditions at the external boundary of the slab y = 0:

(42a)
(42b)
(42¢)
(424d)
(42e)

(42f)
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Oxys :fl*a (43a)
Oyys = (43b)
05 =1 (43¢)

It is seen at once that the temperature has a jump at the interface. This is a direct consequence of the Cattaneo
evolution equation for the heat flux. It takes the particular form shown in Eq. (43d) for the present geometrical
configuration. The value of this jump is:

K —K
[0] = 04(d) — 6,(d) = T”‘ 0,(d). (43d)

0

Applying the boundary conditions to determine the M;;, Mjs and m;s one gets the system of equations given in
Supplementary Appendix H. This system is cast in the following matricial form

M 0
Mo 0
M3 0
mis A1 A2 A3 -1 0
my | = | Ag As Ag 0 (44)
m3g A7 Ag Ag 0
My T
My 2*
Msp 3
where A1 — Agare matrices given in Supplementary Appendix G.
The non-homogeneous system. Half-space.
Dy, 0 A0 0 Ayo0 \('x 0
Dy, A0 0 A0 0 Yy, 0
DO [ _ 10 0 0 0 0 Ay 0 n A310%0%
D(TJ:), - 0 A21 0 0 Ase A22 U)Q’ A329*9*/
Do, Ay 0 Ay Aig0 0 ax; 0 ,
* Ay O Azs Az7 O 0 * Azz0*
qu qy 33
or
e 0 A0 0 Ay o0 ’x,
Dy, Aig0 0 A0 0 vy
DI" | o 0 0 0 0 Ay ||6]
DG}Z 10 A 0O 0 A Ap U)Z
Do, A3 0 Axg A1g 0 0 oy
x* Ay 0 Ay A7 0 O **
Dg, 25 26 A2z q,
0 (45)
0
Y Zle As1EnvinvsinMinMjn e (&n+é)
P 21-321 A3&invsinvainMinMjp e (&n+550)
0
1 0 —AsavainvainMinMiy e (Ent&in)
Solving the homogenuous part of Eq. (45), one writes down the characteristic polynomial as:
& = Cigjt + Cagjp — Cs = 0, (46)

where C;, C; and Cs are constants listed in Supplementary Appendix A.
As for the first order solution, only three roots, £z, n = 1,2, 3 will contribute to the bounded solution of

Eq. (45). Now solve for the non-homogeneous part by the method of undetermined coefficients. The particular
solution is taken in the form:

3
Enp,ijv3invajn MinMjn e Entén), p=1,2,... 6. (47)
=1

i=1j

Substitution of this expression into the system yields the coefficients Eyj jj:
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E1pij &in+&in Ats 0 0 Az 0 /0
Eopij As &in+&n 0 Ao 0 0 0
Espij | _| 0 0 Eint+&n 0 0 Az Az&in
Egji| ] 0 An 0 &in + &n Ats A Azéip
Espij Az 0 Any A1s §int+&n 0 0
Egn,ij Aszs 0 Az Az 0 Ein + &jn —Asz3

Hence the solution of the system of equations (45) has the form:

x = Z ViinLine™ Giny Z ZElh UV3th3ththIjh ei(gthrEjh)y,
i=1 j=1

Yy = Z VainLine™ Giny 4 Z Z Eop 1]V31hV3]hMth]VIjh e (Eih+$jh)y;
i=1 j=1

6" = E ViinLine 5 + Z Z E3p,ijv3invajnMin My, e_(s"h"'%h)y,
i=1 j=1

oy, = Z VainLine 5" 4 Z Z EqnjvsinvynMinMy, e~ Entén)y,

i=1 j=1
3 3 3
*t —_— — " + P
0 =Y VsnLine™ +> > " EspyvainvajnMinMp € (Eaten)y,
i=1 i=1 j=1

qm = Z VeinLine™ tiny + Z Z Egn, 1]V31hv3th1hMjh ei(éthrEjh)y-
i=1 j=1

where Vyjp, n =1,2,...,6, j = 1,2, 3 are constants listed in Supplementary Appendix D.

Slab.
Dve 0 A0 0 A0 v, 0
Dy, Ajg0 0 A0 0 "y, 0
Do L]0 0 0 0 0 Ay 9“ . A310%0*
DG}Q/ - 0 A21 0 0 A16 A22 U}?} A329*9*,
Do, Ap 0 Ay Aig0 0 Oy 0 ,

** Ay 0 Ay Ay 0 O ** Az30*

qu qy 33

or

(48)

(50)

(52)

(53)
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Dv, 0 A0 0 Ay 0 Vx,
by, Aig0 0 A0 0 vy
DE” | o 0 0 0 0 Ay ||f
DG)Q; - 0 A21 0 0 A16 A22 O')Qi
Do, A3 0 Ay Aig0 0 0y
*% A A A *%
Dg, 25 0 26 A7 0 0 9,
0
0
P Z?:1 A3t (—Eisvsisv3jsMisMjs e (it 6i)
+(_€:is + “;:jS)V3isV3j5Mismjs e}’(—fid'%'s) (54)

&5 Vi Vajsmismis & Gitéi))

21‘3:1 21‘3:1 Az (v3isv3jsMisMjs e (Gistgi)
+(2v3is V3jsMismjs o (—Eistss)

Viis Vijsmismis e Gitéis))

0

i st:1 A33(—&isv3isv3jsMisMjs ey (GictEi)
+(=&is + Ejs)v3isv3jsMismjs e}’(—fid-%‘s)
i Vais Vajsmismys e (t5i))

Solving the homogenuous part of Eq. (54), one writes down the characteristic polynomial as:
-G+ Gl -G =0. (55)

Now solve for the non-homogeneous part by the method of undetermined coefficients. The particular solution
is taken in the form:

> (Quigvisvais MisMjs e i)
i=1 j=1

+ W jvsis VaisMismis @ (6 t6i)
+0 Vs Vajsrmismys € Cs¥6:)), = 1,2, 6.

Substitution of this expression into the system yields the coefficients Qy,;;,Wy,ij and Oy ;; are given in Supplemen-
tary Appendix G.
Hence the solution of the system of equations (54) has the form:
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3 3 303
ve =3 wmiskise > UnigYise™ + >3 (Quijvaisvajs MisMjs e Giete)
i=1 i=1 i=1 j=1
W13 VajsMismjs @ C550) 0y Vi Vagemigmy, @ Gt
3 3 303
v, = thiLise Y UnigYie™ + 3 > (Qajvaisvjs MisMjs e ™ (i tg)
i=1 i=1 i=1 j=1

+Wavsis VaisMismis @ 885 4 0,5 Viis Vajsmyemys o Gt6)),

3 3 303
0 = Z u3isLise_;isy + Z Usis Yise{isy + Z Z(QS,ijV3isV3js Miijs e_y(gid—sjs)
i=1 i=1 i=1 j=1
+ W3 v3is VaisMismis 585 4 035 V3io Vajmyemys Gt
3 3 303
oy = uisLise ™ + 3 UsisYie™ + 3 D (Qujvaisve MisMjs e i t65)
i=1 i=1 i=1 j=1
+ Waijvsis VajsMismjs @ 55) 0y 5 Viio Vagemiomy, & Gt
3 3 303
Oy = tsicLise ™™ + 3 Usic Y™ + 3 > (Qs jvaisvae MisMjs e 7 565)
i=1 i=1 i=1 j=1
+ W ijv3is VajsMismjs @ 550) 05 Vi Vagomigmy, & Gt
3 3 303
9y = Z usisLise ™ + Z Usis Yise™ + ZZ(Q6,ijV3isV3js MioMjs = (i)
i=1 i=1 i=1 j=1

+ W, ijvais V3js Mismis o (SEstE) 4 O¢,ij V3is V3jsmismis o (itEi)y,

where Unjs and Upjs;,n = 1,2,...,6, j = 1,2,3 are constants listed in Supplementary Appendix E.

Boundary conditions for the non-homogeneous system. At the interface (y = d):

Vas = Vah, (56a)
Vys = Vyhs (56b)
Oxys = Oxyhs (56¢)
Oyys = Oyyh> (56d)
K05 = Koy, (56e)
Kby = Kob (56f)

At the outer boundary (y = 0): Vanishing boundary conditions prevail, since the solution at this order of
approximation is generated by the non-homogeneous term from the previous order of approximation. :

Oxys = 0, (57a)
Tyys = 0, (57b)
05 = 0. (57¢)

Applying the boundary conditions to determine the Ly, , Lis and Yjs, one gets the system of equations given in
Supplementary Appendix I. This system is cast in the following matricial form

La f51
Ly 2
Lg RS
Ys Ao A1l A &
Yol = <A13 Ay A15> &5 (58)
Y3 A1 A7 A g
L &7
L, g
L; 9
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where A9 — Ajgand g1 — go are matrices given in Supplementary Appendix E

Numerical results and discussion
This section is devoted to the analysis of a concrete numerical example. As noted earlier, we have preferred, for
the sake of brevity, not to deal with the dispersion relation which is directly obtained as the condition of exist-
ence of solution for the obtained system of algebraic equations in the first order of approximation. Rather, we
have chosen specific, otherwise arbitrary, values for the frequency, wave number and attenuation coefficient to
proceed with the numerical calculations.

The following values were taken for the prescribed temperature and the pressure at the external boundary:

ff=0, ff=-05, ff=10, p=10, d=1

The materials chosen for the purpose of numerical calculations are taken as Cadmium Selenide (CdSe) and
Lead Zirconate Titanate (PZT-5A), both having hexagonal symmetry (6 mm class). Although this material has
piezoelectric properties, it was chosen for its thermoelastic characteristics only, while all thermoelectric and
electromechanical couplings were disregarded. The following values of the different material parameters are
chosen as in (Sharma and Kumar?'; Walia et al.??). The coordinate z-axis was oriented perpendicular to the plane
of symmetry. The corresponding values of the material parameters are shown in Tables 1 and 2 (c.£.'®):

The numerical data have been presented in three sets of plots. The first one concerns the solution at the first
order (linear) of approximation, the second one is for the second order solution for three values of the nonlin-
earity parameter 7, all evaluated at a particular location at a particular time moment. As to the third set of plots,
it is intended for the comparison of solutions in the half-space with/without the bonded slab. All calculations
were carried out using the Software package Mathematica 13.2.

Plots in Fig. 2 for the solution at the first order of approximation as function of y at the location x = 2.0 and
at time t = 2.1 describe the behavior of the solution in the interval 0 < y < 4 including the interface. It shows
the continuity of both velocity components at the interface, as should be. This is satisfied in all coming figures.
However, there exists a jump for both the temperature and the stress component oy, at the interface, while all
the other functions are continuous there. The heat flux component g, seems to have a jump in the first-order
derivative. As noted above, the jump in temperature is inherent to the used model of DPL and can be used to
evaluate one material coefficient of the slab from experiment.

In Fig. 3 for the second order solution, the plots show a different behaviour of the heat flux than in the first
order solution. In fact, both components gy, g, have now got jumps at the interface, that can be easily identified
for all three values of the parameter 1. Moreover, the absolute value of the jump increases with the increase of the
nonlinearity parameter 7. The existence of discontinuous heat flux at the interface constitutes a major difference
between extended thermodynamics and classical thermodynamics for which Fourier law for heat conduction
is valid.

Figures 4 and 5 are devoted to the comparison of solutions at the first and the second orders of approxima-
tion respectively between the cases of a half-space with/without slab. The results for the half-space without slab
were recently published by the same authors?. According to these figures, we concluded that the presence of the
bonded slab yields faster attenuation of the solution with depth.

Conclusions

An earlier work by the authors® has been extended to the case of a layered thermoelastic medium consisting
of a thick layer rigidly bonded to a half-space. On one hand, this allows to assess the effect of the slab on wave
propagation in the half-space. On the other hand, such a layered medium can be used to measure some material

© = 298K Ko =9Wm™!K™!

p = 5504kgm™3 C, =260 kg K! y =05x10°m>kg™!
7 =26x100kgm's2 | pu=1.6x10"kgm!s2

79 = 1.000 x 10~s 79 = 0.500 x 107135 74 = 0.600 x 1075

k = 0.2 (wave number) w, = 0.5 w; = 0.5

Table 1. Values of the geometrical and the material parameters for the half-space.

©9 = 298K K; =1.5Wm'K~!

ps = 7750 kgm > C, =260] kg 'K! ¥s =02 x 10° m*kg~!
Js =08 x1010kgm™'s™2 | j1s = 0.6 x 10 kgm™'s72

79 = 1.000 x 107! 75 = 0.500 x 107135 74 = 0.600 x 107!

k = 0.2 (wave number) w; = 0.5 w; = 0.5

Table 2. Values of the geometrical and the material parameters for the slab.
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Figure 2. First order solution as function of y at x = 2.0 and t = 2.1 (blue dot) half-space (orange dot) slab.

coeficients of the slab when the characteristics of the half-space (matrix) are known. Here, both media have
temperature dependence of the thermal conductivity, thus leading to a nonlinear problem. All other nonlinear
couplings were disregarded in the governing system of equations. Nonlinear Rayleigh wave propagation is used
to test the response of the layer. At the interface, in addition to the conditions of bonding, the other bound-
ary conditions are obtained from the field equations by well-known rules of Continuum Mechanics. Poincaré
expansion of the solution in a small parameter in the first two orders of approximation yields expressions which
are adequate for the description of wave propagation in both media and allows to evaluate the coefficient of the
nonlinear coupling in the slab through heat wave propagation measurement. It is emphasized that this is an
approximate particular solution only. Other solutions may potentially be obtained through different methods,
depending on the nature of the considered medium and the phenomenon to be explained. For the considered
numerical values of the different material coefficients, the proposed plots show that the temperature and one
stress component along the direction of wave propagation suffer jumps at the interface, while the other stress
components are continuous there. The heat flux components are continuous at the interface at the first approxi-
mation, but appear to have jumps there at the second approximation. These jumps at the interface may used to
determine some material coefficients in conjunction with measurements. Comparison was carried out with the
case of a half-space recently published by the authors. It is shown that the presence of a thick slab bonded to the
half-space favours faster attenuation with depth of all the functions in the half-space.
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Figure 3. Second order solution as function of y at x = 2.0,t = 2.1for three values of 5 (blue dot) half-space
(orange dot) slab (blue dot line) n = 1 (orange dashed line) = 2 (orange dashed line with dots) n = 3.
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Figure 4. Comparison of first order solutions as functions of y at x = 2,t = 2.1 (red dot) half-space (blue dot)
half-space with slab.
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