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Nonlinear Rayleigh wave 
propagation in a layered half‑space 
in dual‑phase‑lag
A. A. Youssef 1*, N. K. Amein 1, N. S. Abdelrahman 1, M. S. Abou‑Dina 2 & A. F. Ghaleb 2

We investigate nonlinear Rayleigh wave propagation in a layered thermoelastic medium composed 
of a slab rigidly bonded to the surface of a half-space under prescribed external thermal boundary 
conditions within the dual-phase-lag theory. The heat conduction coefficient for both the slab and 
the matrix have a linear dependence on temperature. Our aim is to assess the effect of temperature 
dependence of the heat conductivity, as well as the thermal relaxation times, on the process of wave 
propagation in the layered medium. Poincaré expansion of the solution in a small parameter and the 
generation of higher harmonics allow to evaluate the coefficient of this nonlinear coupling in the slab 
through heat wave propagation measurement. For the used numerical values, the results show that 
some characteristics of the problem, e.g. the temperature, heat flux and one stress component suffer 
jumps at the interface, while the other stress components are continuous there. The jump in the heat 
flux is noticeable only in the first order of nonlinearity. The existence of jumps at the interface may be 
of interest for measurements. Comparison with the case of the half-space showed that the presence of 
the slab contributes to faster damping of the solution with depth in the half-space.

There has been an increasing interest in the past few decades in the study of materials, especially those with 
complex structure, or metamaterials. Specific properties of such materials allow to manipulate elastic waves and 
to achieve particular goals, for example vibration attenuation or suppression, otherwise impossible to reach 
with natural materials. In particular, it is a problem of great significance to ensure the integrity of parts in the 
different devices that use such materials.

Examples of elastic metamaterials are the phononic crystals which have witnessed a rapid development 
in the past few decades. They are presently considered as an important component in science and technology 
due to their numerous applications as smart materials in intelligent microstructures in acoustic and vibration 
engineering, particularly in the field of acoustic filters and transducers, as well as advanced materials for noise 
control. Complex structures involving models of phononic crystals in linear or in nonlinear elastic media were 
explored in1–5 on the basis of nonlocal theories in order to put in evidence the existence of frequency band gaps, 
wave energy distribution among the frequencies, effect of elastic nonlinearity and initial stresses, and the diode 
non-reciprocal transnission which prohibits wave propagation in certain directions.

One of the most reliable ways to extract useful information is to use Rayleigh waves travelling at ultrasonic 
speeds in the bulk and at the surfaces of materials to detect flaws in the microstructure, assess the level of micro-
scale damage and degradation, and evaluate different material parameters. Nonlinear Rayleigh waves and higher 
order harmonic generation can be efficiently applied to study the nonlinearities occuring in the medium due 
to different couplings and the dependence of the various material parameters on strain, temperature and other 
factors as well. Generally, the nonlinearity parameters have higher sensitivity than linear ultrasonic parameters 
to changes in the microstructure. Different applications of nonlinear Rayleigh wave propagation in elastic media 
may be found in6–9.

In many cases, bulk metamaterial substrates are covered by thin layers of a different material. Such layered 
material may have interesting features and various applications, e.g. signal processing, construction engineering, 
energy harvesting and other (c.f.10–12).

The study of wave propagation in media with microstucture is best carried out within the theory of extended 
thermodynamics. In fact, the latter provides a richer set of thermodynamical variables compared to classical ther-
modynamics. Heat flux is now independent of temperature and has its own evolution equation which replaces the 
classical Fourier law for heat conduction. In dual-phase-lag (DPL), there are two thermal relaxation times, one for 
each of the heat flux and temperature, which may account for different relaxational and dissipative phenomena in 
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the thermoelastic medium. Extensive work exists on wave propagation in solids of various geometries in extended 
thermodynamics. Only a few are cited here for reference. Ramadan13 proposed a semi-analytical solution for 
linear transient heat transfer in multi-layered thermoelastic media within the framework of dual-phase-lag. 
Askarizadeh and Ahmadikia14 solved a linear problem of heat transfer in a thermoelasstic slab with periodic 
surface heat flux with DPL. Sur and Kanoria15 investigated thermoelastic interactions in a three-dimensional 
homogeneous and isotropic sandwich structure in DPL under time-dependent thermal load within the linear 
theory. Ahmed and Abou-Dina16 studied linear wave propagation in a piezo-thermoelastic slab within DPL. Ai 
et al.17 analyzed the linear thermo-mechanical problem for multi-layered media in extended thermodynamics 
based on Lord-Shulman model. Ahmed et al.18,19 considered a linear, two-dimensional initial-boundary-value 
problem of heat wave propagation in a thick slab of anisotropic thermal conductor within the dual-phase-lag 
model. Lately, Youssef et al.20 investigated the nonlinear Rayleigh wave propagation in a half-space of a ther-
moelastic material within dual-phase-lag, with temperature dependent thermal conductivity using Poincaré 
small parameter expansion.

The present work is an extension of20 to the case of a layered thermoelastic medium consisting of a thick layer 
rigidly bonded to a half-space, with temperature dependent thermal conductivity for both. The main difference 
between the present work and the above reference consists of considering a layered medium with an interface, 
instead of a single half-space. In both cases, the considered system of equations is linear, except for a single 
nonlinearity in the evolution law for heat flux, pertaining to the temperature dependence of heat conductivity. 
Other potential nonlinear mechanical or thermomechanical couplings were disregarded for the sake of brevity. 
The nonlinear Rayleigh wave propagation here may be used to test the response of the layer, when the half-space 
(the matrix) is a material with known properties. The applied boundary conditions at the interface are those 
commonly derived from the field equations by well-known procedures of general Continuum Mechanics. The 
solution is expressed as a Poincaré expansion in a small parameter and only the first two orders of approximation 
are retained for the present purposes. The generation of higher harmonics allows to evaluate the coefficient of the 
nonlinear coupling in the slab through heat wave propagation measurement. The obtained particular solution 
allows to explain the main features under consideration. However, when the material has a different structure, 
for example nonlinear elastic bodies or phononic crystals, and when the phenomenon under investigation is 
different than that in the present work, then other solutions where the traditional small expansion method is no 
more valid can be obtained by various existing methods. For the considered case study, the results show that the 
temperature and one stress component along the direction of wave propagation suffer jumps at the interface, 
while the other stress components are continuous there. The heat flux components are continuous at the interface 
at the first approximation, but appear to have jumps there at the second approximation. The existence of jumps 
at the interface may be of interest for measurements. Comparison has been carried out with the case of a half-
space recently published by the authors. In particular, it is shown that the presence of a thick slab bonded to the 
half-space produces faster damping with depth of all the functions in the latter.

Problem formulation
We consider nonlinear Rayleigh wave propagation in a layered half-space of transversely isotropic thermoelastic 
materials composed of a slab rigidly bonded to a half-space substrate. The problem is described in a system of 
orthogonal Cartesian coordinates (x, y, z) with origin O placed on the boundary of the half-space, the y-coordi-
nate being directed into the depth of the material, as shown in Fig. 1. Moreover, there is no dependence of the 
solution on z-coordinate.

Basic equations
In the following, ux , uy denote the mechanical displacement components, vx , vy - the corresponding velocity 
components, σxx , σyy , σxy—the in-plane stress components, θ—the temperature as measured from a reference 
temperature θ0 and qx , qy - the heat flux components. All other stress components vanish identically.

Body forces and heat sources are disregarded. The dimensionless equations of plane thermoelasticity for a 
transversely isotropic material within the theory of extended thermodynamics to be considered are expressed 
in19,20. They involve the equations of motion, the equation of energy, the evolution laws for the heat flux com-
ponents and the generalized Hooke’s laws differentiated w.r.t. time. More details may be found in these two 

Figure 1.   Geometry of the problem.
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references. The characteristic quantities for temperature, length, time and heat flux used in the dimension analysis 
are respectively given by:

by which it is seen that the characteristic velocity

is closely related to the velocity of second sound. Here, ρ denotes the mass density, K0 —a characteristic heat 
conductivity, Ce —the specific heat and τ0 —a characteristic thermal relaxation time.

The system of governing equations to be considered here below in dimensionless form is given in20. It is for-
mulated within the theory of extended thermodynamics and involves eight first-order partial differential equa-
tions: Two equations of motion, the equation of energy, two evolution laws for the heat flux components and three 
constitutive relations for the identically non-vanishing stress components (these are differentiated w.r.t. time). 
The relaxation times have been taken the same for both spatial directions for simplicity. Eight unknown functions 
are involved in this system of equations: Two velocity components, temperature, two components of heat flux 
and three stress components. The mechanical displacement components may then be determined by quadrature 
after the eight basic unknown functions have been obtained. Details may be found in the above reference.

The system of equations reads:

with

and

Here, ρ is the mass density, �,µ - Lamé coefficients, γ - the thermoelastic coefficient, K11,K22 - the coefficients of 
heat conduction and τq, τθ - the relaxation times related to temperature and heat flux respectively. Nonlinearity 
appears only in the evolution equations for heat flux Eqs. (4) and (5) in connection with the dependence on 
temperature of the heat conduction coefficients.

Particular solution.  The propagation of nonlinear waves has attracted a great deal of attention in the past 
few years because of many important applications. Different theoretical approaches have been proposed to tackle 
problems of nonlinear elastic wave propagation in complex structured media, for example granular materials 
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and phononic crystals. One may refer here to the incremental harmonic balance method2 that is an efficient 
replacement of the traditional perturbation methods for treating problems involving materials with strongly 
nonlinear periodic structures. Such techniques are basically related to nonlocal theories of Continuum Mechan-
ics and are expected to explain a broader spectrum of phenomena.

For the present purposes, when nonlinearity is of the type explained above and shown in the evolution equa-
tions for heat flux, it is sufficient to look for a particular solution for all the unknowns of the problem to describe 
Rayleigh wave propagation, for which the amplitude decreases exponentially in depth into the medium, in the 
form of usual Poincaré expansions in a small parameter ε , say. The effect of the first order of nonlinearity will 
appear separately in the presented figures. Subsequent orders of approximation will add much smaller terms 
to the solution, and therefore need to be taken in consideration only when the need for increasing precision 
arises. In what follows, only the frst two orders of approximation will be considered. The approximate solution 
takes the form:

where the “starred”  and the “double-starred”  quantities denote the amplitudes of the corresponding functions at 
the first and the second approximations respectively, and ε is an adequately chosen positive small parameter rep-
resenting the amplitude of variation of the temperature as measured from the reference temperature �0 . Here, k 
denotes the wavenumber, ωr - the frequency and ωi - the time damping, or attenuation coefficient. The dependence 
of some of the unknowns on the others is taken into account in the forthcoming relations. As the only considered 
nonlinearity arises from a linear dependence of the heat conductivity on temperature, it is sufficient to limit the 
small parameter expansions of the unknown functions to the first two orders of approximation as noted earlier.

In the present work, the normal mechanical load and the temperature have prescribed values at the bounda-
ries. In order to concentrate our attention on the nonlinearity of the equations, we simply find particular solu-
tions for the linear approximation for selected wave number, frequency and attenuationg coefficient, rather 
than analyzing in detail the arising dispersion relation. The influence on surface wave propagation of the linear 
dependence of the heat conduction coefficient on temperature, as well as thermal relaxation times, is investigated.

Substituting from Eq. (9) into the basic Eqs. (1)–(8) and denoting D = d
dy , one is left with a system of 

homogeneous linear ordinary differential equations of the first order, and a system of non-homogeneous linear 
ordinary differential equations of the first order, in the first two orders of approximation respectively. In this 
procedure, we have set

thus allowing for a linear dependence of the heat conduction coefficient on temperature in the half-space. For 
the slab, a similar dependence on temperature is assumed, with K0 replaced by Ks . Such a dependence may be 
relevant, especially at high temperatures when the material characteristics are no longer constants. We assume 
that parameter η has order of magnitude equal to unity.

Wave amplitude and parameter η.  From (10) it follows that

so that parameter η only serves to modulate the value K0 , and may be determined experimentally from the slope 
of the curve for function K11(θ) . As to the small parameter ε , it is taken as a measure of the amplitude of the 
propagating linear waves. The wave amplitude of the nonlinear component is ε2 , and its contribution is therefore 
expected to be much smaller than that of the linear wave. The effect of the nonlinear wave on the behavior of the 
solution, and more precisely on the heat flux, will appear subsequently while discussing the numerical results.

Governing equations at the first two orders of approximation.  The system of homogeneous linear 
differential equations of the first order:
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together with

The system of non-homogeneous linear differential equations of the first order:

together with

and Aj , j = 1, 2, ..., 34 are constants listed in Supplementary Appendix A. It clearly appears that quadratic expres-
sions in θ∗ will be responsible for the generation of the solution at the second order of approximation.

Solution of the problem
The homogeneous system.  Half‑space. 

Assuming a solution of the form eξhy , the characteristic equation for the eigenvalues ξh for this system of equa-
tions is obtained as:

where A, B and C are constants listed in Supplementary Appendix A.
Only three roots of this equation, ξnh, n = 1, 2, 3 with positive real parts, will contribute to the bounded 

solution. Following Eq. (29), any imaginary part of ξh will result in a circular function of sine or cosine in the 
solution, i.e. an amplitude that is oscillating in y while damped exponentially in y. In the end, only the real part 
of the solution will have physical meaning. The solution of the system of equations (28) may be written conveni-
ently in the form:
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where vmnh,m = 1, 2, ..., 6, n = 1, 2, 3 are constants listed in Supplementary Appendix B. The remaining two 
solution functions may now be calculated from Eqs. (18) and (19).

Slab.  The solution of the system of equations (28) may be written conveniently in the form:

where vins and Vins, i = 1, 2, ..., 6, n = 1, 2, 3 are constants listed in Supplementary Appendix C. The remaining 
two solution functions may now be calculated as explained above.

Boundary conditions for the homogeneous system.  There exists in the literature a multitude of boundary condi-
tions for similar problems to the one considered here (see Ramadan13). For the present case, there are 9 bound-
ary conditions, six of them at the interface between the slab and the matrix, and three at the outer boundary of 
the medium:

Boundary conditions at the interface y = d : these can be obtained from the field equations by the usual 
formalism of Continuum Mechanics, under the general title of “jump conditions”. Additionally, one uses the 
perfect bonding conditions between the layers. Denoting by subscripts “s”  and “d”  the quantities belonging to 
the slab and to the half-space respectively, one has: 
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It is seen at once that the temperature has a jump at the interface. This is a direct consequence of the Cattaneo 
evolution equation for the heat flux. It takes the particular form shown in Eq. (43d) for the present geometrical 
configuration. The value of this jump is:

 Applying the boundary conditions to determine the Mih , Mis and mis one gets the system of equations given in 
Supplementary Appendix H. This system is cast in the following matricial form

where �1 −�9 are matrices given in Supplementary Appendix G.

The non‑homogeneous system.  Half‑space. 

or

Solving the homogenuous part of Eq. (45), one writes down the characteristic polynomial as:

where C1,C2 and C3 are constants listed in Supplementary Appendix A.
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Eq. (45). Now solve for the non-homogeneous part by the method of undetermined coefficients. The particular 
solution is taken in the form:
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Dq**y

















=















0 A16 0 0 A17 0

A18 0 0 A19 0 0

0 0 0 0 0 A20

0 A21 0 0 A16 A22

A23 0 A24 A18 0 0

A25 0 A26 A27 0 0































v**x
v**y
θ **

σ **
yy

σ **
xy

q**y

















−



















0

0
�3

i=1

�3
j=1 A31ξihv3ihv3jhMihMjh e

−y
�

ξih+ξjh
�

�3
i=1

�3
j=1 A32ξihv3ihv3jhMihMjh e

−y
�

ξih+ξjh
�

0
�3

i=1

�3
j=1 −A33v3ihv3jhMihMjh e

−y
�

ξih+ξjh
�



















(46)ζ 6h − C1ζ
4
h + C2ζ

2
h − C3 = 0,

(47)
3

∑

i=1

3
∑

j=1

Enh,ijv3ihv3jh MihMjh e
−y

(

ξih+ξjh
)

, n = 1, 2, · · · , 6.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2187  | https://doi.org/10.1038/s41598-023-29411-4

www.nature.com/scientificreports/

Hence the solution of the system of equations (45) has the form:

where Vnjh, n = 1, 2, ..., 6, j = 1, 2, 3 are constants listed in Supplementary Appendix D.

Slab. 

or















E1h,ij
E2h,ij
E3h,ij
E4h,ij
E5h,ij
E6h,ij















=















ξih + ξjh A16 0 0 A17 0

A18 ξih + ξjh 0 A19 0 0

0 0 ξih + ξjh 0 0 A20

0 A21 0 ξih + ξjh A16 A22

A23 0 A24 A18 ξih + ξjh 0

A25 0 A26 A27 0 ξih + ξjh















−1













0

0

A31ξih
A32ξih
0

−A33















.

(48)v**x =
3

∑

i=1

V1ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E1h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
,

(49)v**y =
3

∑

i=1

V2ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E2h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
,

(50)θ ** =
3

∑

i=1

V3ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E3h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
,

(51)σ **
yy =

3
∑

i=1

V4ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E4h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
,

(52)σ **
xy =

3
∑

i=1

V5ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E5h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
,

(53)q**y =
3

∑

i=1

V6ihLihe
−ζihy +

3
∑

i=1

3
∑

j=1

E6h,ijv3ihv3jhMihMjh e
−
(

ξih+ξjh
)

y
.

















Dv**x
Dv**y
Dθ **

Dσ **
yy

Dσ **
xy

Dq**y

















=















0 A16 0 0 A17 0

A18 0 0 A19 0 0

0 0 0 0 0 A20

0 A21 0 0 A16 A22

A23 0 A24 A18 0 0

A25 0 A26 A27 0 0































v**x
v**y
θ **

σ **
yy

σ **
xy

q**y

















+















0

0

A31θ
∗θ∗′

A32θ
∗θ∗′

0

A33θ
∗2














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Solving the homogenuous part of Eq. (54), one writes down the characteristic polynomial as:

Now solve for the non-homogeneous part by the method of undetermined coefficients. The particular solution 
is taken in the form:

Substitution of this expression into the system yields the coefficients Qn,ij,Wn,ij and On,ij are given in Supplemen-
tary Appendix G.

Hence the solution of the system of equations (54) has the form:

(54)

















Dv**x
Dv**y
Dθ **

Dσ **
yy

Dσ **
xy

Dq**y

















=















0 A16 0 0 A17 0

A18 0 0 A19 0 0

0 0 0 0 0 A20

0 A21 0 0 A16 A22

A23 0 A24 A18 0 0

A25 0 A26 A27 0 0































v**x
v**y
θ **

σ **
yy

σ **
xy

q**y

















+













































0

0
�3

i=1

�3
j=1 A31(−ξisv3isv3jsMisMjs e

−y(ξis+ξjs)

+(−ξis + ξjs)v3isV3jsMismjs e
y(−ξis+ξjs)

+ξisV3isV3jsmismjs e
y(ξis+ξjs))

�3
i=1

�3
j=1 A32(v3isv3jsMisMjs e

−y(ξis+ξjs)

+(2v3isV3jsMismjs e
y(−ξis+ξjs)

V3isV3jsmismjs e
y(ξis+ξjs))

0
�3

i=1

�3
j=1 A33(−ξisv3isv3jsMisMjs e

−y(ξis+ξjs)

+(−ξis + ξjs)v3isV3jsMismjs e
y(−ξis+ξjs)

+ξisV3isV3jsmismjs e
y(ξis+ξjs))













































(55)ζ 6s − C1ζ
4
s + C2ζ

2
s − C3 = 0.

3
∑

i=1

3
∑

j=1

(Qn,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+Wn,ijv3isV3jsMismjs e
y(−ξis+ξjs)

+On,ijV3isV3jsmismjs e
y(ξis+ξjs)), n = 1, 2, · · · , 6.
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where Unjs and unjs , n = 1, 2, ..., 6, j = 1, 2, 3 are constants listed in Supplementary Appendix E.

Boundary conditions for the non‑homogeneous system.  At the interface ( y = d ): 

 At the outer boundary ( y = 0 ): Vanishing boundary conditions prevail, since the solution at this order of 
approximation is generated by the non-homogeneous term from the previous order of approximation. : 

 Applying the boundary conditions to determine the Lih , Lis and Yis , one gets the system of equations given in 
Supplementary Appendix I. This system is cast in the following matricial form

v**x =
3

∑

i=1

u1isLise
−ζisy +

3
∑

i=1

U1isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q1,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W1,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O1,ijV3isV3jsmismjs e

y(ξis+ξjs)),

v**y =
3

∑

i=1

u2isLise
−ζisy +

3
∑

i=1

U2isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q2,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W2,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O2,ijV3isV3jsmismjs e

y(ξis+ξjs)),

θ ** =
3

∑

i=1

u3isLise
−ζisy +

3
∑

i=1

U3isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q3,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W3,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O3,ijV3isV3jsmismjs e

y(ξis+ξjs)),

σ **
yy =

3
∑

i=1

u4isLise
−ζisy +

3
∑

i=1

U4isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q4,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W4,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O4,ijV3isV3jsmismjs e

y(ξis+ξjs)),

σ **
xy =

3
∑

i=1

u5isLise
−ζisy +

3
∑

i=1

U5isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q5,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W5,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O5,ijV3isV3jsmismjs e

y(ξis+ξjs)),

q**y =
3

∑

i=1

u6isLise
−ζisy +

3
∑

i=1

U6isYise
ζisy +

3
∑

i=1

3
∑

j=1

(Q6,ijv3isv3js MisMjs e
−y(ξis+ξjs)

+W6,ijv3isV3jsMismjs e
y(−ξis+ξjs) + O6,ijV3isV3jsmismjs e

y(ξis+ξjs)),

(56a)vxs = vxh,

(56b)vys = vyh,

(56c)σxys = σxyh,

(56d)σyys = σyyh,

(56e)Ksθs = K0θh

(56f)Ksθ,ys = K0θ,yh

(57a)σxys = 0,

(57b)σyys = 0,

(57c)θs = 0.

(58)

























Ls1
Ls2
Ls3
Ys1

Ys2

Ys3

L1
L2
L3

























=
�

�10 �11 �12

�13 �14 �15

�16 �17 �18

�−1

























g1
g2
g3
g4
g5
g6
g7
g8
g9
























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where �10 −�18 and g1 − g9 are matrices given in Supplementary Appendix F.

Numerical results and discussion
This section is devoted to the analysis of a concrete numerical example. As noted earlier, we have preferred, for 
the sake of brevity, not to deal with the dispersion relation which is directly obtained as the condition of exist-
ence of solution for the obtained system of algebraic equations in the first order of approximation. Rather, we 
have chosen specific, otherwise arbitrary, values for the frequency, wave number and attenuation coefficient to 
proceed with the numerical calculations.

The following values were taken for the prescribed temperature and the pressure at the external boundary:

The materials chosen for the purpose of numerical calculations are taken as Cadmium Selenide (CdSe) and 
Lead Zirconate Titanate (PZT-5A), both having hexagonal symmetry (6 mm class). Although this material has 
piezoelectric properties, it was chosen for its thermoelastic characteristics only, while all thermoelectric and 
electromechanical couplings were disregarded. The following values of the different material parameters are 
chosen as in (Sharma and Kumar21; Walia et al.22). The coordinate z-axis was oriented perpendicular to the plane 
of symmetry. The corresponding values of the material parameters are shown in Tables 1 and 2 (c.f.18):

The numerical data have been presented in three sets of plots. The first one concerns the solution at the first 
order (linear) of approximation, the second one is for the second order solution for three values of the nonlin-
earity parameter η , all evaluated at a particular location at a particular time moment. As to the third set of plots, 
it is intended for the comparison of solutions in the half-space with/without the bonded slab. All calculations 
were carried out using the Software package Mathematica 13.2.

Plots in Fig. 2 for the solution at the first order of approximation as function of y at the location x = 2.0 and 
at time t = 2.1 describe the behavior of the solution in the interval 0 ≤ y ≤ 4 including the interface. It shows 
the continuity of both velocity components at the interface, as should be. This is satisfied in all coming figures. 
However, there exists a jump for both the temperature and the stress component σxx at the interface, while all 
the other functions are continuous there. The heat flux component qy seems to have a jump in the first-order 
derivative. As noted above, the jump in temperature is inherent to the used model of DPL and can be used to 
evaluate one material coefficient of the slab from experiment.

In Fig. 3 for the second order solution, the plots show a different behaviour of the heat flux than in the first 
order solution. In fact, both components qx , qy have now got jumps at the interface, that can be easily identified 
for all three values of the parameter η . Moreover, the absolute value of the jump increases with the increase of the 
nonlinearity parameter η . The existence of discontinuous heat flux at the interface constitutes a major difference 
between extended thermodynamics and classical thermodynamics for which Fourier law for heat conduction 
is valid.

Figures 4 and 5 are devoted to the comparison of solutions at the first and the second orders of approxima-
tion respectively between the cases of a half-space with/without slab. The results for the half-space without slab 
were recently published by the same authors20. According to these figures, we concluded that the presence of the 
bonded slab yields faster attenuation of the solution with depth.

Conclusions
An earlier work by the authors20 has been extended to the case of a layered thermoelastic medium consisting 
of a thick layer rigidly bonded to a half-space. On one hand, this allows to assess the effect of the slab on wave 
propagation in the half-space. On the other hand, such a layered medium can be used to measure some material 

f ∗1 = 0, f ∗2 = −0.5., f ∗3 = 1.0, η = 1.0, d = 1.

Table 1.   Values of the geometrical and the material parameters for the half-space.

�0 = 298K K0 = 9Wm
−1

K
−1

ρ = 5504 kgm−3 Ce = 260 J kg−1 K−1 γ = 0.5× 105 m3 kg−1

� = 2.6× 1010 kgm−1 s−2 µ = 1.6× 1010 kgm−1 s−2

τ0 = 1.000× 10−11s τθ = 0.500× 10−13s τq = 0.600× 10−11s

k = 0.2 (wave number) ωr = 0.5 ωi = 0.5

Table 2.   Values of the geometrical and the material parameters for the slab.

�0 = 298K Ks = 1.5Wm
−1

K
−1

ρs = 7750 kgm−3 Ce = 260 J kg−1K−1 γs = 0.2× 105 m3 kg−1

�s = 0.8× 1010 kgm−1s−2 µs = 0.6× 1010 kgm−1s−2

τ0 = 1.000× 10−11s τθ = 0.500× 10−13s τq = 0.600× 10−11s

k = 0.2 (wave number) ωr = 0.5 ωi = 0.5
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coefficients of the slab when the characteristics of the half-space (matrix) are known. Here, both media have 
temperature dependence of the thermal conductivity, thus leading to a nonlinear problem. All other nonlinear 
couplings were disregarded in the governing system of equations. Nonlinear Rayleigh wave propagation is used 
to test the response of the layer. At the interface, in addition to the conditions of bonding, the other bound-
ary conditions are obtained from the field equations by well-known rules of Continuum Mechanics. Poincaré 
expansion of the solution in a small parameter in the first two orders of approximation yields expressions which 
are adequate for the description of wave propagation in both media and allows to evaluate the coefficient of the 
nonlinear coupling in the slab through heat wave propagation measurement. It is emphasized that this is an 
approximate particular solution only. Other solutions may potentially be obtained through different methods, 
depending on the nature of the considered medium and the phenomenon to be explained. For the considered 
numerical values of the different material coefficients, the proposed plots show that the temperature and one 
stress component along the direction of wave propagation suffer jumps at the interface, while the other stress 
components are continuous there. The heat flux components are continuous at the interface at the first approxi-
mation, but appear to have jumps there at the second approximation. These jumps at the interface may used to 
determine some material coefficients in conjunction with measurements. Comparison was carried out with the 
case of a half-space recently published by the authors. It is shown that the presence of a thick slab bonded to the 
half-space favours faster attenuation with depth of all the functions in the half-space.

Figure 2.   First order solution as function of y at x = 2.0 and t = 2.1 (blue dot) half-space (orange dot) slab.
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Figure 3.   Second order solution as function of y at x = 2.0 , t = 2.1 for three values of η (blue dot) half-space 
(orange dot) slab (blue dot line) η = 1 (orange dashed line) η = 2 (orange dashed line with dots) η = 3.
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Figure 4.   Comparison of first order solutions as functions of y at x = 2 , t = 2.1 (red dot) half-space (blue dot) 
half-space with slab.
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