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OPEN A method based on interpretable

machine learning for recognizing
the intensity of human
engagement intention

Jian Bi, Fang-chao Hu, Yu-jin Wang, Ming-nan Luo & Miao He™*

To interact with humans more precisely and naturally, social robots need to “perceive” human
engagement intention, especially need to recognize the main interaction person in multi-person
interaction scenarios. By analyzing the intensity of human engagement intention (IHEI), social robots
can distinguish the intention of different persons. Most existing research in this field mainly focus on
analyzing whether a person has the intention to interact with the robot while lack of analysis of IHEI.
In this regard, this paper proposes an approach for recognizing the engagement intention intensity.
Four categories of visual features, including line of sight, head pose, distance and expression of
human, are captured, and a CatBoost-based machine learning model is applied to train an optimal
classifier for predicting the IHEI on the dataset. The experimental results show that this classifier can
effectively predict the IHEI that can be applied into real human-robot interaction scenarios. Moreover,
the proposed model is an interpretable machine learning model, where interpretability analysis on
the trained classifier has been done to explore the deep associations between input features and
engagement intention, thereby providing robust and effective robot social decision-making.

Social robots have become more and more popular in society and this trend has created many new opportu-
nities for various industries'. Among the techniques used in social robots, recognition of the intention of a
user to engage in an interaction with a robot can improve the proactivity of social robot interaction in a more
natural way. Although robots can recognize human intentions of engagement (HIE) by understanding verbal
instructions, in such cases, humans have to give very clear commands to robots while robots can only respond
passively, which does not really make sense for what social robots are supposed to be designed for. In addition,
for those social robots with human-like appearances, such as Nadine*, without natural interactions, they might
scare other people.

To improve the naturalness of these social robots, we need to improve not only the fluency of their actions, but
also their perception capabilities for social environments to enhance the initiative of interactions. HIE recogni-
tion facilitates quick decision-making in an interactive agent, and makes social robots respond to humans’ needs
or psychological states in a better way. Therefore, it can improve the naturalness and harmony of human-robot
interaction (HRI). For instance, in the scene shown in Fig. 1, there are three people with different interactive
intentions in front of the social robot. The social robot needs to distinguish the engagement intentions of the three
people in the picture in order to reasonably select objects for more natural interaction. As for HIE recognition, the
existing methods of HIE recognition can be divided into two types: social rule-based and data-driven methods.

The HIE recognition methods based on social rules apply psychological and sociological theories or related
experimental results to establish discriminant criteria and models to identify HIE, while distance is an important
factor of social intentions. Many previous studies®® used Hall’s proxemics® to model HIE recognition. And Wal-
terset al.'®!! studied more deeply on human-robot proxemics. Furthermore, gaze'>'?, head position'*, gesture's,
motion trajectory'®!” and other features have been widely used for HIE recognition. However, the above methods
require professional knowledge of social science and effective social experimental results. Moreover, the validity
of the results might depend on the experience of each researcher. Therefore, complex rules are often necessary
to guarantee the validity of HIE recognition.

With the advantage of artificial intelligence technology and the improvement of computer processing perfor-
mance, the data-driven HIE recognition method has been adopted by more and more researchers. Yusuke et al.'®
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I want to
| communicate with
him now.

This robot looks a
little interesting.

I have to go to
the office.

Figure 1. A scene where a social robot interacts with multiple people. These three people are each thinking,
“This robot looks a little interesting” (left), “I have to go to the office” (middle), and “I want to communicate
with him now” (right).

used the people tracking system (3-D Range Sensors) in a shopping mall to collect a total of 130 pedestrians’
movement data, and each person was recorded for 10 s on average. The data information included distance,
deflection angle, speed and time being stopped of a pedestrian. Then, they used support vector machines (SVM)"
to identify whether pedestrians are willing to interact with the robot. Vaufreydaz et al.?® chose a home-like
environment as the interaction scene. Fifteen participants were arranged to enter the room with the robot in
succession and choose whether to interact with it. The sensor system on the robot extracted the spatial features
of participants and finally obtained 158,200 frames of data information. They used SVM and neural networks to
train the dataset respectively, and found that the test effect was best when the interaction state was divided into
WILL_INTERACT, NO_ONE and SOMEONE_AROUND. Sidiropoulos et al.?! studied the level of engagement
of children in the interaction with social robots in special education. They selected 10 children aged 9-10 for the
experiment, and extracted their facial, body and voice features to obtain 2497 samples, of which each sample had
60 s. Different from other studies, this study treated the estimate of participation as a regression problem, with a
label value of thought set and a value range of 0-1. Then they used SVM, Linear Regression (LR)*, Multi-layer
Perceptron (MLP)* and Random Forest (RF)? to train the regression model respectively, and finally found that
MLP had the best effect. However, the determination of engagement level in this paper is too subjective.

The data-driven HIE method does not rely on complex internal mechanisms, and it is not necessary to
establish specific mathematical models and interaction rules. This type of approach can usually achieve high
recognition accuracy and can be flexibly updated. Nevertheless, the above-mentioned studies only assess whether
an individual has an intention to interact with robots, without analyzing the intensity of human engagement
intention. To address this challenge, this paper proposes an interpretable machine learning model based THEI
recognition method to explore the correlation between the IHEI and visual features.

Method

In this paper, the intensity recognition of HIE is classified based on CatBoost**?® and model interpretability
is analyzed using SHAP?. The flow chart of our proposed method is described in Fig. 2 below. First, we use
OpenFace2.0 toolkit?®, which is a face analysis tool based on in-depth learning, and a feature processing tool to

Feature extration

| |
: N | THEI !
i and processing | r' :

|
| | |

— | =
I 3 | Strong | Medium Weak |
p [ . |
| | |
| | ________________
: | THEI :

o | : classifier | [TTTTTTTTT T T T T T
-: | : : Model :
| : CatBoost | 1 interpretation |
I | I

|
; oo P SHAP |
I | | I
: | | Global Individual |
| : | analysis analysis |
e ___ D o e i |

Figure 2. Flow chart of our method.
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get the visual feature data of line of sight, head pose, distance and facial expression. Then, we regard the THEI
recognition as a multi-classification problem, and classify the IHEI into three categories: Strong, Medium and
Weak, which can be distinguished according to respective intensity values. Different intensity values of HIE are
used as label sets, and the visual feature data we extract is used as feature sets. We use CatBoost as the classifier,
and then conduct an interpretable analysis of the trained classifier and use SHAP to explore the deep correlations
between feature sets and IHEL

All studies reported in this paper were approved by the Human Ethical Committee at Chongqing University
of Technology. All methods were performed in accordance with the relevant guidelines and regulations. All
participants gave written informed consent before the experiment. After the experiment, all participants were
debriefed about the purpose of the study.

Feature extraction. Our experiment makes use of the features of human line of sight, head pose, distance,
and facial expressions, as these are visual attributes that correlate strongly with the potential for HIE. These fea-
tures can be extracted simultaneously by only one visual sensor which is very convenient for our follow-up work.
The existing deep learning library can extract these features effectively and ensure the validity of subsequent
experiments. Specifically, we extract these features with OpenFace2.0 toolkit through a calibrated monocular
camera.

Line of sight. Line of sight provides powerful clues to people’s intentions, motivations, and attention. Open-
Face2.0 toolkit uses a feature detector based on Constrained Local Nerve Field (CLNF)?*3? to detect the iris and
pupil, and obtain the coordinates of each landmark in the 3D camera coordinate system to calculate the line of
sight direction. Using the OpenFace2.0 toolkit, we can obtain the direction vector data {vg,, Vg, Vgt {Vero
Vgr:t and eye line azimuth data {G,,,, Gy} of the binocular line of sight of human.

oy

Head pose.  As for the feature of head pose, facial orientation can indicate the direction in which the person is
most interested at the moment. For head pose estimation, OpenFace2.0 uses the Convolutional Experts Con-
strained Local Model (CE-CLM)*! to obtain the 3D representation of facial landmarks. Then it uses orthogonal
camera projection to project the facial landmark to the image. Finally, the translation change {T},, T}, T} and
the rotation change {Pyy, P,ay» Pron} Of the head pose can be obtained by the perspective transformation. The
head pose representation in the camera coordinate system is shown in Fig. 3.

Distance. The translation change of head pose can reflect the distance change of a human relative to the robot.
According to the feature set from the Section of head pose, it can be seen that the 3D coordinates of the center of
the human head (face center point) from the perspective of the robot are {Tpx, T, sz}, as shown in Fig. 3, where
Tpx reflects the horizontal left and right movement of human head relative to the robot, pr reflects the vertical

movement change, and T),, reflects the horizontal depth movement change.

Facial expressions. Human beings intuitively convey information about their emotions and state of mind
through their facial expressions****. Especially, facial expression recognition plays an important role in emo-
tional interaction. We divide facial expressions into six basic categories: happy, sad, surprised, scared, angry, and
disgusted.

In order to effectively identify the six common facial expressions and obtain our feature data E, we use
OpenFace2.0 to extract the intensity and existence of Action Unit (AU) feature in the Facial Action Coding
System (FACS)*. We then distinguish human facial expressions through the correspondence between different
expressions and AUs* as shown in Table 1.

Feature engineering. Enhance readability of feature data. ~ From the previous section, we can get 15 types
of feature data related to line of sight, head pose, distance, and facial expressions. However, the readability of
the feature data is not clear and cannot intuitively reflect the direct correlation between each feature and HIE.

Ye
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cameraon robot head

Figure 3. Head pose estimation in a camera coordinate system.

Scientific Reports|  (2023)13:2537 | https://doi.org/10.1038/s41598-023-29661-2 nature portfolio



www.nature.com/scientificreports/

E AUs
Happy 6+12+26
Sad 1+4+15

Surprised 1+245+26

Scared 1+2+4+5+7+20+2526
Angry 4+5+10+25

Disgusted | 4+9+17

Table 1. The correspondence between basic expressions and AUs.

Therefore, the feature data need to be processed to improve the correlation between each feature and HIE and
enhance readability.

In order to intuitively read the line of sight feature and enable our model to train this feature better, we
reduce the dimension of this feature to obtain the one-dimensional attention shift coefficient R,. R, is obtained
by calculating the offset distance between the falling point of the human line of sight and the center point of the
robot face. To simplify the analysis, we assume that the line of sight direction of human eyes is the same. The
line of sight landing point is the average landing points of left and right eyes. Therefore, the calculation formula
for R, is as follows:

1 \4 x v X 2
Rg = ((Z(le — Pz gi + Pxr _Pzri)) +
z

Vg Vrs
N M
1 Vly Vry
(2 (Pyl Dyl Vglz + Pyr — Pzr Vgrz

where [p,, p,, p4l and [p,, p,, p.,] are the coordinates of the left and right pupil of the human eye in the camera
coordinate system respectively. Therefore, it can be seen that the smaller R, is, the closer the gaze point is to the
center of the facial plane of the robot, which implies that the more focused the gaze is on the robot and the more
likely it is in the robot.

To indicate the impact factor of facial orientation features on HIE intuitively, first, we use the previously
extracted features {Py; g, Pyay» Pron} to calculate the direction vector of face orientation from the 3D spatial rota-
tion matrix transformation:

—cosPypitch - cOSPyqay Vp1
Vy = —sinPpitch - COSPyaw | =| Vp2 ()
sinPyay Vp3

Then, similar to R, R, is obtained by calculating the offset distance between the intersection of human face
orientation and the center of robot face. The calculation formula is:

_ _ i, _ 2y
Rp—%fx szPS) + (fy fzvp3> 3)

where (f,, f,, f.) is the central coordinate of human face in the camera coordinate system.

To reflect the features of HRI distance more intuitively and eliminate the influence of human height on inter-
active distance, we assume that both the robot head and human are in the same height plane, that is, T,,=0. Thus,
the interactive distance between a human body and a robot can be calculated by formula (4).

Dist = /T3, + T3, (4)

For the feature data of E, we also hope to adopt a more effective and convenient method to analyze the cor-
relation between expressions and human-robot engagement intentions. For this purpose, we refer to the method
of Nurmi®® to divide the seven expression states into three categories: Approach, ‘Nature’ and ‘Avoid’ Then, we
obtain the processed expression feature Exprs, which is used to replace the feature data E, as shown in Table 2.
After the above processing, we can get four new features {Rg, R,, Dist, Exprs} with stronger readability.

Feature data test. So far, we have a total of 18-dimensional feature data that can be used to train our model.
This set of features is denoted by X_18. We calculate the mean and standard deviation of the feature data for each
dimension, and analyze the correlation between the feature data of each dimension x; and the sample label Y by
using Pearson correlation coefficient”. The result is shown in Table 3. Among them, Exprs is the categorical fea-
ture which we use 1 (Avoid), 2 (Nature) and 3 (Approach) to represent the eigenvalues, respectively. We sorted
all the features in descending order by the absolute value of the Pearson correlation coefficient |Pearson|. The
larger the |Pearson|, the stronger the correlation between x; and Y. It can be seen that the new features {R,, R,,
Dist, Exprs} are ranked at the top of Table 5. In addition, T, and Dist are very similar because they both reflect
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Expressions Exprs
Happy Approach
Expressionless Nature
Surprised, sadness, disgusted, fear, angry Avoid

Table 2. Classification of human expression according to the correlation between expressions and human-
robot interactive intentions.

Symbol | Description Unit | Mean Std Pearson
R, Gaze intersection offset mm 383.842 | 300.609 | -0.772
R, Offset of face towards intersection mm 721.055 | 761.970 | —0.668
T,. Head translation variation z mm 1043.253 | 302.724 | —0.628
Dist Distance between the robot and the human | mm 1064.785 | 314.895 | -0.613
Exprs Human facial expression [1-3] 2.099 0.469 0.384
Very Right eye sight direction vector y - 0.185 0.162 0.366
Gpiten Pitch angle of gaze rad 0.186 0.169 0.335
Vay Left eye sight direction vector y - 0.167 0.159 0.333
Vi Left eye sight direction vector x - 0.054 0.243 0.214
) Pitch angle of head pose rad 0.136 0.155 0.208
Gy Yaw angle of gaze rad -0.031 0.255 0.191
Py Yaw angle of head pose rad 0.068 0.311 | -0.168
Virs Right eye sight direction vector x - -0.113 0.237 0.159
Ty Head translation variation x mm 23.490 | 155.871 | -0.154
T,, Head translation variation y mm —-58.452 |173.342 | -0.139
Verz Right eye sight direction vector z - -0.931 0.058 | -0.108
Vi Left eye sight direction vector z - -0.939 0.048 | —0.042
P,y Roll angle of head pose rad -0.112 0.145 | -0.021

Table 3. Details of feature set data, including description, unit, mean, standard deviation and Pearson
coeflicient.

distance information. The correlation between x; and Y has been obtained as an initial result, but it remains to be
seen whether this relationship is consistent with the rules reflected in our machine learning model.

Engagement intention-intensity classifier. To predict the IHEI using multidimensional feature data,
we adopt CatBoost, an advanced boosting ensemble learning model, to train the IHEI classifier. Based on oblivi-
ous trees, CatBoost enhances Gradient Boosting Decision Tree (GBDT)* and can efficiently and reasonably
handle categorical features.

The general processing method for categorical features is one-hot encoding, but this method might have
the over-fitting problem. CatBoost uses a method based on the performance of randomization of data sets to
process categorical features, and then computes the average target value of the sample based on the same cat-
egory values placed before the randomization to reduce the occurrence of over-fitting. If we are given a dataset
D={(Xi, yi)}n=1,2,....n» where X; = (xi1, ..., Xi,m) € R™is a vector of m features (some numerical and some cat-
egorical),Y; € Ris the label values. Call a set of permutations o = (o7, ..., 0y,), then Xop is replaced by:

—1
Ef:l [xaj,k = xapyk]Ycrj +a-P

-1
2521 [xaj,k = xapyk] +a

(5)

Here, a prior value P and prior weight a (a>0) are added to help reduce the noise obtained from low fre-
quency classes.

Model interpretability analysis. Although the machine learning model can effectively get the prediction
results of HIE through the input feature data, the prediction model is a black box. We cannot find the execution
principle behind the model intuitively. Another focus of our research in this paper is to do model interpretability
analysis to study how the input features affect the HIE prediction model.

For some popular machine learning models, for instance, RF and CatBoost, traditional feature_Importance_
function can only reflect the importance of features, but cannot reflect the specific influence of features on the
prediction results. SHAP can provide a better scheme for explainable analysis of complex machine learning mod-
els and analysis of deeper connections and influences between features and models. The Shapley approach has
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the advantage of having strong theoretical support to ensure a fair attribution of features, thus fairly distributing
the total predicted value in the features and their individual contributions.

SHAP uses game theory to calculate Shapley value and quantify the contribution each feature makes to model’s
prediction results. The essential design idea of SHAP is:

e Tt first calculates the marginal contribution of a feature when it is added to the model.
e Then it calculates the different marginal contribution of the feature in all feature sequences.
e Finally, it calculates the Shapley value of the feature, that is, the mean value of all its marginal contributions.

Ethics approval .  All of the authors confirm that there is no potential acts of misconduct in this work, and
approve of the journal upholding the integrity of the scientific record.

Consent to participate . Informed consent was obtained from all individual participants included in the
study.

Experimental results and analysis

In this paper, the IHEI recognition was carried out in an indoor environment, with a certain distance as the
prerequisite to ensure effective interactive communication activities between people. Proxemics’ divided interac-
tive distance into four categories: intimate distance (0-45 cm), personal distance (45-120 cm), courtesy distance
(120-360 cm), and general distance (more than 360 cm). For the social communication purpose, we targeted
the human intention within the range of 0-360 cm.

Data set acquisition. 14 participants from different majors in Chongging University of Technology were
recruited to participate in the study (age range 18-25 years old, M,,.=21.07, 8 males). None of them had previ-
ously participated in similar human-robot interaction experiments, and none had been exposed to our social
robot. We told participants in advance about the capabilities of our social robot and the reliability of the technol-
ogy involved. All of them had a high level of trust in our technology.

The experiment area we chose was in a public room. We designated a certain area of the room for our experi-
ment. Before entering the room, outsiders will be prompted not to enter the experimental area without permis-
sion. In this area, in addition to our social robot, there were other potentially distracting devices around it, such
as books on the table, and LCD display on the wall. In addition, the interaction function of our social robot is
relatively limited, and it can only carry out simple speech conversations (greet, introduce some information
about itself) and make simple expressions (smile). Participants can experience all the functions of the robot in
a short time (about 2 min).

We arranged one participant at a time to enter the experiment area to interact with the robot as shown in
Fig. 4. When the participant enters the experiment area, a 30-FPS monocular camera is placed by the robot’s
head to continuously extract the participant’s visual features, and the feature data together with the video are
saved locally. Before the experiment, all the participants were informed of the same information as follows: (1)
we have placed our social robot that can perform a simple speech conversation and make simple expressions
in the experiment area. (2) After the participant enters the experiment area, the robot needs to be prepared for
2 min to start the interaction and he can familiarize yourself with the environment during the waiting period.
(3) After 2 min (the robot will give a voice prompt), the participant can choose to interact with the robot, or can
choose not to interact with the robot and do other things he like to do, such as reading a book, listening to music
and so on. (4) Each one should stay in the experiment area for at least 5 min.

Figure 4. Participants were interacting with the social robot. The robot, wearing yellow clothes on the right, has
a camera placed above its head to capture the interaction data of participants.
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After the experiment, we informed participants about the specifics of the experiment we conducted and
explained to them the concept of IHEI Finally, we can get 14 sets of data, each of which is filtered to get 6000
frames of high-quality feature data. Within each set of data, we split the saved video into pictures by frame and
matched the 6000 frames of data mentioned above with the corresponding picture. Further, participants watched
the interaction video and self-reported the IHEI for the interaction in 6000 pictures, that is, a classification label
for these 6000 frame feature data. To reduce the variability of self-assessment, the IHEI was classified as strong,
medium and weak, as shown in Fig. 5. Among them, ‘Strong’ means that the person is currently very interested in
interacting with the robot. ‘Weak’ means that the person hardly wants to interact with the robot, while ‘Medium’
is between ‘Strong’ and ‘Weak, which means that the person is only interested in the robot rather than interacting
with it. These three levels were reviewed and verified by experts.

Furthermore, we used the method shown in Fig. 6 to selected 3000 frames of data from 6000 frames of data,
with 1000 frames of intensity for each of the three types of IHEI, to ensure uniform distribution of sample sets
from different categories. As can be seen from Fig. 6, for the IHEI category with less than 1000 frames, we ran-
domly selected 5 frames of valid data before and after the current frame to add to the current category data, and
the label is the same as the current category, until the total number of the category reaches 1000 frames. The
new frames of data do not contain the existing data of the current category. Our feature extraction algorithm
can reach 30FPS, so the data difference between 5 frames before and after the current frame will be small. The
addition of new data can effectively expand the category of data with insufficient total number. Thus, an IHEI
recognition dataset containing 42,000 samples can be obtained.

(a) Strong (b) Medium (c) Weak

Figure 5. Hierarchy of IHEI among participants. The IHEI is divided into three levels: strong, medium and
weak.
6000 Strong Strong=1000
frames
N >
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é Medium Medium=1000
<
oy
D
g > > >
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Figure 6. Method to balancing three categories of data in our dataset.
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In addition, the reasons why only one participant is selected each time instead of several participants inter-
acting with the robot are as follows: (1) we can get higher quality data sets by extracting face features of a single
person each time and facilitating subsequent processing; (2) the final trained IHEI classifier is applicable to
everyone, because each person has the same feature input and the engagement behavior of each person under
different IHEI is overall similar, so it can be used for multi-person detection. (3) We assume that people deter-
mine that individuals’ IHEISs to social robots are unaffected by others in the present environment, i.e., judgments
regarding an individual’s IHEIs to the social robot are independent. (4) We expect machine learning model to
learn general trends and laws while accommodating individual variability. Then, we can use less resources to get
a more applicable model to analyze people’s IHEL

Classifier training and evaluation.  Split of dataset. Of these 14 sets of data, ten sets were used as train-
ing sets for the THEI classifier, denoted by D_10, and the remaining four sets were used for testing, denoted
by D_4. This division is done to avoid the fact that data from the same individual are used for both training
and testing, thus reducing the generalization ability of the model. In the process of training the IHEI classi-
fier, we need to divide some data from the training set as a validation set to determine the optimal number of
model iterations. In order to make full use of all the data in the training set, K fold cross validation® is used as
a strategy to divide the training set and the validation set during model training. K fold cross validation avoids
the extremes of uneven distribution of the training and validation sets due to differences in different batches of
characterization data.

Classifier evaluation. In order to verify the effectiveness of CatBoost, we also evaluated the other machine
learning models commonly used for intention classification, including SVM, RF and MLP using the same data-
set (D_4). Among them, SVM is generally used to deal with binary classification problems. In the case of multi-
classification problems, the multi-classification problems can be converted into binary classification problems
by using one-to-rest mode. In addition, since SVM, RF and MLP cannot train the category features directly, we
use one-hot coding to preprocess Exprs features before the training.

We choose the weighted-F1 score and test time as the model evaluation indexes in the test set to evaluate
the SVM, RF and MLP models, respectively. The weighted-F1 score is chosen to evaluate the overall predictive
performance of the model, which was calculated by Eq. (6), where P; and R, are the precision and recall of the
prediction results of each type of label, respectively, w; is the ratio of the number of samples in each category to
the total number of samples.

n n
2 X Z WiP,' X Z WiRi
i=1 i=1

weighted-F1 =

n n (6)
Z w;P; + Z wiR;
i=1 i=1

In addition, in order to verify that the intent classification model trained by the optimized data set has better
performance, three data set combinations are obtained by combining features of different dimensions, as shown
in Table 4. X_15 represents the combination of original 15-dimensional feature data extracted, X_4 represents
the combination of four advanced features obtained through data enhancement. Subsequently, SVM, RE, MLP
and CatBoost were trained and tested on these three datasets, respectively. The final evaluation results are shown
in Table 5.

It can be seen that the test performance of the four classifiers on X_18 and X_4 dataset is generally superior
to X_15 datasets, which indicates that the four high-level features we added are beneficial to the training of the
classifier. Meanwhile, among all the classifiers, CatBoost has the highest weighted-F1 score and the lowest test
time, indicating that its overall test performance is better than other classifiers. This is also in accordance with
our expected conjecture.

SHAP analysis. In order to further explore the deep relationship between features and the IHEI, the SHAP
model is used to perform interpretability analysis on the trained CatBoost-based classifier for the IHEI Based
on calculated results, the influencing factors of IHEI classification are analyzed from both global and individual
aspects.

Global analysis. In global analysis, the average absolute value of each characteristic SHAP value is used to
measure its global importance. At the same time, by analyzing the distribution relationship between the value of
each feature and its SHAP value, we can get both a positive and a negative correlation between the feature and
the evaluation results.

Dataset Feature set

X_15 15-dimensional raw feature data
X_4 Ry, R, Dist, Exprs

X_18 18-dimensional feature data

Table 4. Three combinations of datasets.
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Dataset | Classifier | Weighted-F1 score | Time (s)
SVM 0.4519 2.1667
MLP 0.4426 0.0407
X_15
RF 0.6657 0.0591
CatBoost | 0.6968 0.0179
SVM 0.9008 0.2313
MLP 0.8829 0.0450
X 4
RF 0.8980 0.0523
CatBoost | 0.9027 0.0124
SVM 0.5106 0.1572
MLP 0.8017 0.0413
X_18
RF 0.9029 0.0518
CatBoost | 0.9112 0.0131

Table 5. Performance comparison of three classifiers in three datasets.

mmm strong
Gyaw
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mean(|SHAP value|) (average impact on model output magnitude)

Figure 7. The effects of each feature on the intensity of different IHEI (strong, medium and weak) are obtained
by the SHAP analysis. The importance of each feature is ranked in descending order.

First, the influence of various features on different labels (IHEI) is analyzed by using the SHAP model, as
shown in Fig. 7, where the horizontal axis represents the mean (|[SHAP value|) of various features, the vertical
axis represents 18 types of features, and three different color blocks represent three types of labels.

Among the top five features, there are four readability enhancement features, i.e., R, R, Dist, and Exprs,
to which, in comparison with the original features, the THEI is more sensitive. Their order of importance is
R, >R, > Exprs > Dist. This implies that the features reflecting human attention play a dominant role in the clas-
sification of the IHEL.

Second, we analyzed the distribution of the SHAP values for the four features processed by readability
enhancement relative to different IHEI labels, as shown in Fig. 8. Among them, a SHAP value greater than 0
indicates that the current feature value has a positive promoting effect on this IHEI, and a larger SHAP value
indicates that the current feature can reflect a stronger IHEL. SHAP values less than 0 indicates inverse contribu-
tions to the current eigenvalue, and the smaller the SHAP value, the greater the inhibition.

(a) label=Weak

In this state, the SHAP values of R,, R, and Dist are approximately inversely proportional to the feature data.
The larger their values are, the stronger the promotion of weak HIE is. In addition, the feature values at SHAP
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Figure 8. Distribution of the shape values of R, R, Dist and Exprs under different IHEI labels (i.e., strong,
medium, and weak). (a) Weak HIE intensity. (b) Medium HIE intensity. (c) Strong HIE intensity.

turning points (SHAP value is 0) of R,, R, and Dist are approximately 440 mm, 750 mm, and 1010 mm, respec-
tively. For Exprs, only when the expression category is ‘Avoid, there is a significant promotion effect on weak HIE.

(b) label=Medium

For R,, R, and Dist, the relationship between their SHAP values and the trait data is relatively complex and
cannot be analyzed with a simple linear description. From the distribution of the SHAP values of Exprs, it can
be observed that ‘Nature’ expression category has an intuitive effect on such IHEIL

(c) label=Strong

It can be seen that the distribution of SHAP values of various features is approximately the opposite to that
when the label is Weak, the SHAP values of R,, R, and Dist are approximately proportional to the feature data.
Meanwhile, the feature values at the SHAP turning point (SHAP value is 0) of Ry, R, and Dist are approximately
300 mm, 500 mm and 1,050 mm, respectively. In addition, at this time, the expression type of ‘Approach’ plays
arole in promoting the HIE intensity state.

Feature Weak | Medium | Strong
R, (mm) >440 | (180,550) | <300

R, (mm) >750 (280,900) | <500
Dist (mm) >1010 | - <1050
Exprs Avoid | Nature Approach

Table 6. The change rule of eigenvalue and intensity of interactive intention.
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According to the distribution of SHAP values of these four types of features, we sort out the areas where they
play a positive role in promoting various labels, as shown in Table 6. It can be found that although SHAP values
with different features show certain rules for the change of IHEI such rules cannot be perfectly interpreted by a
few rules, because some dependencies are relatively complex, such as distance data with medium HIE intensity.
In addition, we can see that the distribution results of the SHAP value of Dist are related to proxemics, but there
are slight differences. When IHEI is strong, it is basically within intimate distance and personal distance; when
IHEI is wealk, it is considered outside of the personal distance. However, when IHEI is medium, the situation is
more complicated, so it is not complete to judge IHEI from spatial distance.

The analyzing results show that although rule-based intent recognition is efficient, it has a low error tolerance
rate, and it is difficult to deal with problems in particular circumstances. Undoubtedly, the above results provide
a relevant base for HRI decision-making, as well as a means for non-professionals to develop HRI applications.

Individual analysis. In the individual analysis, we are able to understand the key factors affecting this sample
status level by calculating the SHAP values for all the features for a single sample, and in turn, to make clear
which special feature values are responsible for this effect. Figure 9 shows an example where the IHEI is pre-
dicted to be strong, including the contribution of a single feature to the IHEL.

In Fig. 9a, the red colors indicate that the SHAP value is positive, which will increase the predicted value in
the evaluation process, while the blue ones show the contrast. The baseline value of the model E[f(x)] is — 0.118,
and the final evaluation of the strength of interactive f(x) is obtained by adding the SHAP value of each feature
to the baseline value. It can be seen that the SHAP values of Tpz, Exprs and Dist are positive and large, which
play a significant role in predicting the IHEI in this sample.

Figure 9b illustrates the predicted trend of different labels. The intersection between the top of the curve
and the coordinate axis is the SHAP value of the IHEI It can be seen that only the SHAP value for which the
prediction result is strong is positive, i.e., the sample has the highest probability of being predicted as strong HIE.
Meanwhile, Tpz, Exprs and Dist have the greatest influence on the trend of the three predicted curves. It can be
seen that in this example, the distance feature has the greatest influence on the prediction of IHEL

Discussion

As the advanced integrated learning model proposed at present, CatBoost can effectively train the interactive
intent dataset we have built, and it shows better performance than other models we chose. The THEI classifier
trained by CatBoost has a weighted-F1 value of 0.9112 on the test set. This indicates that the classifier is able to
effectively predict three intensities of HIE.

Since it is a preliminary exploration of the relationship between visual features and the IHEI, we have only
divided into three types of IHEIs. However, the situation in real life might be more complex, and in real-time
engagement intention recognition for multiple people, the recognition results need to be further refined to
effectively distinguish different people. A future research direction will be to classify the IHEI into more detailed
levels. In addition, we assume that the IHEI of a robot is absolute, not relative, and by default unaffected by other
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Figure 9. SHAP analysis of an example where the IHEI is predicted to be strong. (a) The degree to which
each feature contributes to the predicted result of the interactive intention (corresponding value shown on the
right side of each feature). Red indicates that the feature has a positive effect on the predicted result, whereas
blue indicates that the feature has a negative effect. (b) The influence of each feature on the trend of different
prediction results. Prediction results are presented based on the category of interactive intention that has the
highest SHAP value.

Scientific Reports|  (2023)13:2537 | https://doi.org/10.1038/s41598-023-29661-2 nature portfolio



www.nature.com/scientificreports/

people. We will conduct experiments in the future to examine how the relative IHEI between people affects the
assessment of the final IHEL

Through the interpretability analysis based on the classification model by SHAP, the importance ranking of
all types of feature data can be preliminarily achieved, with R, and R, ranking as the first two in the data associ-
ated with the line of sight and face orientation, respectively. Both R, and R, reflect the current state of human
attention, that is, the area of interest. This shows that, compared with other features mentioned in this paper,
attention information can best reflect the state of IHEI

SHAP analysis provides an effective basis for our real-time IHEI recognition link. Following this research,
we propose to build a real-time IHEI recognition model based on the analysis obtained in the Section of SHAP
analysis. Using this model, robots are able to achieve more natural HRI by selecting a reasonable interaction
target when they interacting with multiple people.

Conclusion

It is of great importance for the study of natural HRI to enable social robots to perceive the IHEI. In this paper, a
deep analysis of IHEI is carried out using a CatBoost-based model and SHAP. During feature engineering, four
types of high level features related to human line of sight, head posture, distance, and facial expressions can be
obtained. A dataset of IHEI is created by categorizing IHEIs into strong, medium, and weak, according to their
intensity. Using the obtained dataset, a CatBoost-based IHEI classification model is then trained. By applying the
SHAP, an interpretability analysis is conducted for the trained classification model, with a view to exploring the
deep relationship between the features set and IHEI. This is conducive to human behavior research and allows
non-professionals to develop HRI more efficiently.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable
request.
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