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A method based on interpretable 
machine learning for recognizing 
the intensity of human 
engagement intention
Jian Bi , Fang‑chao Hu , Yu‑jin Wang , Ming‑nan Luo  & Miao He *

To interact with humans more precisely and naturally, social robots need to “perceive” human 
engagement intention, especially need to recognize the main interaction person in multi-person 
interaction scenarios. By analyzing the intensity of human engagement intention (IHEI), social robots 
can distinguish the intention of different persons. Most existing research in this field mainly focus on 
analyzing whether a person has the intention to interact with the robot while lack of analysis of IHEI. 
In this regard, this paper proposes an approach for recognizing the engagement intention intensity. 
Four categories of visual features, including line of sight, head pose, distance and expression of 
human, are captured, and a CatBoost-based machine learning model is applied to train an optimal 
classifier for predicting the IHEI on the dataset. The experimental results show that this classifier can 
effectively predict the IHEI that can be applied into real human–robot interaction scenarios. Moreover, 
the proposed model is an interpretable machine learning model, where interpretability analysis on 
the trained classifier has been done to explore the deep associations between input features and 
engagement intention, thereby providing robust and effective robot social decision-making.

Social robots have become more and more popular in society and this trend has created many new opportu-
nities for various industries1–3. Among the techniques used in social robots, recognition of the intention of a 
user to engage in an interaction with a robot can improve the proactivity of social robot interaction in a more 
natural way. Although robots can recognize human intentions of engagement (HIE) by understanding verbal 
instructions, in such cases, humans have to give very clear commands to robots while robots can only respond 
passively, which does not really make sense for what social robots are supposed to be designed for. In addition, 
for those social robots with human-like appearances, such as Nadine4, without natural interactions, they might 
scare other people.

To improve the naturalness of these social robots, we need to improve not only the fluency of their actions, but 
also their perception capabilities for social environments to enhance the initiative of interactions. HIE recogni-
tion facilitates quick decision-making in an interactive agent, and makes social robots respond to humans’ needs 
or psychological states in a better way. Therefore, it can improve the naturalness and harmony of human–robot 
interaction (HRI). For instance, in the scene shown in Fig. 1, there are three people with different interactive 
intentions in front of the social robot. The social robot needs to distinguish the engagement intentions of the three 
people in the picture in order to reasonably select objects for more natural interaction. As for HIE recognition, the 
existing methods of HIE recognition can be divided into two types: social rule-based and data-driven methods.

The HIE recognition methods based on social rules apply psychological and sociological theories or related 
experimental results to establish discriminant criteria and models to identify HIE, while distance is an important 
factor of social intentions. Many previous studies5–8 used Hall’s proxemics9 to model HIE recognition. And Wal-
terset al.10,11 studied more deeply on human–robot proxemics. Furthermore, gaze12,13, head position14, gesture15, 
motion trajectory16,17 and other features have been widely used for HIE recognition. However, the above methods 
require professional knowledge of social science and effective social experimental results. Moreover, the validity 
of the results might depend on the experience of each researcher. Therefore, complex rules are often necessary 
to guarantee the validity of HIE recognition.

With the advantage of artificial intelligence technology and the improvement of computer processing perfor-
mance, the data-driven HIE recognition method has been adopted by more and more researchers. Yusuke et al.18 
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used the people tracking system (3-D Range Sensors) in a shopping mall to collect a total of 130 pedestrians’ 
movement data, and each person was recorded for 10 s on average. The data information included distance, 
deflection angle, speed and time being stopped of a pedestrian. Then, they used support vector machines (SVM)19 
to identify whether pedestrians are willing to interact with the robot. Vaufreydaz et al.20 chose a home-like 
environment as the interaction scene. Fifteen participants were arranged to enter the room with the robot in 
succession and choose whether to interact with it. The sensor system on the robot extracted the spatial features 
of participants and finally obtained 158,200 frames of data information. They used SVM and neural networks to 
train the dataset respectively, and found that the test effect was best when the interaction state was divided into 
WILL_INTERACT, NO_ONE and SOMEONE_AROUND. Sidiropoulos et al.21 studied the level of engagement 
of children in the interaction with social robots in special education. They selected 10 children aged 9–10 for the 
experiment, and extracted their facial, body and voice features to obtain 2497 samples, of which each sample had 
60 s. Different from other studies, this study treated the estimate of participation as a regression problem, with a 
label value of thought set and a value range of 0–1. Then they used SVM, Linear Regression (LR)22, Multi-layer 
Perceptron (MLP)23 and Random Forest (RF)24 to train the regression model respectively, and finally found that 
MLP had the best effect. However, the determination of engagement level in this paper is too subjective.

The data-driven HIE method does not rely on complex internal mechanisms, and it is not necessary to 
establish specific mathematical models and interaction rules. This type of approach can usually achieve high 
recognition accuracy and can be flexibly updated. Nevertheless, the above-mentioned studies only assess whether 
an individual has an intention to interact with robots, without analyzing the intensity of human engagement 
intention. To address this challenge, this paper proposes an interpretable machine learning model based IHEI 
recognition method to explore the correlation between the IHEI and visual features.

Method
In this paper, the intensity recognition of HIE is classified based on CatBoost25,26 and model interpretability 
is analyzed using SHAP27. The flow chart of our proposed method is described in Fig. 2 below. First, we use 
OpenFace2.0 toolkit28, which is a face analysis tool based on in-depth learning, and a feature processing tool to 

Figure 1.   A scene where a social robot interacts with multiple people. These three people are each thinking, 
“This robot looks a little interesting” (left), “I have to go to the office” (middle), and “I want to communicate 
with him now” (right).

Figure 2.   Flow chart of our method.
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get the visual feature data of line of sight, head pose, distance and facial expression. Then, we regard the IHEI 
recognition as a multi-classification problem, and classify the IHEI into three categories: Strong, Medium and 
Weak, which can be distinguished according to respective intensity values. Different intensity values of HIE are 
used as label sets, and the visual feature data we extract is used as feature sets. We use CatBoost as the classifier, 
and then conduct an interpretable analysis of the trained classifier and use SHAP to explore the deep correlations 
between feature sets and IHEI.

All studies reported in this paper were approved by the Human Ethical Committee at Chongqing University 
of Technology. All methods were performed in accordance with the relevant guidelines and regulations. All 
participants gave written informed consent before the experiment. After the experiment, all participants were 
debriefed about the purpose of the study.

Feature extraction.  Our experiment makes use of the features of human line of sight, head pose, distance, 
and facial expressions, as these are visual attributes that correlate strongly with the potential for HIE. These fea-
tures can be extracted simultaneously by only one visual sensor which is very convenient for our follow-up work. 
The existing deep learning library can extract these features effectively and ensure the validity of subsequent 
experiments. Specifically, we extract these features with OpenFace2.0 toolkit through a calibrated monocular 
camera.

Line of sight.  Line of sight provides powerful clues to people’s intentions, motivations, and attention. Open-
Face2.0 toolkit uses a feature detector based on Constrained Local Nerve Field (CLNF)29,30 to detect the iris and 
pupil, and obtain the coordinates of each landmark in the 3D camera coordinate system to calculate the line of 
sight direction. Using the OpenFace2.0 toolkit, we can obtain the direction vector data {vglx, vgly, vglz}, {vgrx, vgry, 
vgrz} and eye line azimuth data {Gyaw, Gpitch} of the binocular line of sight of human.

Head pose.  As for the feature of head pose, facial orientation can indicate the direction in which the person is 
most interested at the moment. For head pose estimation, OpenFace2.0 uses the Convolutional Experts Con-
strained Local Model (CE-CLM)31 to obtain the 3D representation of facial landmarks. Then it uses orthogonal 
camera projection to project the facial landmark to the image. Finally, the translation change {Tpx, Tpy, Tpz} and 
the rotation change {Ppitch, Pyaw, Proll} of the head pose can be obtained by the perspective transformation. The 
head pose representation in the camera coordinate system is shown in Fig. 3.

Distance.  The translation change of head pose can reflect the distance change of a human relative to the robot. 
According to the feature set from the Section of head pose, it can be seen that the 3D coordinates of the center of 
the human head (face center point) from the perspective of the robot are {Tpx, Tpy, Tpz}, as shown in Fig. 3, where 
Tpx reflects the horizontal left and right movement of human head relative to the robot, Tpy reflects the vertical 
movement change, and Tpz reflects the horizontal depth movement change.

Facial expressions.  Human beings intuitively convey information about their emotions and state of mind 
through their facial expressions32,33. Especially, facial expression recognition plays an important role in emo-
tional interaction. We divide facial expressions into six basic categories: happy, sad, surprised, scared, angry, and 
disgusted.

In order to effectively identify the six common facial expressions and obtain our feature data E, we use 
OpenFace2.0 to extract the intensity and existence of Action Unit (AU) feature in the Facial Action Coding 
System (FACS)34. We then distinguish human facial expressions through the correspondence between different 
expressions and AUs35 as shown in Table 1.

Feature engineering.  Enhance readability of feature data.  From the previous section, we can get 15 types 
of feature data related to line of sight, head pose, distance, and facial expressions. However, the readability of 
the feature data is not clear and cannot intuitively reflect the direct correlation between each feature and HIE. 

Figure 3.   Head pose estimation in a camera coordinate system.
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Therefore, the feature data need to be processed to improve the correlation between each feature and HIE and 
enhance readability.

In order to intuitively read the line of sight feature and enable our model to train this feature better, we 
reduce the dimension of this feature to obtain the one-dimensional attention shift coefficient Rg. Rg is obtained 
by calculating the offset distance between the falling point of the human line of sight and the center point of the 
robot face. To simplify the analysis, we assume that the line of sight direction of human eyes is the same. The 
line of sight landing point is the average landing points of left and right eyes. Therefore, the calculation formula 
for Rg is as follows:

where [pxl, pyl, pzl] and [pxr, pyr, pzr] are the coordinates of the left and right pupil of the human eye in the camera 
coordinate system respectively. Therefore, it can be seen that the smaller Rg is, the closer the gaze point is to the 
center of the facial plane of the robot, which implies that the more focused the gaze is on the robot and the more 
likely it is in the robot.

To indicate the impact factor of facial orientation features on HIE intuitively, first, we use the previously 
extracted features {Ppitch, Pyaw, Proll} to calculate the direction vector of face orientation from the 3D spatial rota-
tion matrix transformation:

Then, similar to Rg, Rp is obtained by calculating the offset distance between the intersection of human face 
orientation and the center of robot face. The calculation formula is:

where (fx, fy, fz) is the central coordinate of human face in the camera coordinate system.
To reflect the features of HRI distance more intuitively and eliminate the influence of human height on inter-

active distance, we assume that both the robot head and human are in the same height plane, that is, Tpy = 0. Thus, 
the interactive distance between a human body and a robot can be calculated by formula (4).

For the feature data of E, we also hope to adopt a more effective and convenient method to analyze the cor-
relation between expressions and human–robot engagement intentions. For this purpose, we refer to the method 
of Nurmi36 to divide the seven expression states into three categories: ‘Approach’, ‘Nature’ and ‘Avoid’. Then, we 
obtain the processed expression feature Exprs, which is used to replace the feature data E, as shown in Table 2. 
After the above processing, we can get four new features {Rg, Rp, Dist, Exprs} with stronger readability.

Feature data test.  So far, we have a total of 18-dimensional feature data that can be used to train our model. 
This set of features is denoted by X_18. We calculate the mean and standard deviation of the feature data for each 
dimension, and analyze the correlation between the feature data of each dimension xi and the sample label Y by 
using Pearson correlation coefficient37. The result is shown in Table 3. Among them, Exprs is the categorical fea-
ture which we use 1 (Avoid), 2 (Nature) and 3 (Approach) to represent the eigenvalues, respectively. We sorted 
all the features in descending order by the absolute value of the Pearson correlation coefficient |Pearson|. The 
larger the |Pearson|, the stronger the correlation between xi and Y. It can be seen that the new features {Rg, Rp, 
Dist, Exprs} are ranked at the top of Table 5. In addition, Tpz and Dist are very similar because they both reflect 
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Table 1.   The correspondence between basic expressions and AUs.

E AUs

Happy 6 + 12 + 26

Sad 1 + 4 + 15

Surprised 1 + 2 + 5 + 26

Scared 1 + 2 + 4 + 5 + 7 + 20 + 25,26

Angry 4 + 5 + 10 + 25

Disgusted 4 + 9 + 17
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distance information. The correlation between xi and Y has been obtained as an initial result, but it remains to be 
seen whether this relationship is consistent with the rules reflected in our machine learning model.

Engagement intention‑intensity classifier.  To predict the IHEI using multidimensional feature data, 
we adopt CatBoost, an advanced boosting ensemble learning model, to train the IHEI classifier. Based on oblivi-
ous trees, CatBoost enhances Gradient Boosting Decision Tree (GBDT)38 and can efficiently and reasonably 
handle categorical features.

The general processing method for categorical features is one-hot encoding, but this method might have 
the over-fitting problem. CatBoost uses a method based on the performance of randomization of data sets to 
process categorical features, and then computes the average target value of the sample based on the same cat-
egory values placed before the randomization to reduce the occurrence of over-fitting. If we are given a dataset 
D={(Xi , yi)}n=1,2,...,n , where Xi = (xi,1, ..., xi,m) ∈ R

m is a vector of m features (some numerical and some cat-
egorical),Yi ∈ R is the label values. Call a set of permutations σ = (σ1, ..., σn) , then xσp,k is replaced by:

Here, a prior value P and prior weight a (a > 0) are added to help reduce the noise obtained from low fre-
quency classes.

Model interpretability analysis.  Although the machine learning model can effectively get the prediction 
results of HIE through the input feature data, the prediction model is a black box. We cannot find the execution 
principle behind the model intuitively. Another focus of our research in this paper is to do model interpretability 
analysis to study how the input features affect the HIE prediction model.

For some popular machine learning models, for instance, RF and CatBoost, traditional feature_Importance_ 
function can only reflect the importance of features, but cannot reflect the specific influence of features on the 
prediction results. SHAP can provide a better scheme for explainable analysis of complex machine learning mod-
els and analysis of deeper connections and influences between features and models. The Shapley approach has 

(5)

∑p−1

j=1 [xσj,k = xσp,k ]Yσj + a · P
∑p−1

j=1 [xσj,k = xσp,k ] + a

Table 2.   Classification of human expression according to the correlation between expressions and human–
robot interactive intentions.

Expressions Exprs

Happy Approach

Expressionless Nature

Surprised, sadness, disgusted, fear, angry Avoid

Table 3.   Details of feature set data, including description, unit, mean, standard deviation and Pearson 
coefficient.

Symbol Description Unit Mean Std Pearson

Rg Gaze intersection offset mm 383.842 300.609 − 0.772

Rp Offset of face towards intersection mm 721.055 761.970 − 0.668

Tpz Head translation variation z mm 1043.253 302.724 − 0.628

Dist Distance between the robot and the human mm 1064.785 314.895 − 0.613

Exprs Human facial expression [1–3] 2.099 0.469 0.384

Vgry Right eye sight direction vector y – 0.185 0.162 0.366

Gpitch Pitch angle of gaze rad 0.186 0.169 0.335

Vgly Left eye sight direction vector y – 0.167 0.159 0.333

Vglx Left eye sight direction vector x – 0.054 0.243 0.214

Ppitch Pitch angle of head pose rad 0.136 0.155 0.208

Gyaw Yaw angle of gaze rad − 0.031 0.255 0.191

Pyaw Yaw angle of head pose rad 0.068 0.311 − 0.168

Vgrx Right eye sight direction vector x – − 0.113 0.237 0.159

Tpx Head translation variation x mm 23.490 155.871 − 0.154

Tpy Head translation variation y mm − 58.452 173.342 − 0.139

Vgrz Right eye sight direction vector z – − 0.931 0.058 − 0.108

Vglz Left eye sight direction vector z – − 0.939 0.048 − 0.042

Proll Roll angle of head pose rad − 0.112 0.145 − 0.021
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the advantage of having strong theoretical support to ensure a fair attribution of features, thus fairly distributing 
the total predicted value in the features and their individual contributions.

SHAP uses game theory to calculate Shapley value and quantify the contribution each feature makes to model’s 
prediction results. The essential design idea of SHAP is:

•	 It first calculates the marginal contribution of a feature when it is added to the model.
•	 Then it calculates the different marginal contribution of the feature in all feature sequences.
•	 Finally, it calculates the Shapley value of the feature, that is, the mean value of all its marginal contributions.

Ethics approval .  All of the authors confirm that there is no potential acts of misconduct in this work, and 
approve of the journal upholding the integrity of the scientific record.

Consent to participate .  Informed consent was obtained from all individual participants included in the 
study.

Experimental results and analysis
In this paper, the IHEI recognition was carried out in an indoor environment, with a certain distance as the 
prerequisite to ensure effective interactive communication activities between people. Proxemics9 divided interac-
tive distance into four categories: intimate distance (0–45 cm), personal distance (45–120 cm), courtesy distance 
(120–360 cm), and general distance (more than 360 cm). For the social communication purpose, we targeted 
the human intention within the range of 0–360 cm.

Data set acquisition.  14 participants from different majors in Chongqing University of Technology were 
recruited to participate in the study (age range 18–25 years old, Mage = 21.07, 8 males). None of them had previ-
ously participated in similar human–robot interaction experiments, and none had been exposed to our social 
robot. We told participants in advance about the capabilities of our social robot and the reliability of the technol-
ogy involved. All of them had a high level of trust in our technology.

The experiment area we chose was in a public room. We designated a certain area of the room for our experi-
ment. Before entering the room, outsiders will be prompted not to enter the experimental area without permis-
sion. In this area, in addition to our social robot, there were other potentially distracting devices around it, such 
as books on the table, and LCD display on the wall. In addition, the interaction function of our social robot is 
relatively limited, and it can only carry out simple speech conversations (greet, introduce some information 
about itself) and make simple expressions (smile). Participants can experience all the functions of the robot in 
a short time (about 2 min).

We arranged one participant at a time to enter the experiment area to interact with the robot as shown in 
Fig. 4. When the participant enters the experiment area, a 30-FPS monocular camera is placed by the robot’s 
head to continuously extract the participant’s visual features, and the feature data together with the video are 
saved locally. Before the experiment, all the participants were informed of the same information as follows: (1) 
we have placed our social robot that can perform a simple speech conversation and make simple expressions 
in the experiment area. (2) After the participant enters the experiment area, the robot needs to be prepared for 
2 min to start the interaction and he can familiarize yourself with the environment during the waiting period. 
(3) After 2 min (the robot will give a voice prompt), the participant can choose to interact with the robot, or can 
choose not to interact with the robot and do other things he like to do, such as reading a book, listening to music 
and so on. (4) Each one should stay in the experiment area for at least 5 min.

Figure 4.   Participants were interacting with the social robot. The robot, wearing yellow clothes on the right, has 
a camera placed above its head to capture the interaction data of participants.
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After the experiment, we informed participants about the specifics of the experiment we conducted and 
explained to them the concept of IHEI. Finally, we can get 14 sets of data, each of which is filtered to get 6000 
frames of high-quality feature data. Within each set of data, we split the saved video into pictures by frame and 
matched the 6000 frames of data mentioned above with the corresponding picture. Further, participants watched 
the interaction video and self-reported the IHEI for the interaction in 6000 pictures, that is, a classification label 
for these 6000 frame feature data. To reduce the variability of self-assessment, the IHEI was classified as strong, 
medium and weak, as shown in Fig. 5. Among them, ‘Strong’ means that the person is currently very interested in 
interacting with the robot. ‘Weak’ means that the person hardly wants to interact with the robot, while ‘Medium’ 
is between ‘Strong’ and ‘Weak’, which means that the person is only interested in the robot rather than interacting 
with it. These three levels were reviewed and verified by experts.

Furthermore, we used the method shown in Fig. 6 to selected 3000 frames of data from 6000 frames of data, 
with 1000 frames of intensity for each of the three types of IHEI, to ensure uniform distribution of sample sets 
from different categories. As can be seen from Fig. 6, for the IHEI category with less than 1000 frames, we ran-
domly selected 5 frames of valid data before and after the current frame to add to the current category data, and 
the label is the same as the current category, until the total number of the category reaches 1000 frames. The 
new frames of data do not contain the existing data of the current category. Our feature extraction algorithm 
can reach 30FPS, so the data difference between 5 frames before and after the current frame will be small. The 
addition of new data can effectively expand the category of data with insufficient total number. Thus, an IHEI 
recognition dataset containing 42,000 samples can be obtained.

(a) Strong (b) Medium (c) Weak

Figure 5.   Hierarchy of IHEI among participants. The IHEI is divided into three levels: strong, medium and 
weak.

Figure 6.   Method to balancing three categories of data in our dataset.
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In addition, the reasons why only one participant is selected each time instead of several participants inter-
acting with the robot are as follows: (1) we can get higher quality data sets by extracting face features of a single 
person each time and facilitating subsequent processing; (2) the final trained IHEI classifier is applicable to 
everyone, because each person has the same feature input and the engagement behavior of each person under 
different IHEI is overall similar, so it can be used for multi-person detection. (3) We assume that people deter-
mine that individuals’ IHEIs to social robots are unaffected by others in the present environment, i.e., judgments 
regarding an individual’s IHEIs to the social robot are independent. (4) We expect machine learning model to 
learn general trends and laws while accommodating individual variability. Then, we can use less resources to get 
a more applicable model to analyze people’s IHEI.

Classifier training and evaluation.  Split of dataset.  Of these 14 sets of data, ten sets were used as train-
ing sets for the IHEI classifier, denoted by D_10, and the remaining four sets were used for testing, denoted 
by D_4. This division is done to avoid the fact that data from the same individual are used for both training 
and testing, thus reducing the generalization ability of the model. In the process of training the IHEI classi-
fier, we need to divide some data from the training set as a validation set to determine the optimal number of 
model iterations. In order to make full use of all the data in the training set, K fold cross validation39 is used as 
a strategy to divide the training set and the validation set during model training. K fold cross validation avoids 
the extremes of uneven distribution of the training and validation sets due to differences in different batches of 
characterization data.

Classifier evaluation.  In order to verify the effectiveness of CatBoost, we also evaluated the other machine 
learning models commonly used for intention classification, including SVM, RF and MLP using the same data-
set (D_4). Among them, SVM is generally used to deal with binary classification problems. In the case of multi-
classification problems, the multi-classification problems can be converted into binary classification problems 
by using one-to-rest mode. In addition, since SVM, RF and MLP cannot train the category features directly, we 
use one-hot coding to preprocess Exprs features before the training.

We choose the weighted-F1 score and test time as the model evaluation indexes in the test set to evaluate 
the SVM, RF and MLP models, respectively. The weighted-F1 score is chosen to evaluate the overall predictive 
performance of the model, which was calculated by Eq. (6), where Pi and Ri are the precision and recall of the 
prediction results of each type of label, respectively, wi is the ratio of the number of samples in each category to 
the total number of samples.

In addition, in order to verify that the intent classification model trained by the optimized data set has better 
performance, three data set combinations are obtained by combining features of different dimensions, as shown 
in Table 4. X_15 represents the combination of original 15-dimensional feature data extracted, X_4 represents 
the combination of four advanced features obtained through data enhancement. Subsequently, SVM, RF, MLP 
and CatBoost were trained and tested on these three datasets, respectively. The final evaluation results are shown 
in Table 5.

It can be seen that the test performance of the four classifiers on X_18 and X_4 dataset is generally superior 
to X_15 datasets, which indicates that the four high-level features we added are beneficial to the training of the 
classifier. Meanwhile, among all the classifiers, CatBoost has the highest weighted-F1 score and the lowest test 
time, indicating that its overall test performance is better than other classifiers. This is also in accordance with 
our expected conjecture.

SHAP analysis.  In order to further explore the deep relationship between features and the IHEI, the SHAP 
model is used to perform interpretability analysis on the trained CatBoost-based classifier for the IHEI. Based 
on calculated results, the influencing factors of IHEI classification are analyzed from both global and individual 
aspects.

Global analysis.  In global analysis, the average absolute value of each characteristic SHAP value is used to 
measure its global importance. At the same time, by analyzing the distribution relationship between the value of 
each feature and its SHAP value, we can get both a positive and a negative correlation between the feature and 
the evaluation results.

(6)weighted-F1 =

2×
n
∑

i=1

wiPi ×
n
∑

i=1

wiRi

n
∑

i=1

wiPi +
n
∑

i=1

wiRi

Table 4.   Three combinations of datasets.

Dataset Feature set

X_15 15-dimensional raw feature data

X_4 Rg, Rp, Dist, Exprs

X_18 18-dimensional feature data
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First, the influence of various features on different labels (IHEI) is analyzed by using the SHAP model, as 
shown in Fig. 7, where the horizontal axis represents the mean (|SHAP value|) of various features, the vertical 
axis represents 18 types of features, and three different color blocks represent three types of labels.

Among the top five features, there are four readability enhancement features, i.e., Rg, Rp, Dist, and Exprs, 
to which, in comparison with the original features, the IHEI is more sensitive. Their order of importance is 
Rg > Rp > Exprs > Dist. This implies that the features reflecting human attention play a dominant role in the clas-
sification of the IHEI.

Second, we analyzed the distribution of the SHAP values for the four features processed by readability 
enhancement relative to different IHEI labels, as shown in Fig. 8. Among them, a SHAP value greater than 0 
indicates that the current feature value has a positive promoting effect on this IHEI, and a larger SHAP value 
indicates that the current feature can reflect a stronger IHEI. SHAP values less than 0 indicates inverse contribu-
tions to the current eigenvalue, and the smaller the SHAP value, the greater the inhibition.

(a)	 label = Weak

In this state, the SHAP values of Rg, Rp and Dist are approximately inversely proportional to the feature data. 
The larger their values are, the stronger the promotion of weak HIE is. In addition, the feature values at SHAP 

Table 5.   Performance comparison of three classifiers in three datasets.

Dataset Classifier Weighted-F1 score Time (s)

X_15

SVM 0.4519 2.1667

MLP 0.4426 0.0407

RF 0.6657 0.0591

CatBoost 0.6968 0.0179

X_4

SVM 0.9008 0.2313

MLP 0.8829 0.0450

RF 0.8980 0.0523

CatBoost 0.9027 0.0124

X_18

SVM 0.5106 0.1572

MLP 0.8017 0.0413

RF 0.9029 0.0518

CatBoost 0.9112 0.0131

Figure 7.   The effects of each feature on the intensity of different IHEI (strong, medium and weak) are obtained 
by the SHAP analysis. The importance of each feature is ranked in descending order.
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turning points (SHAP value is 0) of Rg, Rp and Dist are approximately 440 mm, 750 mm, and 1010 mm, respec-
tively. For Exprs, only when the expression category is ‘Avoid’, there is a significant promotion effect on weak HIE.

(b)	 label = Medium

For Rg, Rp and Dist, the relationship between their SHAP values and the trait data is relatively complex and 
cannot be analyzed with a simple linear description. From the distribution of the SHAP values of Exprs, it can 
be observed that ‘Nature’ expression category has an intuitive effect on such IHEI.

(c)	 label = Strong

It can be seen that the distribution of SHAP values of various features is approximately the opposite to that 
when the label is Weak, the SHAP values of Rg, Rp and Dist are approximately proportional to the feature data. 
Meanwhile, the feature values at the SHAP turning point (SHAP value is 0) of Rg, Rp and Dist are approximately 
300 mm, 500 mm and 1,050 mm, respectively. In addition, at this time, the expression type of ‘Approach’ plays 
a role in promoting the HIE intensity state.

Figure 8.   Distribution of the shape values of Rg, Rp, Dist and Exprs under different IHEI labels (i.e., strong, 
medium, and weak). (a) Weak HIE intensity. (b) Medium HIE intensity. (c) Strong HIE intensity.

Table 6.   The change rule of eigenvalue and intensity of interactive intention.

Feature Weak Medium Strong

Rg (mm)  > 440 (180, 550)  < 300

Rp (mm)  > 750 (280, 900)  < 500

Dist (mm)  > 1010 –  < 1050

Exprs Avoid Nature Approach
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According to the distribution of SHAP values of these four types of features, we sort out the areas where they 
play a positive role in promoting various labels, as shown in Table 6. It can be found that although SHAP values 
with different features show certain rules for the change of IHEI, such rules cannot be perfectly interpreted by a 
few rules, because some dependencies are relatively complex, such as distance data with medium HIE intensity. 
In addition, we can see that the distribution results of the SHAP value of Dist are related to proxemics, but there 
are slight differences. When IHEI is strong, it is basically within intimate distance and personal distance; when 
IHEI is weak, it is considered outside of the personal distance. However, when IHEI is medium, the situation is 
more complicated, so it is not complete to judge IHEI from spatial distance.

The analyzing results show that although rule-based intent recognition is efficient, it has a low error tolerance 
rate, and it is difficult to deal with problems in particular circumstances. Undoubtedly, the above results provide 
a relevant base for HRI decision-making, as well as a means for non-professionals to develop HRI applications.

Individual analysis.  In the individual analysis, we are able to understand the key factors affecting this sample 
status level by calculating the SHAP values for all the features for a single sample, and in turn, to make clear 
which special feature values are responsible for this effect. Figure 9 shows an example where the IHEI is pre-
dicted to be strong, including the contribution of a single feature to the IHEI.

In Fig. 9a, the red colors indicate that the SHAP value is positive, which will increase the predicted value in 
the evaluation process, while the blue ones show the contrast. The baseline value of the model E[f(x)] is − 0.118, 
and the final evaluation of the strength of interactive f(x) is obtained by adding the SHAP value of each feature 
to the baseline value. It can be seen that the SHAP values of Tpz, Exprs and Dist are positive and large, which 
play a significant role in predicting the IHEI in this sample.

Figure 9b illustrates the predicted trend of different labels. The intersection between the top of the curve 
and the coordinate axis is the SHAP value of the IHEI. It can be seen that only the SHAP value for which the 
prediction result is strong is positive, i.e., the sample has the highest probability of being predicted as strong HIE. 
Meanwhile, Tpz, Exprs and Dist have the greatest influence on the trend of the three predicted curves. It can be 
seen that in this example, the distance feature has the greatest influence on the prediction of IHEI.

Discussion
As the advanced integrated learning model proposed at present, CatBoost can effectively train the interactive 
intent dataset we have built, and it shows better performance than other models we chose. The IHEI classifier 
trained by CatBoost has a weighted-F1 value of 0.9112 on the test set. This indicates that the classifier is able to 
effectively predict three intensities of HIE.

Since it is a preliminary exploration of the relationship between visual features and the IHEI, we have only 
divided into three types of IHEIs. However, the situation in real life might be more complex, and in real-time 
engagement intention recognition for multiple people, the recognition results need to be further refined to 
effectively distinguish different people. A future research direction will be to classify the IHEI into more detailed 
levels. In addition, we assume that the IHEI of a robot is absolute, not relative, and by default unaffected by other 

Figure 9.   SHAP analysis of an example where the IHEI is predicted to be strong. (a) The degree to which 
each feature contributes to the predicted result of the interactive intention (corresponding value shown on the 
right side of each feature). Red indicates that the feature has a positive effect on the predicted result, whereas 
blue indicates that the feature has a negative effect. (b) The influence of each feature on the trend of different 
prediction results. Prediction results are presented based on the category of interactive intention that has the 
highest SHAP value.
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people. We will conduct experiments in the future to examine how the relative IHEI between people affects the 
assessment of the final IHEI.

Through the interpretability analysis based on the classification model by SHAP, the importance ranking of 
all types of feature data can be preliminarily achieved, with Rg and Rp ranking as the first two in the data associ-
ated with the line of sight and face orientation, respectively. Both Rg and Rp reflect the current state of human 
attention, that is, the area of interest. This shows that, compared with other features mentioned in this paper, 
attention information can best reflect the state of IHEI.

SHAP analysis provides an effective basis for our real-time IHEI recognition link. Following this research, 
we propose to build a real-time IHEI recognition model based on the analysis obtained in the Section of SHAP 
analysis. Using this model, robots are able to achieve more natural HRI by selecting a reasonable interaction 
target when they interacting with multiple people.

Conclusion
It is of great importance for the study of natural HRI to enable social robots to perceive the IHEI. In this paper, a 
deep analysis of IHEI is carried out using a CatBoost-based model and SHAP. During feature engineering, four 
types of high level features related to human line of sight, head posture, distance, and facial expressions can be 
obtained. A dataset of IHEI is created by categorizing IHEIs into strong, medium, and weak, according to their 
intensity. Using the obtained dataset, a CatBoost-based IHEI classification model is then trained. By applying the 
SHAP, an interpretability analysis is conducted for the trained classification model, with a view to exploring the 
deep relationship between the features set and IHEI. This is conducive to human behavior research and allows 
non-professionals to develop HRI more efficiently.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

Received: 13 October 2022; Accepted: 8 February 2023

References
	 1.	 Xue, Y., et al. Proactive interaction framework for intelligent social receptionist robots. In 2021 IEEE International Conference on 

Robotics and Automation (ICRA), May 30–June 5, 2021, Xi’an, China, pp. 3403–3409. IEEE. https://​doi.​org/​10.​1109/​ICRA4​8506.​
2021.​95621​15.

	 2.	 Salichs, M. A. et al. Mini: A new social robot for the elderly. Int. J. Soc. Robot. 12(6), 1231–1249. https://​doi.​org/​10.​1007/​s12369-​
020-​00687-0 (2020).

	 3.	 Chen, H., Park, H. W. & Breazeal, C. Teaching and learning with children: Impact of reciprocal peer learning with a social robot on 
children’s learning and emotive engagement. Comput. Educ. 150, 103836. https://​doi.​org/​10.​1016/j.​compe​du.​2020.​103836 (2020).

	 4.	 Ramanathan, M., Mishra, N., & Thalmann, N. M. Nadine humanoid social robotics platform. In Computer Graphics International 
Conference, June 17-June 20, 2019, Calgary, Canada, 490–496 (Springer). https://​doi.​org/​10.​1007/​978-3-​030-​22514-8_​49.

	 5.	 Heenan, B., Greenberg, S., et al. Designing social greetings in human robot interaction. In Proceedings of the 2014 conference on 
Designing interactive systems, June 21–25, 2014, New York, United States, pp. 855–864. https://​doi.​org/​10.​1145/​25985​10.​25985​13.

	 6.	 Michalowski, M. P., Sabanovic, S., & Simmons, R. A spatial model of engagement for a social robot. In 9th IEEE International 
Workshop on Advanced Motion Control, March 27–29, 2006, Istanbul, Turkey, pp. 762–767. IEEE. https://​doi.​org/​10.​1109/​AMC.​
2006.​16317​55.

	 7.	 Feil-Seifer, D. & Matarić, M. J. Distance-based computational models for facilitating robot interaction with children. J. Human-
Robot Interact. 1(1), 55–77. https://​doi.​org/​10.​5898/​JHRI.1.​1.​Feil-​Seifer (2012).

	 8.	 Bi, J., et al. Interactive intention prediction model for humanoid robot based on visual features. In 2nd International Conference on 
Control, Robotics and Intelligent System, August 20–22, 2021, Qingdao, China, pp. 36–41. https://​doi.​org/​10.​1145/​34838​45.​34838​
52.

	 9.	 Hall, E. T. et al. Proxemics [and comments and replies]. Curr. Anthropol. 9(2/3), 83–108. https://​doi.​org/​10.​1086/​200975 (1968).
	10.	 Walters, M. L., et al. An empirical framework for human-robot proxemics. In Proceedings of New Frontiers in Human–Robot 

Interaction 2009.
	11.	 Mumm, J., & Mutlu, B. Human-robot proxemics: Physical and psychological distancing in human-robot interaction. In Proceedings 

of the 6th International Conference on Human–Robot Interaction, March 6–9, 2011, Lausanne, Switzerland, pp. 331–338. https://​
doi.​org/​10.​1145/​19576​56.​19577​86.

	12.	 Zhao, Q., et al. Natural human-robot interaction for elderly and disabled healthcare application. In IEEE International Conference 
on Bioinformatics and Biomedicine (BIBM), November 2–5, 2014, Belfast, United Kingdom, pp. 39–44. IEEE. https://​doi.​org/​10.​
1109/​BIBM.​2014.​69992​39.

	13.	 Kobayashi, Y., et al. A considerate care robot able to serve in multi-party settings. In 20th IEEE International Symposium on Robot 
and Human Interactive Communication (RO-MAN), July 31-August 3 ,2011, Atlanta, Georgia, pp. 27–32. IEEE. https://​doi.​org/​10.​
1109/​ROMAN.​2011.​60052​86.

	14.	 Ozaki, Y., et al. Decision-making prediction for human-robot engagement between pedestrian and robot receptionist. In 27th 
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), August 27–31, 2018, Nanjing, China, 
pp. 208–215. IEEE. https://​doi.​org/​10.​1109/​ROMAN.​2018.​85258​14.

	15.	 Mazhar, O., et al. Towards real-time physical human-robot interaction using skeleton information and hand gestures. In IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS), October 1–5, 2018, Madrid, Spain, pp. 1–6. IEEE. https://​
doi.​org/​10.​1109/​IROS.​2018.​85943​85.

	16.	 Koo, S., & Kwon, D. S. Recognizing human intentional actions from the relative movements between human and robot. In: 18th 
IEEE International Symposium on Robot and Human Interactive Communication, September 27–October 2, 2009, Toyama, Japan, 
pp. 939–944. IEEE. https://​doi.​org/​10.​1109/​ROMAN.​2009.​53261​27.

	17.	 Kelley, R., et al. Understanding human intentions via hidden Markov models in autonomous mobile robots. In Proceedings of 
the 3rd ACM/IEEE international conference on Human robot interaction (HRI), March 12–15, 2008, Amsterdam, Netherlands, pp. 
367–374. https://​doi.​org/​10.​1145/​13498​22.​13498​70.

	18.	 Kato, Y., Kanda, T., & Ishiguro, H. May i help you?-design of human-like polite approaching behavior. In 10th ACM/IEEE Inter-
national Conference on Human–Robot Interaction (HRI), March 2–5, 2015, Portland, pp. 35–42. IEEE.

https://doi.org/10.1109/ICRA48506.2021.9562115
https://doi.org/10.1109/ICRA48506.2021.9562115
https://doi.org/10.1007/s12369-020-00687-0
https://doi.org/10.1007/s12369-020-00687-0
https://doi.org/10.1016/j.compedu.2020.103836
https://doi.org/10.1007/978-3-030-22514-8_49
https://doi.org/10.1145/2598510.2598513
https://doi.org/10.1109/AMC.2006.1631755
https://doi.org/10.1109/AMC.2006.1631755
https://doi.org/10.5898/JHRI.1.1.Feil-Seifer
https://doi.org/10.1145/3483845.3483852
https://doi.org/10.1145/3483845.3483852
https://doi.org/10.1086/200975
https://doi.org/10.1145/1957656.1957786
https://doi.org/10.1145/1957656.1957786
https://doi.org/10.1109/BIBM.2014.6999239
https://doi.org/10.1109/BIBM.2014.6999239
https://doi.org/10.1109/ROMAN.2011.6005286
https://doi.org/10.1109/ROMAN.2011.6005286
https://doi.org/10.1109/ROMAN.2018.8525814
https://doi.org/10.1109/IROS.2018.8594385
https://doi.org/10.1109/IROS.2018.8594385
https://doi.org/10.1109/ROMAN.2009.5326127
https://doi.org/10.1145/1349822.1349870


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2537  | https://doi.org/10.1038/s41598-023-29661-2

www.nature.com/scientificreports/

	19.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20(3), 273–297. https://​doi.​org/​10.​1007/​BF009​94018 (1995).
	20.	 Vaufreydaz, D., Johal, W. & Combe, C. Starting engagement detection towards a companion robot using multimodal features. 

Robot. Auton. Syst. 75, 4–16. https://​doi.​org/​10.​1016/j.​robot.​2015.​01.​004 (2016).
	21.	 Sidiropoulos, G. K., et al. Measuring engagement level in child–robot interaction using machine learning based data analysis. In 

International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, October 26–27, 2020, 
Sakheer, Bahrain, pp. 1–5. IEEE. https://​doi.​org/​10.​1109/​ICDAB​I51230.​2020.​93256​76.

	22.	 Seber, G. A. & Lee, A. J. Linear Regression Analysis (Wiley, 2012).
	23.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 

359–366. https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8 (1989).
	24.	 Breiman, L. Random forests. Mach. Learn. 45(1), 5–32. https://​doi.​org/​10.​1023/A:​10109​33404​324 (2001).
	25.	 Prokhorenkova, L. et al. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 20, 31 (2018).
	26.	 Dorogush, A. V., Ershov, V., & Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv:​1810.​11363 (arXiv 

preprint) (2018).
	27.	 Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In Proceedings of the 31st international confer-

ence on neural information processing systems, December 4–9, 2017, California, USA, pp. 4768–4777.
	28.	 Baltrusaitis, T., et al. OpenFace 2.0: Facial behavior analysis toolkit. In 13th IEEE International Conference on Automatic Face and 

Gesture Recognition, May 15–19, 2018, Xi’an, China, pp. 59–66. IEEE. https://​doi.​org/​10.​1109/​FG.​2018.​00019.
	29.	 Baltrusaitis, T., Robinson, P., & Morency, L. P. Constrained local neural fields for robust facial landmark detection in the wild. 

In Proceedings of the IEEE International Conference on Computer Vision Workshops, December 2–8, 2013, Sydney, Australia, pp. 
354–361. IEEE. https://​doi.​org/​10.​1109/​ICCVW.​2013.​54.

	30.	 Wood, E., et al. Rendering of eyes for eye-shape registration and gaze estimation. In Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops, December 7–13, 2015, Santiago, Chile, pp. 3756–3764. IEEE. https://​doi.​org/​10.​1109/​ICCV.​
2015.​428.

	31.	 Zadeh, A., et al. Convolutional experts constrained local model for 3d facial landmark detection. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, October 22–29, 2017, Venice, Italy, pp. 2519–2528. IEEE. https://​doi.​org/​10.​
1109/​ICCVW.​2017.​296.

	32.	 Fiore, S. M. et al. Toward understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic 
behavior. Front. Psychol. 4, 859. https://​doi.​org/​10.​3389/​fpsyg.​2013.​00859 (2013).

	33.	 Truong, X. T., & Ngo, T. D. Social interactive intention prediction and categorization. In ICRA 2019 Workshop on MoRobAE-Mobile 
Robot Assistants for the Elderly, May 20–24, 2019, Montreal, Canada.

	34.	 Ekman, P. & Rosenberg, E. L. (eds) What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial 
Action Coding System (FACS) (Oxford University Press, 1997).

	35.	 Tian, Y. I., Kanade, T. & Cohn, J. F. Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 
23(2), 97–115. https://​doi.​org/​10.​1109/​34.​908962 (2001).

	36.	 Nurmi, J. E. et al. Optimistic, approach-oriented, and avoidance strategies in social situations: Three studies on loneliness and peer 
relationships. Eur. J. Pers. 10(3), 201–219. https://​doi.​org/​10.​1002/​(SICI)​1099-​0984(199609)​10:3%​3c201:​AID-​PER257%​3e3.0.​CO;​
2-# (1996).

	37.	 Benesty, J. et al. Pearson correlation coefficient. In Noise Reduction in Speech Processing 1–4 (Springer, 2009). https://​doi.​org/​10.​
1007/​978-3-​642-​00296-0_5.

	38.	 Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 20, 1189–1232 (2001).
	39.	 Bengio, Y. & Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5(4), 1089–1105 

(2004).

Author contributions
All authors contributed to the study conception and design. Material preparation and data collection were per-
formed by F.-c.H., Y.-j.W. ng and M.-n.L. Data analysis were performed by J.B. and M.H. The first draft of the 
manuscript was written by J.B. and all authors commented on previous versions of the manuscript. Conceptu-
alization and supervision was mainly performed by M.H. All authors read and approved the final manuscript. 
The authors affirm that human research participants provided informed consent for publication of the images 
in Figs. 1, 2, 5 and 6.

Funding
This article was funded by Graduate Innovation Project of Chongqing University of Technology (Grant no. 
clgycx20201010), Postdoctoral Science Foundation Program of Chongqing Science and Technology Bureau 
(No. CSTB2022NSCQ-BHX0674), Youth Project of Science and Technology Research Program of Chongqing 
Education Commission of China (No. KJQN202101131), Cooperative Project between universities in Chongqing 
and affiliated institutes of Chinese Academy of Sciences (No. HZ2021011).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.robot.2015.01.004
https://doi.org/10.1109/ICDABI51230.2020.9325676
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1810.11363
https://doi.org/10.1109/FG.2018.00019
https://doi.org/10.1109/ICCVW.2013.54
https://doi.org/10.1109/ICCV.2015.428
https://doi.org/10.1109/ICCV.2015.428
https://doi.org/10.1109/ICCVW.2017.296
https://doi.org/10.1109/ICCVW.2017.296
https://doi.org/10.3389/fpsyg.2013.00859
https://doi.org/10.1109/34.908962
https://doi.org/10.1002/(SICI)1099-0984(199609)10:3%3c201:AID-PER257%3e3.0.CO;2-#
https://doi.org/10.1002/(SICI)1099-0984(199609)10:3%3c201:AID-PER257%3e3.0.CO;2-#
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2537  | https://doi.org/10.1038/s41598-023-29661-2

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	A method based on interpretable machine learning for recognizing the intensity of human engagement intention
	Method
	Feature extraction. 
	Line of sight. 
	Head pose. 
	Distance. 
	Facial expressions. 

	Feature engineering. 
	Enhance readability of feature data. 
	Feature data test. 

	Engagement intention-intensity classifier. 
	Model interpretability analysis. 
	Ethics approval . 
	Consent to participate . 

	Experimental results and analysis
	Data set acquisition. 
	Classifier training and evaluation. 
	Split of dataset. 
	Classifier evaluation. 

	SHAP analysis. 
	Global analysis. 
	Individual analysis. 


	Discussion
	Conclusion
	References


