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Machine learning to predict late 
respiratory support in preterm 
infants: a retrospective cohort 
study
Tsung‑Yu Wu 1,2, Wei‑Ting Lin 2, Yen‑Ju Chen 2, Yu‑Shan Chang 2, Chyi‑Her Lin 2,3,4 & 
Yuh‑Jyh Lin 2*

Bronchopulmonary dysplasia (BPD) has been a critical morbidity in preterm infants. To improve our 
definition and prediction of BPD is challenging yet indispensable. We aimed to apply machine learning 
(ML) to investigate effective models by using the recently-proposed and data-driven definition to 
predict late respiratory support modalities at 36 weeks’ post menstrual age (PMA). We collected data 
on very-low-birth-weight infants born between 2016 and 2019 from the Taiwan Neonatal Network 
database. Twenty-four attributes associated with their early life and seven ML algorithms were used in 
our analysis. The target outcomes were overall mortality, death before 36 weeks’ PMA, and severity of 
BPD under the new definition, which served as a proxy for respiratory support modalities. Of the 4103 
infants initially considered, 3200 were deemed eligible. The logistic regression algorithm yielded the 
highest area under the receiver operating characteristic curve (AUROC). After attribute selection, the 
AUROC of the simplified models remain favorable (e.g., 0.801 when predicting no BPD, 0.850 when 
predicting grade 3 BPD or death before 36 weeks’ PMA, and 0.881 when predicting overall mortality). 
By using ML, we developed models to predict late respiratory support. Estimators were developed for 
clinical application after being simplified through attribute selection.

Despite recent progress in neonatal care, bronchopulmonary dysplasia (BPD) remains a critical morbidity of 
preterm infants1–3. BPD, first described by Northway in 1967, is a lung disease observed following recovery from 
respiratory distress syndrome and from aggressive mechanical ventilation with high concentration of oxygen4.

BPD has a critical impact on subsequent mortality and morbidity, which places a heavy burden on fami-
lies and society5–7. Infants with BPD are at higher risk of multiple rehospitalization and longer duration of 
hospitalization8. Long-term follow-up of BPD survivors has revealed poorer pulmonary health and abnormal 
lung function tests, even into late adolescence9,10. Moreover, BPD has a strong association with neurodevelop-
mental impairments or survival with disability in long-term follow-up5,6.

The definition of BPD has evolved considerably over decades. It was first characterized by Tooley as the 
oxygen dependence (e.g., fraction of inspired oxygen requirement [FiO2] > 21%) at the 30th day after birth11. 
Shennan suggested that the requirement for additional oxygen at a postmenstrual age (PMA) of 36 weeks could 
better predict adverse pulmonary health than previous criteria12. In 2001, the National Institute of Child Health 
and Human Development held a consensus conference at which a definition of BPD with distinct severities was 
proposed (Table 1)13. However, refining the definition has been an ongoing challenge. Defining BPD differently 
can alter the disease incidence, which ranges from 6 to 57%14. Recent changes in respiratory management, such 
as high-flow nasal cannula, limit the applicability of previous definitions15. Jensen therefore conducted a study 
to develop an evidence-based, or data-driven, definition of BPD; they concluded that the mode of respiratory 
support administered at 36 weeks’ PMA, regardless of supplemental oxygen, can best predict early childhood 
morbidity. (Table 1)16.

Machine learning (ML) technique is a tool that involves the use of algorithms to make sense of a tremendous 
amount of structured (e.g., numbers) or unstructured (e.g., images) data17,18. ML differs from the traditional 
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approaches in that it involves learning from examples themselves instead of being designed to function on the 
basis of static rules alone. A model can be developed and trained to predict certain patterns or outcomes by using 
a large volume of data19,20. Recently, the technique has been increasingly applied in medical fields.

The ability to predict the outcomes of premature infants from their early life onward can aid in treatment 
planning, family counseling, and even individualized management.

The aim of this study, therefore, was to use ML technique to establish optimal models for predicting mortality 
and respiratory support modalities in very-low-birth-weight preterm infants at 36 weeks’ PMA.

Materials and methods
Materials.  We retrospectively collected cohort data on very-low-birth-weight infants born between 2016 
and 2019 from the Taiwan Neonatal Network (TNN) database, which was established in 2016 and was designed 
to store nationwide clinical information for premature neonates born in Taiwan. Between 2016 and 2019, 24 hos-
pitals, including the majority of secondary and tertiary neonatal intensive care units in Taiwan, joined the TNN.

The inclusion criteria were a gestational age (GA) of 22 weeks, 0 days to 31 weeks, 6 days or a birth weight 
(BW) of 401–1500 g. The exclusion criteria were having died within 12 h after birth or admission or having 
received a diagnosis of congenital anomaly. The definition of congenital anomaly encompassed chromosomal 
anomalies, skeletal dysplasia, inborn error of metabolism, lethal or life-threatening anomalies in the cardiovas-
cular, gastro-intestinal, genito-urinary, or pulmonary systems, and other lethal or life-threatening anomalies.

We collected data on 24 early-life characteristics as attributes: antenatal steroid use, magnesium sulfate use, 
chorioamnionitis, maternal hypertension, Caesarean section, multiple birth, the first-minute Apgar score, the 
fifth-minute Apgar score, noninitiated initial neonatal resuscitation, initiated neonatal resuscitation (including 
the use of oxygen supply, face-mask ventilation, intubation, epinephrine administration, chest compression or 
continuous positive airway pressure), the grading of initial neonatal resuscitation, sex, GA, BW, whether small 
for gestational age21, birth place, early onset sepsis (a positive blood and/or cerebral spinal fluid culture within 
3 days of birth), respiratory distress syndrome, and the use of surfactants. The time point to predict BPD in our 
study was 72 h after birth. The GA was presented only in completed weeks and the BW was presented only in 
100 g bins. The z scores therefore could not be calculated.

We defined the grading of initial neonatal resuscitation to classify the disease severity during neonatal resus-
citation. We hierarchically defined that noninitiated initial neonatal resuscitation, the use of oxygen supply, 
continuous positive airway pressure, face-mask ventilation, intubation, epinephrine administration, and chest 
compression to be mild to most severe. Respiratory distress syndrome was defined as:

1.	 Within the first 24 h of life, a chest radiograph consistent with the characteristics of respiratory distress 
syndrome, such as reticulogranular appearance to lung fields, air-bronchograms, with or without decreased 
lung volumes.

2.	 Plus at least one of the criteria below: partial pressure of oxygen < 50 mmHg in room air, central cyanosis in 
room air, a requirement for supplemental oxygen to maintain partial pressure of oxygen > 50 mmHg, and/
or a requirement for supplemental oxygen to maintain a pulse oximeter saturation > 85%.

This study has been approved by the National Cheng Kung University Hospital Institutional Review Board 
(A-ER-109–181). The need of informed consent was waived by the National Cheng Kung University Hospital 
Institutional Review Board due to the fact that data were anonymized and de-identified. All methods were per-
formed in accordance with the relevant guidelines and regulations.

Target outcomes.  Our primary outcomes were the needs of late respiratory support modalities at 36 weeks’ 
PMA. According to the definition of BPD proposed by Jensen16, the respiratory support at 36 weeks’ PMA were 
categorized as the grading of BPD (Table 1). Those who died before 36 weeks’ PMA were grouped together 
because they could not be assigned any BPD grade. For each predictive model, the following binary target out-
comes were determined: (Fig. 1).

Table 1.   Definitions of bronchopulmonary dysplasia. BPD Bronchopulmonary dysplasia; GA Gestational 
age; NC Nasal cannula; NCPAP Nasal continuous positive airway pressure; NIPPV Nasal intermittent positive 
pressure ventilation; NICHD National Institute of Child Health and Human Development; PMA Postmenstrual 
age; PPV Positive-pressure ventilation.

Definition NICHD Jensen

Time Point of Assessment At 36 weeks’ PMA or at discharge, whichever comes first At 36 weeks’ PMA or at discharge, whichever comes first

Consideration of oxygen 
supplement Treatment with oxygen > 21% for at least 28 days plus

Severity or grading of BPD

Mild BPD Breathing room air No BPD Room air, no support

Moderate BPD Need for oxygen < 30% Grade 1 BPD NC ≤ 2L/min “low flow”

Severe BPD Need for oxygen ≥ 30% and/or posi-
tive pressure (PPV or NCPAP)

Grade 2 BPD NC > 2L/min “high flow,” or NCPAP 
or NIPPV

Grade 3 BPD Invasive PPV
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1.	 No BPD versus other conditions.
2.	 Grade 1 BPD or no BPD versus other conditions.
3.	 Death before 36 weeks’ PMA or Grade 3 BPD versus other conditions.
4.	 Death before 36 weeks’ PMA versus other conditions.

In addition, the secondary outcome in this study was overall mortality versus other conditions.

Statistics analysis.  Model development and comparison.  We utilized Orange software, (version 3.27.1; 
Bioinformatics Lab, Ljubljana, Slovenia) to analyze our data22. First, we separated our data randomly into two 
subsets: the training data set, which consisted of 70% of the cohort, and the testing data set, which consisted of 
the remaining 30%. The workflow is illustrated in Fig. 2. We loaded our training and testing data sets and then 
selected different target outcomes. Distinct algorithms, such as classification tree, k nearest neighbor, logistic 
regression, naïve Bayes, neural network, random forest, and support vector machine, were used for model build-
ing. The models were constructed with the training data set and were evaluated with tenfold cross validation. The 
remaining 30% of the cohort, namely the testing data set, were used for internal validation. The area under the 
receiver operating characteristic curve (AUROC) of each model was calculated to evaluate model performance. 
Attribute selection and equation development for outcome estimation were then applied to the algorithm with 
the highest AUROC.

Figure 1.   Binary classifications of various target outcomes. 1(A): No BPD versus other conditions; 1(B): Grade 
1 BPD or no BPD versus other conditions; 1(C): Death before 36 weeks’ PMA or Grade 3 BPD versus other 
conditions; 1(D): Death before 36 weeks’ PMA versus other conditions; BPD Bronchopulmonary dysplasia; Gr 
Grade; PMA Postmenstrual age.

Figure 2.   Workflow for Orange software, Version 3.27.1. SVM Support vector machine; Tree Classification tree; 
kNN k-nearest neighbor.
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Attribute selection and simplified models.  For clinical applications, we utilized Weka software (version 3.8.4; 
Waikato Environment for Knowledge Analysis, Hamilton, New Zealand) for attribute selection23. After apply-
ing the CfsSubsetEval function with BestFirst search method in Weka, some attributes from the original 24 
attributes for distinct target outcomes were selected by using the training data set. The attribute selection was 
performed entirely software-based, or data-driven, and not based on biological plausibility or any clinical con-
siderations. In Orange, we applied the attributes selected by Weka along with the optimal algorithm (i.e., that 
with the highest AUROC value) to develop simplified models for various outcomes. The 70–30% training–test-
ing data set split and tenfold cross validation were also applied. The AUROCs of the simplified models were 
examined and compared with the previous complex models before attribute selection.

Equation development.  We used Orange to calculate the intercept and each coefficient of each selected attribute 
for the various outcomes. The equations were developed thereafter. Finally, we developed estimators to predict 
the probability of the various target outcomes.

Results
Study population and patient characteristics.  This study enrolled 4013 infants. We excluded 207 
infants because they had died within 12 h after birth or after admission, or because they had congenital anoma-
lies. Another 449 infants were excluded because they were discharged before 36 weeks’ PMA and the applied 
respiratory support modalities could not be determined. Furthermore, 157 infants were excluded due to missing 
or inapplicable data. In total, 3200 infants were eligible for the final analysis. The cohort was then split randomly 
into 2 data sets by applying randomization in Orange. The training data set (N = 2240) consisted of 70% of all 
data and was applied in models development. The remaining 30% were assigned to the testing data set (N = 960), 
which was applied for internal validation of each model (Fig. 3).

The characteristics of the enrolled infants and of the two data sets are detailed in Table 2. In our cohort, the 
mean GA was 27.47 ± 2.35 weeks, and the mean BW was 928 ± 280 g. The only significant difference between the 
training and testing data sets was in the proportion of small for GA (Training: 30% vs. Testing: 32%, p < 0.05).

Figure 3.   Patient selection flowchart. BW Birth weight; GA Gestational age; PMA Postmenstrual age; TNN 
Taiwan neonatal network.

Table 2.   Patient characteristics. BW Birth weight; GA Gestational age; SD Standard deviation; SGA Small for 
gestational age. *Reference: Hsieh21. **p < 0.05.

Characteristics All Training data set Testing data set p value

Patient number, n (%) 3200 (100%) 2240 (70%) 960 (30%)

GA, week, mean ± SD 27.47 ± 2.35 27.48 ± 2.35 27.44 ± 2.35 0.613

BW, per 100 g, mean ± SD 9.28 ± 2.80 9.27 ± 2.80 9.29 ± 2.79 0.832

SGA*, n (%) 1014 (32%) 725 (30%) 289 (32%) 0.029**

Sex, female, n (%) 1496 (47%) 1,050 (47%) 446 (46%) 0.829

Outborn, n (%) 203 (6%) 132 (6%) 71 (7%) 0.110

Maternal history

 Antenatal corticosteroid, n (%) 2781 (87%) 1950 (87%) 831 (87%) 0.706

 Antenatal MgSO4, n (%) 1926 (60%) 1349 (60%) 577 (60%) 0.950

 Chorioamnionitis, n (%) 580 (18%) 397 (18%) 183 (19%) 0.367

 Maternal hypertension, n (%) 747 (23%) 521 (23%) 226 (24%) 0.862

 Caesarean section, n (%) 2,239 (70%) 1580 (71%) 659 (69%) 0.285

 Multiple births, n (%) 936 (29%) 658 (29%) 278 (29%) 0.812
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Model development and comparison.  The AUROC values of the prediction models developed using 
the various algorithms are listed in Table 3. For each algorithm, the differences in AUROC values between the 
training and testing data sets were small, indicating that overfitting was avoided. Of the seven distinct algo-
rithms, logistic regression registered the highest AUROC values in predicting the various target outcomes. In 
the testing data set, the AUROC values of logistic regression were 0.812 when predicting no BPD, 0.769 when 
predicting no BPD or grade 1 BPD, 0.854 when predicting grade 3 BPD or death before 36 weeks’ PMA, 0.884 
when predicting death before 36 weeks’ PMA, 0.884 when predicting overall mortality. Therefore, we used logis-
tic regression in attribute selection and the development of simplified prediction models.

Attribute selection and simplified models.  Among all 24 attributes, 5–7 attributes were selected for 
various target outcomes by using Weka, and the results were indicated in Table 4. Five attributes were selected 
for all target outcomes: BW, GA, intubation during initial neonatal resuscitation, early sepsis, and the adminis-
tration of surfactant.

Using these selected attributes, we used Orange and logistic regression algorithm to construct simplified 
prediction models. The AUROC values for predicting the various outcomes after attribute selection are listed 
in Table 3 (Italic data). The differences in AUROC values between the training and testing data sets were still 
small. Compared with the previous complex models, the simplified models had similar AUROC values. The 
AUROC values in the testing data set of the simplified models were 0.801 when predicting no BPD, 0.763 when 
predicting no BPD or grade 1 BPD, 0.850 when predicting grade 3 BPD or death before 36 weeks’ PMA, 0.881 

Table 3.   AUROC values of each model developed using various algorithms and training and testing data sets, 
and AUROC values of logistic regression after attribute selection using training and testing sets (Italic Data). 
AUROC Area under the receiver operating characteristic curve; BPD Bronchopulmonary dysplasia; kNN 
k-nearest neighbors; Gr Grade; PMA Postmenstrual age; SVM Support vector machine.

Algorithms Outcomes No BPD
No BPD or Gr1 
BPD

Gr3 BPD or death 
before 36w PMA

Death before 36w 
PMA Overall mortality

kNN
Training data set 0.735 0.720 0.762 0.744 0.746

Testing data set 0.753 0.708 0.789 0.805 0.792

Logistic regression
Training data set 0.803 0.777 0.811 0.833 0.831

Testing data set 0.812 0.769 0.854 0.884 0.884

Naïve bayes
Training data set 0.783 0.757 0.789 0.819 0.817

Testing data set 0.781 0.736 0.841 0.877 0.879

Neural network
Training data set 0.761 0.735 0.779 0.783 0.785

Testing data set 0.766 0.721 0.786 0.814 0.818

Random forest
Training data set 0.765 0.747 0.780 0.784 0.780

Testing data set 0.765 0.733 0.819 0.857 0.845

SVM
Training data set 0.645 0.647 0.631 0.659 0.639

Testing data set 0.664 0.623 0.670 0.804 0.708

Classification tree
Training data set 0.632 0.645 0.583 0.587 0.560

Testing data set 0.682 0.642 0.646 0.608 0.702

After attribute selection

Logistic regression
Training data set 0.802 0.776 0.811 0.835 0.833

Testing data set 0.801 0.763 0.850 0.881 0.881

Table 4.   Attributes selected for various target outcomes by weka. BPD Bronchopulmonary dysplasia; Gr 
Grade; PMA Postmenstrual age. *Had received intubation or epinephrine administration during neonatal 
resuscitation in the delivery or operation room. **A positive culture report from a blood sample and/or a 
cerebrospinal fluid sample obtained on day 1, 2, or 3 of life. ***Exogenous surfactant administrated at any time 
and through any pathway.

Target outcomes Selected attributes

No BPD Birth weight, gestational age, intubation*, early sepsis**, surfactant***

No BPD or Gr1 BPD Birth weight, gestational age, intubation*, early sepsis**, Respiratory distress syndrome, sur-
factant***

Gr3 BPD or death before 36 w PMA Birth weight, gestational age, sex, intubation*, early sepsis**, surfactant***

Death before 36 w PMA Birth weight, gestational age, the first-minute apgar score, intubation*, epinephrine*, early sepsis**, 
surfactant***

Overall mortality Birth weight, gestational age, the fifth-minute apgar score, intubation*, epinephrine*, early sepsis**, 
surfactant***
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when predicting death before 36 weeks’ PMA, 0.881 when predicting overall mortality. Therefore, the simplified 
models maintained favorable performance in predicting the various target outcomes. Finally, to enhance applica-
tions for clinical practice, the logistic regression–based simplified models were used in equation development.

Equation development.  The equation of the logistic regression algorithm can be written as Eq. (1).

We used Orange to calculate the intercept and coefficient of each selected attribute for the prediction models 
constructed using logistic regression. The results are listed in Table 5. An equation was developed for each target 
outcomes, and finally, outcome estimators for clinical applications were established using Microsoft Excel 2016 
(Fig. 4) (Supplementary information).  

For example, assume a premature male infant is born at a GA of 27 complete weeks with a BW of 901–1000 g. 
His first-minute and fifth-minute Apgar scores are 5 and 8, respectively. He does not receive intubation or epi-
nephrine administration during initial neonatal resuscitation. A diagnosis of respiratory distress syndrome is 
made and he receives exogenous surfactant replacement after birth. He does not have early sepsis. In summary, 
this boy’s likelihood of overall mortality is 7.7%, death before 36 weeks’ PMA is 6.5%, grade 3 BPD or death 
before 36 weeks’ PMA is 19.5%, no BPD or grade 1 BPD is 35.2%, and, no BPD is 22.8% (Fig. 4).

Discussion
In this study, we developed models to predict the probability of respiratory support at 36 weeks’ PMA from 
preterm infants’ early-life characteristics. Among the various algorithms, the models developed using logistic 
regression exhibited the optimal performance. Each estimator was established for clinical applications after being 
simplified through attribute selection.

(1)P = 1−
1

1+ exp[−(W0+W1X1+W2X2+W3X3+W4X4+W5X5+ . . . )]

Table 5.   Intercept and coefficient values of the attributes in various models developed using logistic 
regression. BPD Bronchopulmonary dysplasia; BW Birth weight; GA Gestational age; Gr Grade; PMA 
Postmenstrual age; RDS Respiratory distress syndrome. *Had received intubation or epinephrine 
administration during neonatal resuscitation in the delivery or operation room. **A positive culture report 
from a blood sample and/or a cerebrospinal fluid sample obtained on day 1, 2, or 3 of life. ***Exogenous 
surfactant administrated at any time and through any pathway.

Target outcomes No BPD No BPD or Gr1 BPD
Gr3 BPD or death before 
36w PMA Death before 36w PMA Overall mortality

Intercept  − 9.05217  − 4.50364 2.06853 2.03494 2.54808

GA 0.248647 0.116522  − 0.0750603  − 0.0930285  − 0.0777832

BW 0.18391 0.223937  − 0.306912  − 0.291437  − 0.304774

Sex (male) 0.425695

1st-min Apgar score  − 0.0680075

5th-min Apgar score  − 0.128508

Intubation*  − 0.604876  − 0.28599 0.490307 0.655439 0.504843

Epinephrine* 0.716202 0.447399

RDS  − 0.983329

Early sepsis**  − 0.819743  − 0.580436 0.679287 1.11624 0.904317

Surfactant***  − 0.53518  − 0.283135 0.876138 0.767558 0.833243

Figure 4.   Outcome estimator. BPD Bronchopulmonary dysplasia; Gr Grade; PMA Postmenstrual age. *Had 
received intubation, epinephrine administration, or chest compression during neonatal resuscitation in the 
delivery or operation room. **A positive culture report from a blood sample and/or a cerebrospinal fluid sample 
obtained on day 1, 2, or 3 of life. ***Exogenous surfactant administered at any time or through any pathway.
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With medical improvements, increasing numbers of premature infants are surviving, but the incidence of 
BPD remains similar or may even have increased1–3. Accurate prediction of BPD may provide opportunity for 
prevention and benefit not only patients but also clinicians, parents and relevant researchers. Over the past 
decades, several predictive models or scoring systems have been proposed but each had its own limitations24.

Ryan used logistic regression to develop prediction models that were based on infants’ early-life characteris-
tics, and Romagnoli created a scoring system for predicting BPD25,26. However, neither of them considered death 
before the diagnosis of BPD as a competing outcome. Noack and Yuksel both applied chest radiological findings 
and developed scoring systems to predict BPD27,28. Yet, the interpretation of chest radiographs was excessively 
subjective and lacked generalizability. Moreover, the definitions of BPD used by these four studies were outdated 
and therefore unsatisfactory for use in contemporary medicine.

An estimator for the likelihood of death or BPD of various severities was developed on the basis of data from 
the largest relevant multicenter study conducted by Laughon29. In that study, six risk factors were selected to 
construct a BPD estimator, including GA, BW, race and ethnicity, sex, respiratory support and FiO2, and the 
contribution of risk factors was concluded to be subject to change depending on postnatal age when predicting 
BPD. However, the study did not consider high-flow nasal cannula, which is currently a common ventilator 
support used for neonates30.

Katherine suggested that early cumulative supplemental oxygen may be a predictor of BPD or death, with 
cumulative supplemental oxygen at 14 days having the optimal predictive accuracy31. However, this study was 
conducted with a restricted and high-risk cohort. The application of the FiO2 or the peak inspiratory pressure 
as variables often results in a lack of generalizability because distinct units may have different policies regarding 
target saturation or blood gas data. To accurately record the cumulative FiO2 or daily peak inspiratory pressure 
may be time-consuming and cumbersome.

Gursoy developed a clinical scoring system to predict BPD at as early as 72 h after birth32. They defined and 
categorized the severity of BPD using the National Institute of Child Health and Human Development criteria 
and developed a scoring system by using clinical parameters and achieved good performance (AUROC = 0.930), 
even in the validation group (AUROC = 0.903). However, the study cohort was relatively small, and death before 
28 days of life was not considered to be a competing outcome.

Our study has several notable strengths. First, this was a nationwide population-based cohort study in Taiwan. 
Data from over 80% of total very-low-birth-weight infants in Taiwan were uploaded annually. Second, our study 
adopted the new definition proposed by Jensen in 2019 for BPD diagnosis and categorization16. Although the 
diagnostic criteria for BPD are continually evolving, the criteria of Jensen are based on data science instead of 
mere expert opinion and have been demonstrated to be more informative when predicting early childhood mor-
bidities. Moreover, these criteria also involve consideration of contemporary respiratory care, such as high-flow 
nasal cannula, and circumvent the need to calculate supplemental oxygen use, which is practically challenging 
due to differing treatment policies on respiratory care between hospitals. We therefore employed these criteria to 
grade BPD and to serve as a proxy for respiratory support at a PMA of 36 weeks. Third, we selected distinct severi-
ties of BPD in binary classifications as our target outcomes; for instance, grade 3 BPD or death before 36 weeks’ 
PMA versus other conditions (i.e., no BPD, grade 1 BPD or grade 2 BPD). Such binary classification can be easily 
interpreted and understood. In addition, competing outcome were not omitted. Finally, ML techniques were 
applied to analyze our data. The noteworthy strength of ML is its ability to yield data-driven findings by using a 
large volume of data after being trained again and again. Such an approach could teach an algorithm, including 
logistic regression, to build a model with high performance. In our study, it was the logistic regression algorithm 
that demonstrated the most promising performance, with AUROCs of approximately 0.8. For superior clinical 
applications, attribute selection was performed automatically by ML technique by Weka. The AUROCs remained 
similar. We demonstrated that even after attribute selection, the simplified models continued to function just 
as favorably. However, overfitting is a common drawback when using ML. Our study used a completely unseen 
dataset, namely, the testing dataset, for validation and demonstrated that overfitting was avoided. By using our 
estimator, we were able to predict a preterm infant’s outcome from early-life characteristics, and subsequent 
preventive or therapeutic treatment strategies could be planned.

There are several different ways to select independent variables in a logistic regression model, such as domain 
knowledge (expert knowledge), correlation, statistical tests, stepwise selection, and others. Our study utilized the 
CfsSubsetEval function, which is one of the correlation-based feature selections, in Weka to perform attribute 
selection. The technique can identify and compute attributes that are correlated or predictive of the class but 
uncorrelated with one another. Different from performing attributes selection in a logistic regression model, 
the CfsSubsetEval attribute selection in Weka is performed before building a model with the algorithm. The 
CfsSubsetEval attribute selection is based on the principle of “A good feature subset is one that contains features 
highly correlated with (predictive of) the class, yet uncorrelated with (not predictive of) each other”33. The entire 
data-driven ML technique, free from observers’ or experts’ opinions, is advantageous and meanwhile disadvan-
tageous. The analysis may avoid human bias or observer bias. However, it was the nature of our database that 
yielded such results. The results of a completely data-driven study, such as this study, may not be applicable to 
other populations and further external validation may be needed. It is unlikely to utilize a single method to fit all 
circumstances. The choice of algorithms or models may depend on the nature of a particular dataset (population 
with different clinical characteristics) or the goals of a desired model. Still, we provided a potential methodology 
for constructing predictive models by using ML techniques.

This study also has limitations. First, our study was a retrospective study, and data of long-term follow up are 
not included in the TNN database. We only collected data from Taiwan and thus data relating to other popula-
tions were not available. Due to confidentiality of patient information and the policy of data collection from 
TNN, the GA was presented only in completed weeks and the BW was presented only in 100 g bins. Therefore, 
the z scores could not be calculated. We used IBM SPSS Statistics 25 to examine the collinearity between GA 
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and BW. The variance inflation factors were examined and indicated no significant collinearity that needs to 
be corrected. However, when we performed collinearity diagnosis, the condition index showed moderate col-
linearity. This different results might be due to the nature of our database, that we only have complete GA and 
categorized BW (per 100 g). This is a limitation of our database. Despite the fact that BW and GA may have 
mild to moderate collinearity, the software-based attribute selection by Weka did not exclude any of the two 
variables. Moreover, BW and GA were a well-known important risk factor when predicting BPD. We therefore 
did not exclude any of the two variables in our models. In addition, we excluded infants who were discharged 
before 36 weeks’ PMA because we did not have the respiratory support data at discharge for infants from before 
2018. In Taiwan, our clinical experience suggests that an infant who can be discharged before 36 weeks’ PMA is 
more likely to not have BPD or have BPD of lower severity (e.g., mild BPD). Thus, the severity of BPD may have 
been overestimated in our cohort. We predicted BPD in infants’ early life at the outset. However, some of the 
risk factors that are reportedly associated with BPD were not included in our study, such as a maternal history of 
smoking or the presentation or treatment of patent ductus arteriosus or severe intraventricular hemorrhage34–36. 
Finally, external validation was not performed in our study.

The predictive models developed in our study exhibited promising performance and external validation is 
necessary in the future. Moreover, the association between our predictions and the infants’ actual long-term 
outcomes must also be evaluated and discussed in the future.

Conclusions
This study developed prediction models to predict the probability of death or respiratory support at 36 week’s 
PMA from a preterm infant’s early-life characteristics. The logistic regression algorithm yielded the optimal per-
formance among all the algorithms. Estimators were developed for use in clinical applications after the models 
were simplified through attribute selection.

Data availability
According to the Taiwan Neonatal Network (TNN) Database Availability and Application Policy, although being 
anonymized and de-identified, the data are confidential. The data from TNN must only be available to individu-
als who have access for the authorized research. The data from this study are available from the corresponding 
author upon reasonable request.
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