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Static friction coefficient depends 
on the external pressure and block 
shape due to precursor slip
Wataru Iwashita  1*, Hiroshi Matsukawa  2 & Michio Otsuki  1

Amontons’ law states that the maximum static friction force on a solid object is proportional to the 
loading force and is independent of the apparent contact area. This law indicates that the static 
friction coefficient does not depend on the external pressure or object shape. Here, we numerically 
investigate the sliding motion of a 3D viscoelastic block on a rigid substrate using the finite element 
method (FEM). The macroscopic static friction coefficient decreases with an increase in the external 
pressure, length, or width of the object, which contradicts Amontons’ law. Precursor slip occurs in the 
2D interface between the block and substrate before bulk sliding. The decrease in the macroscopic 
static friction coefficient is scaled by the critical area of the precursor slip. A theoretical analysis of the 
simplified models reveals that bulk sliding results from the instability of the quasi-static precursor slip 
caused by velocity-weakening local friction. We also show that the critical slip area determines the 
macroscopic static friction coefficient, which explains the results of the FEM simulation.

A friction force prevents the relative sliding motion between two objects in contact. Friction plays a crucial role 
in various situations, such as the contact surface between the ground and the sole of a shoe, brakes and bearings 
in machines, and tectonic plates that cause earthquakes. Many studies on friction have been conducted, but the 
elucidation of the fundamental mechanism of friction is essential for science and technology1–7.

Amontons’ law states that the maximum static friction force on a solid object is independent of the apparent 
contact area and proportional to the load1–7. This law has been taught in high school physics textbooks and is 
believed to hold true for diverse systems. When the friction force obeys Amontons’ law, the friction coefficient, 
which is the ratio of the friction force to the loading force, does not depend on the pressure, size, or object shape. 
On a rough frictional interface with numerous asperities, only a tiny fraction of the surfaces forms junctions, the 
so-called real contact points. Amontons’ law is explained by the proportionality of the total area of real contact 
points to the loading force1–9.

The above explanation for the origin of Amontons’ law implicitly assumes uniformity of the stress field. There-
fore, Amontons’ law is not expected to hold if a macroscopic deformation exists. In fact, recent numerical studies 
have reported the breakdown of Amontons’ law in macroscopic viscoelastic objects10,11, revealing that it is related 
to local quasi-static precursor slips before the onset of bulk sliding owing to non-uniform deformation10–28. The 
relationship between precursor slips and the breakdown of Amontons’ law has been confirmed previously in an 
experiment with an acrylic glass block12. However, previous studies have only investigated systems with a 1D 
frictional interface. Friction usually occurs in 2D interfaces of 3D objects. However, it is not clear whether the 
results in previous studies apply to more realistic 3D systems.

In this study, we numerically investigate the sliding motion of a 3D viscoelastic object on a rigid substrate 
using the finite element method (FEM). The macroscopic static friction coefficient decreases with an increase in 
the pressure or size of the object. The precursor slip propagates in a 2D frictional interface. Bulk sliding occurs 
when the area of the precursor slip reaches a critical value, which determines the macroscopic static friction coef-
ficient. An analysis of the simplified models reveals that the instability of the precursor slip leads to bulk sliding.

Results
3D FEM simulation
We numerically investigate a viscoelastic block on a rigid substrate with width W, length L, and height H along 
the x-, y-, and z-axes, respectively, as shown in Fig. 1 (see Methods for details). The area of the frictional interface 
is denoted by A0 = LW . The density, Young’s modulus, and Poisson’s ratio of the block are denoted by ρ , E, and 
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ν , respectively. The dissipation in the block is characterized by two viscosity coefficients: η1 and η2 . We assume 
that Amontons’ law holds locally at the interface between the block and the rigid substrate ( z = 0 ), and the 
magnitude of the local frictional stress, σ (fric)(x, y) in the interface is locally determined as

where p(x, y) is the bottom pressure, and µ(v) is the friction coefficient, which depends on the magnitude of the 
local slip velocity v(x, y) when v(x, y)  = 0 29. Here, µ(v) is characterized by the characteristic velocity of velocity-
weakening friction vc and the local static and kinetic friction coefficients denoted by µS and µK (see Methods). 
The rigid rod quasi-statically pushes the center of the side surface along the y direction. The macroscopic friction 
force FT is measured as the force on the rigid rod in the y direction. The loading force applied to the top of the 
block is given by FN = PextA0 with the external pressure to the top surface Pext.

The ratio FT/FN is plotted against the displacement of the rigid rod U for L/H = 1 , W/H = 2 , and 
Pext/E = 0.006 in Fig. 2a. First, FT/FN increases linearly with U. After obtaining a maximum value lower than 
µS , FT/FN rapidly decreases to a value close to µK . This rapid drop is associated with bulk sliding. The significant 
drop after the linear increase periodically repeats itself. This periodic behavior corresponds to the stick-slip 
motion of the object. The maximum value of FT/FN represents the macroscopic static friction coefficient, µM . 
Figure 2b and c display the macroscopic static friction coefficient µM against pressure Pext for various L/H and 

(1)σ (fric)(x, y) = µ(v(x, y))p(x, y),
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Figure 1.   Schematic of a 3D viscoelastic block on a fixed rigid substrate.
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Figure 2.   (a) Ratio FT/FN against the displacement of the rigid rod U for L/H = 1 , W/H = 2 , and 
Pext/E = 0.006 . The red horizontal line represents the macroscopic static friction coefficient µM . 
(b) Macroscopic static friction coefficient µM against pressure Pext for various L/H values with W/H = 1 . The 
thin solid lines represent the analytical results with αA = 0.2 given by Eqs. (4) and (6). (c) Macroscopic static 
friction coefficient µM against Pext for various W/H values with L/H = 1 . The thin solid lines represent the 
analytical results with αB = 0.2 given by Eqs. (6) and (11). The dotted and dashed lines represent µS and µK , 
respectively.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2511  | https://doi.org/10.1038/s41598-023-29764-w

www.nature.com/scientificreports/

W/H values, respectively. The magnitude of µM decreases with increasing Pext , which is qualitatively consistent 
with the results for a system with a 1D friction interface10. The previous study reported the size dependence of 
µM while maintaining the aspect ratio L/H = 210, whereas Fig. 2b and c demonstrate that the friction coefficient 
µM also decreases with increasing aspect ratios L/H and W/H. These results indicate that Amontons’ law breaks 
down in systems with 2D interfaces.

Figure 3a shows the spatial distribution of the slip region with nonzero slip velocity in the frictional interface 
at z = 0 for U = U1,U2,U3 , and U4 shown in Fig. 2a. Here, we choose U1/L = 50× 10−3 , U2/L = 56× 10−3 , 
U3/L = 61.38× 10−3 , and U4/L = 62.71× 10−3 , which corresponds to the stationary stick-slip region. See 
Methods for the definition of the slip region. In Fig. 3a, the local precursor slip starts from the region under the 
rigid rod for U = U1 . As U increases ( U2 and U3 ), the region expands gradually. After U = U3 , the entire area 
slips with v > vc , resulting in bulk sliding. Note that the slip occurs almost along the y direction. Figure 3b shows 
the area of precursor slip A normalized by the area of frictional interface A0 against displacement U. First, the 
area of the precursor slip increases gradually with displacement U. When the area A reaches the critical area 
Ac just before bulk sliding (dotted line), the propagation speed of the area suddenly increases. Owing to rapid 
propagation, A reaches A0 and then returns to 0. We demonstrate the normalized critical area Ac/A0 against 
pressure Pext in Fig. 3c and d for various L/H values with W/H = 1 and for various W/H values with L/H = 1 , 
respectively. The normalized critical area Ac/A0 decreases as Pext , L/H, or W/H increases. This decrease is similar 
to that of µM in Fig. 2b and c, respectively.

In Fig. 4, we present the macroscopic friction coefficient µM against the normalized critical area Ac/A0 for 
various L/H and W/H values. The macroscopic friction coefficient µM for different L/H and W/H values approxi-
mately collapses onto a master curve, which indicates a linear increase in µM with Ac/A0 . The minimum value 
close to Ac/A0 = 0 is almost equal to µK , whereas the maximum value at Ac/A0 = 1 is equal to µS.

Figure 5 shows the spatial distribution of the ratio σ (fric)/p in the frictional interface for L/H = 1 , W/H = 2 , 
and Pext/E = 0.006 at U = U1,U2,U3 , and U4 . It should be noted that the direction of the frictional stress is 
almost opposite to the driving direction, that is, the y direction. In the no-slip region, the local static friction can 
take any value for 0 < σ(fric)/p < µS . Before the onset of precursor slip, that is, just after bulk sliding, σ (fric)/p 
takes a value almost equal to µK , the local kinetic friction coefficient, in the entire interface, as explained below. 
At U = U1 , σ (fric)/p reaches the local static friction coefficient, µS , near the rigid rod at (x/H , y/H) = (1, 0) . 
As the displacement U increases to U2 and U3 , the area with σ (fric)/p ≃ µS gradually increases. The region of 
σ (fric)/p ≃ µS coincides with the local precursor slip region in Fig. 3a. Except for the slip region, σ (fric)/p remains 
approximately at µK . Immediately after U3 , bulk sliding with v > vc occurs, and the fast slip leads to σ (fric)/p = µK 
at U4 . Bulk sliding rapidly decelerates, and the slip velocity v decreases to 0, when σ (fric)/p increases to µS in 
the frictional interface. However, the internal deformation is not able to follow the rapid change, and the ratio 
of static frictional stress to bottom pressure finally returns to σ (fric)/p ≃ µK after bulk sliding. Consequently, 
σ (fric)/p is almost equal to µK after bulk sliding. The macroscopic static friction coefficient µM is approximately 

(a) (b)

(c) (d)

Figure 3.   (a) Spatial distribution of the slip region in the frictional interface at U = U1,U2,U3 , and U4 for 
L/H = 1 , W/H = 2 , and Pext/E = 0.006 . The yellow area represents the slip region. The rigid rod is pushing 
the block at (x/H , y/H) = (1, 0) . (b) Normalized precursor slip area A/A0 against displacement U. The dotted 
line represents the normalized critical area Ac/A0 . (c) Normalized critical area Ac/A0 against pressure Pext for 
various L/H values with W/H = 1 . The thin solid lines represent the analytical results with αA = 0.2 given by 
Eq. (4). (d) Normalized critical area Ac/A0 against Pext for various W/H values with L/H = 1 . The thin solid 
lines represent the analytical results with αB = 0.2 given by Eq. (11).
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expressed by the average of σ (fric)/p over the entire frictional interface at U3 immediately before bulk sliding. 
This result explains the dependence of µM on Ac/A0 shown in Fig. 4, where µM approaches µS for Ac/A0 = 1.

Analysis based on simplified models
To theoretically analyze the numerical results, we employ two simplified models, which explain the dependence 
of µM on L/H and W/H (see Supplementary Note online for details).

Model for large L/H
To discuss the behavior of increasing L/H while maintaining W/H = 1 , we employ a 1D effective model, as 
shown in Fig. 6a. The slip region propagates along the y direction, as shown in the Supplementary Note and 
Supplementary Video S1. Therefore, in this model, the degrees of freedom in the z and x directions are neglected 
by assuming W/H ≪ L/H , and the deformation is characterized only by the y-dependent displacement in the 
y direction, uy(y, t) , at the interface z = 0 . We also assume a uniform bottom pressure Pext . The equation of 
motion is given by

Figure 4.   Macroscopic static friction coefficient µM against the normalized critical area Ac/A0 for various L/H 
and W/H values. The solid line represents the analytical result given by Eq. (6). The dotted and dashed lines 
represent µS and µK , respectively.

Figure 5.   Spatial distribution of the ratio of frictional stress to bottom pressure σ (fric)/p in the frictional 
interface for L/H = 1 , W/H = 2 , and Pext/E = 0.006 at U = U1,U2,U3 , and U4 . The rigid rod is pushing the 
block at (x/H , y/H) = (1, 0) . The white area represents the region with p = 0 due to the lift of the bottom.

(a) (b)

Figure 6.   Schematics of simplified models for (a) L/H ≫ 1 and (b) W/H ≫ 1.
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where üy and u̇y are the second- and first-order time derivatives of the displacement, respectively. Here, αA 
represents the effect of the block thickness and is treated as a fitting parameter. The normal stress σyy is given by

with the elastic constant E1 = E/{(1+ ν)(1− ν)} and viscous constant ηT = η1(η1 + 2η2)/(η1 + η2) in the 
plane stress state by considering the block as a thin plate (see Methods).

The quasi-static solution u(a)y (y) of Eqs. (2) and (3) with üy = u̇y = 0 is obtained analytically, where the precur-
sor slip area A increases with U (see Supplementary Note). A linear stability analysis reveals that the quasi-static 
solution becomes unstable, and bulk sliding occurs when A reaches the critical area Ac owing to the competition 
between velocity-weakening friction and viscosity. The critical area Ac satisfies

(see Supplementary Note). For Ac/A0 ≪ 1 , Eq. (4) yields

This equation indicates that the normalized critical area Ac/A0 decreases as L/H or Pext increases, which is con-
sistent with the FEM results shown in Fig. 3c. We plot Ac/A0 obtained from Eq. (4) as thin solid lines in Fig. 3c 
by choosing the fitting parameter αA = 0.2 to match the results of the FEM simulations. The analytical results 
semi-quantitatively reproduce the numerical results except for L/H = 1.

The quasi-static solution u(a)y (y) yields

This is consistent with the FEM simulations, as shown by the solid line in Fig. 4. For Ac/A0 ≪ 1 , substituting 
Eq. (5) into this equation, we obtain

This equation indicates that the macroscopic static friction coefficient µM decreases as Pext or L/H increases. We 
plot µM given by Eqs. (4) and (6) as thin solid lines in Fig. 2b, which semi-quantitatively reproduces the results 
of the FEM simulations except for L/H = 1.

In a previous study10, µM is obtained analytically as

for Ac/A0 ≪ 1 in a system with small L/H. Here, α is the fitting parameter. The power-law exponents in Eq. (8) 
for the dependence on Pext and L/H differ from those in Eq. (7). The present model assumes L/H ≫ 1 , which 
results in a uniform bottom pressure, as shown in the Supplementary Note. For a small L/H, the bottom pres-
sure increases along the driving direction owing to the torque effect10,21, and the analytical results deviate from 
those of FEM due to the non-uniform pressure as shown in Figs. 2b and 3c, which leads to different exponents 
from those in the present study.

Model for large W/H
To discuss the behavior of increasing W/H while maintaining L/H = 1 , we employ a 1D effective model, as shown 
in Fig. 6b. For W/H ≫ 1 , the slip region propagates along the x direction, as shown in Supplementary Note 
and Supplementary Video S2. Hence, in this model, we characterize the deformation only by the x-dependent 
displacement in the y direction, uy(x, t) , at the interface z = 0 by assuming L/H ≪ W/H . We also assume the 
rod size is sufficiently small and negligible. The equation of motion is given by

Here, αB represents the effect of the block thickness and is treated as a fitting parameter. The shear stress σxy is 
given by
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(9)ρüy(x, t) =
∂σxy(x, t)

∂x
−

µ(u̇y(x, t))Pext

αBH
.

(10)σxy = E2
∂uy

∂x
+

η1

2

∂ u̇y

∂x



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2511  | https://doi.org/10.1038/s41598-023-29764-w

www.nature.com/scientificreports/

with the elastic constant E2 = E/{2(1+ ν)} and the viscous constant η1/2 (see Methods).
The quasi-static solution u(a)y (x) is also obtained analytically, where the precursor slip area A increases with 

the value of U (see Supplementary Note). The linear stability analysis reveals that the precursor slip becomes 
unstable, and bulk sliding occurs when A reaches the critical area Ac satisfying

For Ac/A0 ≪ 1 , this equation yields

The power-law exponents for the pressure and aspect ratio are the same as those in Eq. (5). This equation indicates 
that Ac/A0 decreases as Pext or W/H increases. We plot Ac/A0 given by Eq. (11) as thin solid lines in Fig. 3d, 
which semi-quantitatively reproduces the results of the FEM analysis by choosing αB = 0.2 except for W/H = 1 . 
For small W/H, the size of the rod and the y-dependence of the displacement become relevant, which leads to 
the deviation between the numerical and theoretical results.

The macroscopic static friction coefficient µM is given by Eq. (6). For Ac/A0 ≪ 1 , substituting Eq. (12) into 
Eq. (6), we obtain

The macroscopic static friction coefficient µM decreases as Pext or W/H increases. The thin solid lines shown in 
Fig. 2c are given by Eqs. (6) and (11), and they semi-quantitatively reproduce the results of the FEM simulations 
except for W/H = 1.

Discussion
In this study, we numerically investigate the sliding motion of a 3D viscoelastic object using the FEM. The critical 
area of the precursor slip and macroscopic static friction coefficient decrease with an increase in the external pres-
sure, length, or width of the object. The analysis based on the simplified models reveals that the stability condition 
determines the critical area of the precursor slip owing to the competition between the velocity-weakening fric-
tion and viscosity. The analysis explains the dependence of macroscopic static friction in the FEM simulations.

In a previous study10, the aspect ratio of the system is fixed at L/H = 2 to investigate the size and load 
dependences of the precursor slip and the breakdown of Amontons’ law. For L/H = 2 , the nonuniformity of 
the bottom pressure is remarkable, which is considered to be the origin of the precursor slip and the breakdown 
of Amontons’ law. However, the present results with various aspect ratios show that the nonuniformity of shear 
stress also causes these behaviors without non-uniform pressure. Although the model considered in the previ-
ous study reproduces the results of systems with a smaller L/H better, the simplified model in this study is more 
appropriate for systems with a large L/H (see Supplementary Note).

The parameters for the FEM simulations employed here are those of a virtual material, and different from 
those of poly methyl methacrylate (PMMA) employed in experiments12,15. We choose them to compare our 
results with the 2D simulations of previous studies10 and to reduce the computational load (see Methods). It also 
should be noted that the driving rod employed in experiments is hard but has finite stiffness, which is different 
from the rigid rod used in this study. The effect of the finite stiffness of the driving rod is considered to be small 
because it is taken into account as a deformation of the viscoelastic block around the driving point. In addition, 
we have ignored the aging effect7 in the local friction model because a previous experiment using PMMA15 
indicates that the time scale of the aging is larger than that of the stick of the macroscopic stick-slip motion. The 
difference in the parameters, the driving method, and the local friction model may affect our results. However, 
FEM simulations employing similar parameters semi-quantitatively reproduce the external pressure dependence 
of the macroscopic static friction coefficient obtained in the experiment using PMMA12. The dependence of the 
macroscopic static friction coefficient on the aspect ratio for PMMA is also considered to be consistent with our 
present results. The dependence on material parameters, the driving methods, and the local friction model will 
be investigated in future work.

The dependence of the static and kinetic friction coefficients on the pressure or block shape has been studied 
in experiments using rubber blocks30–32. The results of these experiments are partially consistent with ours, but 
there is a difference in the dependence on the aspect ratio. In these experiments, the methods to change the 
aspect ratio and drive the block differ from those used in this study. For the rubber block, the local Amontons’ 
law used in this study may not be applicable because the real contact area can become comparable to the appar-
ent contact area, which contradicts the assumption of the Amontons’ law. We need further investigations to 
determine the origin of the difference.

Recent numerical simulations of spring-block models have shown that the friction coefficient changes with 
the geometric pattern of the frictional interface33–36. However, our results indicate that an object shape can also 
control the macroscopic static friction coefficient. This might lead to new insights into methods for controlling 
friction in various objects, including shoe soles and tires.

Precursor slip has been investigated experimentally for the sliding motion of PMMA blocks based on fracture 
mechanics26,37–41. Such a precursor slip is related to pre-earthquakes that occur a few days or months before a 
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major earthquake42–44, which are studied using frictional spring-block models45. However, these studies have 
focused on 1D frictional interfaces or discrete models, which differ from 2D friction interfaces in more real-
istic systems. Our results for a 3D system with a 2D interface will provide new insights into the precursor slip 
observed in realistic situations.

Methods
Setting of system
The equation of motion for a viscoelastic body is given by

with displacement u , stress σ , and second-order time derivative ü of displacement. The stress σ is given by the 
sum of the elastic stress σ (E) obeying Hooke’s law and the viscous stress σ (V) , which is proportional to the strain 
rate. We assume that the viscoelastic body is isotropic. The elastic stress tensor σ (E)

ij  is given by

with the Kronecker delta δij and the strain tensor εij . The viscous stress tensor σ (V)
ij  is given by

with the strain rate tensor ε̇ij46. The boundary conditions for the top surface at z = H are σzz = −Pext and 
σzx = σzy = 0 . At the free surface for x = 0,W  or y = 0, L , we assume σ · n = 0 with the normal vector n of 
the surface. The boundary conditions at the contact surface with a rigid rod ( y = 0 ) are given by σyx = σyz = 0 
and u̇y = Vrod , where u̇y is the velocity in the y direction and Vrod is the velocity of rigid rod. At the bottom of 
the block ( z = 0 ) in contact with a rigid substrate, the bottom pressure p = −σzz is determined such that the 
displacement uz in the z direction is 0. However, the bottom pressure is limited to p ≥ 0 . The region of the bottom 
surface with uz > 0 and p = 0 becomes a free surface with σ · n = 0 . The boundary condition in the tangential 
direction at the bottom with p > 0 is given by

with the tangential stress vector t(x, y) = (σzx , σzy) , local slip velocity vector v(x, y) = (u̇x , u̇y) , velocity u̇x in 
the x direction, and velocity u̇y in the y direction. The direction of the frictional stress is opposite to that of the 
local slip velocity. Frictional stress is defined as σ (fric)(x, y) = |t| . The slip velocity is defined as v(x, y) = |v(x, y)|.

The frictional stress σ (fric) is given by Eq. (1). In the case v(x, y) = 0 , the frictional stress is balanced with the 
local shear stress, where the maximum magnitude of the former is given by µSp(x, y) . The local friction coef-
ficient µ(v) linearly decreases from µS to µK for 0 < v ≤ vc and µK for v > vc . Amontons’ law is expected to 
hold locally if the local region considered in the frictional interface contains a sufficiently large number of real 
contact points and has negligibly small spatial variations in internal stress8,9,47.

To treat static friction in the numerical simulation, we introduce a small velocity scale ve . The local friction 
coefficient µ(v) is given by

We consider the limit ve → +0 . The region with 0 ≤ v ≤ ve corresponds to static friction. The slip area A is 
defined as the region with v > ve.

Details of 3D FEM simulation
The viscoelastic block is divided into cubes with length �x consisting of six tetrahedra. The displacements and 
velocities within each element are approximated using a linear interpolation. We choose the characteristic veloc-
ity ve/Vrod = 2.5× 10−2 such that ve/Vrod ≪ 1 is satisfied. In the FEM simulations, we select �x/H = 1/40 , 
�t/(H

√
ρ/E) ≈ 10−6 , where �t is a time step, and Vrod

√
ρ/E = 2.83× 10−5 . We have confirmed that the 

numerical results do not change, even if we use smaller values.
First, we apply an external uniform pressure Pext to the top surface and relax the system to an equilibrium 

state. After relaxation, the center of the side surface (x, y, z) = (W/2, 0,H/2) is pushed along the y direction by 
a rigid rod from time t = 0 with a sufficiently slow speed Vrod . The displacement of the rigid rod is denoted by 
U(t) = Vrodt . The length of one side of a rigid square rod is 0.1H, and the height of its center from the bottom 
is 0.5H.

Details of analysis based on simplified models
Model for large L/H: The second term on the right-hand side of Eq. (2) represents local friction. Here, we 
assume a constant bottom pressure given by Pext , which is verified in the FEM simulations for L/H ≫ 1 as 
shown in the Supplementary Note and Supplementary Video S1. The local friction coefficient µ is expressed as 
a function of v = |u̇y| . Note that 0 ≤ µ ≤ µS when v = 0 . The boundary conditions are ∂uy(y = L, t)/∂y = 0 
and uy(y = 0, t) = U(t) . In our analysis, we set the origin of U immediately after the bulk sliding and assume 
that the ratio of the frictional stress to Pext is equal to µK at U = 0.

(14)ρü = ∇ · σ

(15)σ
(E)
ij =

E

1+ ν
εij +

νE

(1+ ν)(1− 2ν)
εkkδij

(16)σ
(V)
ij = η1 ε̇ij + η2 ε̇kkδij

(17)t = −v/v µ(v)p

(18)µ(v) =
{

µS v/ve, 0 ≤ v ≤ ve
µS − (µS − µK)v/vc, ve < v < vc
µK, v ≥ vc

.
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Model for large W/H: The second term on the right-hand side of Eq. (9) represents the friction. The bottom 
pressure is almost independent of x in the FEM simulations, as shown in the Supplementary Note and Supple-
mentary Video S2. Therefore, we assume a constant bottom pressure given by Pext . The boundary conditions are 
∂uy(|x| = W/2, t)/∂x = 0 and uy(x = 0, t) = U(t).

Parameters
The parameters for the viscoelastic object are chosen as ν = 0.34 , η1/(H

√
ρE) = 1.41 , and η2/η1 = 1 , whereas we 

set the parameters for the friction as µS = 0.38 , µK = 0.1 , and vc
√
ρ/E = 4.81× 10−4 , following previous FEM 

simulations10. These values are different from those adopted for the experiment using PMMA10,12. The parameters 
for the PMMA blocks12 are estimated as L/H = 5 , W/H = 0.25 , Pext/E ≈ 3× 10−4 , ν = 0.4 , µS = 1.2 , and 
µK = 0.2 , and much smaller vc

√
ρ/E and η1/(H

√
ρE) are used in the previous study10.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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