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Static friction coefficient depends
on the external pressure and block
shape due to precursor slip

Wataru Iwashita®**, Hiroshi Matsukawa®? & Michio Otsuki®?

Amontons’ law states that the maximum static friction force on a solid object is proportional to the
loading force and is independent of the apparent contact area. This law indicates that the static
friction coefficient does not depend on the external pressure or object shape. Here, we numerically
investigate the sliding motion of a 3D viscoelastic block on a rigid substrate using the finite element
method (FEM). The macroscopic static friction coefficient decreases with an increase in the external
pressure, length, or width of the object, which contradicts Amontons’ law. Precursor slip occurs in the
2D interface between the block and substrate before bulk sliding. The decrease in the macroscopic
static friction coefficient is scaled by the critical area of the precursor slip. A theoretical analysis of the
simplified models reveals that bulk sliding results from the instability of the quasi-static precursor slip
caused by velocity-weakening local friction. We also show that the critical slip area determines the
macroscopic static friction coefficient, which explains the results of the FEM simulation.

A friction force prevents the relative sliding motion between two objects in contact. Friction plays a crucial role
in various situations, such as the contact surface between the ground and the sole of a shoe, brakes and bearings
in machines, and tectonic plates that cause earthquakes. Many studies on friction have been conducted, but the
elucidation of the fundamental mechanism of friction is essential for science and technology'~’.

Amontons’ law states that the maximum static friction force on a solid object is independent of the apparent
contact area and proportional to the load!™. This law has been taught in high school physics textbooks and is
believed to hold true for diverse systems. When the friction force obeys Amontons’ law, the friction coefficient,
which is the ratio of the friction force to the loading force, does not depend on the pressure, size, or object shape.
On a rough frictional interface with numerous asperities, only a tiny fraction of the surfaces forms junctions, the
so-called real contact points. Amontons’ law is explained by the proportionality of the total area of real contact
points to the loading force'~.

The above explanation for the origin of Amontons’ law implicitly assumes uniformity of the stress field. There-
fore, Amontons’ law is not expected to hold if a macroscopic deformation exists. In fact, recent numerical studies
have reported the breakdown of Amontons’ law in macroscopic viscoelastic objects!®!!, revealing that it is related
to local quasi-static precursor slips before the onset of bulk sliding owing to non-uniform deformation'*-?%, The
relationship between precursor slips and the breakdown of Amontons’ law has been confirmed previously in an
experiment with an acrylic glass block'?. However, previous studies have only investigated systems with a 1D
frictional interface. Friction usually occurs in 2D interfaces of 3D objects. However, it is not clear whether the
results in previous studies apply to more realistic 3D systems.

In this study, we numerically investigate the sliding motion of a 3D viscoelastic object on a rigid substrate
using the finite element method (FEM). The macroscopic static friction coefficient decreases with an increase in
the pressure or size of the object. The precursor slip propagates in a 2D frictional interface. Bulk sliding occurs
when the area of the precursor slip reaches a critical value, which determines the macroscopic static friction coef-
ficient. An analysis of the simplified models reveals that the instability of the precursor slip leads to bulk sliding.

Results

3D FEM simulation

We numerically investigate a viscoelastic block on a rigid substrate with width W, length L, and height H along
the x-, y-, and z-axes, respectively, as shown in Fig. 1 (see Methods for details). The area of the frictional interface
is denoted by Ag = LW. The density, Young’s modulus, and Poisson’s ratio of the block are denoted by p, E, and
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Rigid rod Friction force

Figure 1. Schematic of a 3D viscoelastic block on a fixed rigid substrate.

v, respectively. The dissipation in the block is characterized by two viscosity coefficients: n; and 77,. We assume
that Amontons’ law holds locally at the interface between the block and the rigid substrate (z = 0), and the
magnitude of the local frictional stress, o M9 (x, y) in the interface is locally determined as

o (frio) x%,y) = n(v(x,»))px, y), W

where p(x, y) is the bottom pressure, and u(v) is the friction coefficient, which depends on the magnitude of the
local slip velocity v(x, y) when v(x, y) # 0%. Here, u(v) is characterized by the characteristic velocity of velocity-
weakening friction v, and the local static and kinetic friction coeflicients denoted by js and puk (see Methods).
The rigid rod quasi-statically pushes the center of the side surface along the y direction. The macroscopic friction
force Fris measured as the force on the rigid rod in the y direction. The loading force applied to the top of the
block is given by FN = PextAg with the external pressure to the top surface Peyt.

The ratio Fr/Fy is plotted against the displacement of the rigid rod U for L/H =1, W/H = 2, and
Pext/E = 0.006 in Fig. 2a. First, Fp/Fy increases linearly with U. After obtaining a maximum value lower than
s, Fr/Fx rapidly decreases to a value close to uk. This rapid drop is associated with bulk sliding. The significant
drop after the linear increase periodically repeats itself. This periodic behavior corresponds to the stick-slip
motion of the object. The maximum value of Fy/Fy represents the macroscopic static friction coeflicient, .
Figure 2b and ¢ display the macroscopic static friction coeflicient u against pressure Pey for various L/H and
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Figure 2. (a) Ratio Fr/Fy against the displacement of the rigid rod U for L/H = 1, W/H = 2,and

Pext/E = 0.006. The red horizontal line represents the macroscopic static friction coefficient (.

(b) Macroscopic static friction coeflicient j)f against pressure Pey; for various L/H values with W/H = 1. The
thin solid lines represent the analytical results with o o = 0.2 given by Eqs. (4) and (6). (¢) Macroscopic static
friction coefficient j4\ against Pext for various W/H values with L/H = 1. The thin solid lines represent the
analytical results with o g = 0.2 given by Egs. (6) and (11). The dotted and dashed lines represent j1s and 1k,
respectively.
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W/H values, respectively. The magnitude of j1p decreases with increasing Pey, which is qualitatively consistent
with the results for a system with a 1D friction interface'®. The previous study reported the size dependence of
pm while maintaining the aspect ratio L/H = 2'°, whereas Fig. 2b and ¢ demonstrate that the friction coefficient
pm also decreases with increasing aspect ratios L/H and W/H. These results indicate that Amontons’ law breaks
down in systems with 2D interfaces.

Figure 3a shows the spatial distribution of the slip region with nonzero slip velocity in the frictional interface
at z = 0 for U = Uy, Uy, Us, and Uy shown in Fig. 2a. Here, we choose U; /L = 50 x 1073, U, /L = 56 x 1073,
Us/L = 61.38 x 1073, and Us/L = 62.71 x 107>, which corresponds to the stationary stick-slip region. See
Methods for the definition of the slip region. In Fig. 3a, the local precursor slip starts from the region under the
rigid rod for U = U. As U increases (U, and Us), the region expands gradually. After U = Us, the entire area
slips with v > v, resulting in bulk sliding. Note that the slip occurs almost along the y direction. Figure 3b shows
the area of precursor slip A normalized by the area of frictional interface A( against displacement U. First, the
area of the precursor slip increases gradually with displacement U. When the area A reaches the critical area
A just before bulk sliding (dotted line), the propagation speed of the area suddenly increases. Owing to rapid
propagation, A reaches Ag and then returns to 0. We demonstrate the normalized critical area A./A against
pressure Pey in Fig. 3¢ and d for various L/H values with W/H = 1and for various W/H values with L/H = 1,
respectively. The normalized critical area A./Aq decreases as Pext, L/H, or W/H increases. This decrease is similar
to that of uy in Fig. 2b and ¢, respectively.

In Fig. 4, we present the macroscopic friction coefficient u against the normalized critical area A /A for
various L/H and W/H values. The macroscopic friction coefficient j) for different L/H and W/H values approxi-
mately collapses onto a master curve, which indicates a linear increase in 1y with Ac/Ag. The minimum value
close to Ac/Ap = 0is almost equal to ;tk, whereas the maximum value at Ac /Ao = 1is equal to us.

Figure 5 shows the spatial distribution of the ratio o {19 /p in the frictional interface for L/H = 1, W/H = 2,
and Pey /E = 0.006 at U = Uy, Us, Us, and Uy. It should be noted that the direction of the frictional stress is
almost opposite to the driving direction, that is, the y direction. In the no-slip region, the local static friction can
take any value for 0 < o @9 /5 < 5. Before the onset of precursor slip, that is, just after bulk sliding, o @o) /p
takes a value almost equal to ik, the local kinetic friction coeflicient, in the entire interface, as explained below.
AtU = U, o (o) /p reaches the local static friction coefficient, s, near the rigid rod at (x/H, y/H) = (1,0).
As the displacement U increases to U and U, the area with o9 /p ~ ug gradually increases. The region of
o119 /p ~ 5 coincides with the local precursor slip region in Fig. 3a. Except for the slip region, o (ri®) / ;7 remains
approximately at ;tx. Immediately after Us, bulk sliding with v > v, occurs, and the fast SliF’ leads to o9 /p = g
at Uy. Bulk sliding rapidly decelerates, and the slip velocity v decreases to 0, when o /p increases to s in
the frictional interface. However, the internal deformation is not able to follow the rapid change, and the ratio
of static frictional stress to bottom pressure finally returns to o9 /p ~ 1y after bulk sliding. Consequently,
o () /p is almost equal to uux after bulk sliding. The macroscopic static friction coefficient pu is approximately
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Figure 3. (a) Spatial distribution of the slip region in the frictional interface at U = Uy, Uy, Us, and Uy for
L/H = 1,W/H = 2, and Pext/E = 0.006. The yellow area represents the slip region. The rigid rod is pushing
the block at (x/H, y/H) = (1,0). (b) Normalized precursor slip area A/A against displacement U. The dotted
line represents the normalized critical area A./Ay. (c) Normalized critical area A./A against pressure Pex for
various L/H values with W /H = 1. The thin solid lines represent the analytical results with @ o = 0.2 given by
Eq. (4). (d) Normalized critical area A /A against Pey for various W/H values with L/H = 1. The thin solid
lines represent the analytical results with « 3 = 0.2 given by Eq. (11).
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Figure 4. Macroscopic static friction coefficient u against the normalized critical area A, /A for various L/H
and W/H values. The solid line represents the analytical result given by Eq. (6). The dotted and dashed lines
represent us and g, respectively.
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Figure 5. Spatial distribution of the ratio of frictional stress to bottom pressure o ) /p in the frictional
interface for L/H = 1, W/H = 2, and Pext/E = 0.006 at U = Uy, Uy, Us, and Uy. The rigid rod is pushing the
block at (x/H, y/H) = (1,0). The white area represents the region with p = 0 due to the lift of the bottom.

expressed by the average of o () /p over the entire frictional interface at U; immediately before bulk sliding.
This result explains the dependence of jup on Ac/Ag shown in Fig. 4, where )\ approaches s for Ac/Ag = 1.

Analysis based on simplified models
To theoretically analyze the numerical results, we employ two simplified models, which explain the dependence
of um on L/H and W/H (see Supplementary Note online for details).

Model for large L/H

To discuss the behavior of increasing L/H while maintaining W/H = 1, we employ a 1D effective model, as
shown in Fig. 6a. The slip region propagates along the y direction, as shown in the Supplementary Note and
Supplementary Video S1. Therefore, in this model, the degrees of freedom in the z and x directions are neglected
by assuming W/H < L/H, and the deformation is characterized only by the y-dependent displacement in the
y direction, u, (y, t), at the interface z = 0. We also assume a uniform bottom pressure Pex. The equation of
motion is given by

(@) 1D viscoelastic (b) =z v
block y T&x ;1 1D viscoelastic block
Wy i y/4
T&x
H H Frictional
Y Frictional ” ‘ = interface
0 interface —z 0 7
Moving slowly with constant velocity. Moving slowly with constant velocity.

Figure 6. Schematics of simplified models for (a) L/H > land (b) W/H > 1

Scientific Reports|  (2023) 13:2511 | https://doi.org/10.1038/s41598-023-29764-w nature portfolio



www.nature.com/scientificreports/

3ny(y, t) _ /'L(i’y(ys £))Pext )
3}/ OlAH ’ ( )

pity(y,t) =

where i, and i1, are the second- and first-order time derivatives of the displacement, respectively. Here, a 5
represents the effect of the block thickness and is treated as a fitting parameter. The normal stress oy, is given by

00) = By oy O

oy (y,t) = E; — —

yy Ei5 y Ty €)
with the elastic constant E; = E/{(1 + v)(1 — v)} and viscous constant n = n1(n1 + 212)/(n1 + 12) in the
plane stress state by con51der1ng the block as a thin plate (see Methods)

The quasi-static solution uy (y) of Egs. (2) and (3) with i1, = i1, = 01is obtained analytically, where the precur-
sor slip area A increases with U (see Supplementary Note). A linear stability analysis reveals that the quasi-static
solution becomes unstable, and bulk sliding occurs when A reaches the critical area Ac owing to the competition
between velocity-weakening friction and viscosity. The critical area A, satisfies

A A\ ! — UK)Pext L2
T[ZTIT(XS) +2ﬂL\/PT‘31(A*:> :(Ms K ) Pext @)

veaaH

(see Supplementary Note). For A./Ap < 1, Eq. (4) yields

_1 _1 _
Ac ps =\ 2 (PexH\ 72 (L7
— o~ = . (5)
Ao A nTve H
This equation indicates that the normalized critical area A, /Ao decreases as L/H or Pey increases, which is con-
sistent with the FEM results shown in Fig. 3c. We plot A./A( obtained from Eq. (4) as thin solid lines in Fig. 3¢
by choosing the fitting parameter o 4 = 0.2 to match the results of the FEM simulations. The analytical results

semi-quantitatively reproduce the numerical results except for L/H = 1.
The quasi-static solution uy (y) yields

Ac
UM = uxK + (s — MK);- (6)
0

This is consistent with the FEM simulations, as shown by the solid line in Fig. 4. For A./A( < 1, substituting
Eq. (5) into this equation, we obtain

1

1 1 (PegH\ 2/ L\ 7}

MM—MKZN(Ms—uK)Zai(L) (*) . 7)
ntve H

This equation indicates that the macroscopic static friction coefficient 1)1 decreases as Pey or L/H increases. We
plot pum given by Egs. (4) and (6) as thin solid lines in Fig. 2b, which semi-quantitatively reproduces the results
of the FEM simulations except for L/H = 1.

In a previous study'?, 1) is obtained analytically as

1 2
~ Yigh(Peel) 2L (8)
BN B S (s = o o

for Ac/Ag < 1in a system with small L/H. Here, « is the fitting parameter. The power-law exponents in Eq. (8)
for the dependence on Pey and L/H differ from those in Eq. (7). The present model assumes L/H >> 1, which
results in a uniform bottom pressure, as shown in the Supplementary Note. For a small L/H, the bottom pres-
sure increases along the driving direction owing to the torque effect'®?!, and the analytical results deviate from
those of FEM due to the non-uniform pressure as shown in Figs. 2b and 3c, which leads to different exponents
from those in the present study.

Model for large W/H

To discuss the behavior of increasing W/H while maintaining L/H = 1, we employ a 1D effective model, as shown
in Fig. 6b. For W/H >> 1, the slip region propagates along the x direction, as shown in Supplementary Note
and Supplementary Video S2. Hence, in this model, we characterize the deformation only by the x-dependent
displacement in the y direction, u, (x, t), at the interface z = 0 by assuming L/H <« W /H. We also assume the
rod size is sufficiently small and negligible. The equation of motion is given by

aaxy(x) t) _ M(ay(% £)) Pext
0x agH ’

piy(x, t) = ©)
Here, a g represents the effect of the block thickness and is treated as a fitting parameter. The shear stress oy, is
given by

Buy m Buy

=E—+ ——— 10
Ty 28x+28x (10)
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with the elastic constant E; = E/{2(1 + v)} and the viscous constant 1, /2 (see Methods).

The quasi-static solution u," (x) is also obtained analytically, where the precursor slip area A increases with
the value of U (see Supplementary Note). The linear stability analysis reveals that the precursor slip becomes
unstable, and bulk sliding occurs when A reaches the critical area A satisfying

A\ 2 A\ ! — UK) Py W2
27%m <A—C) +47tW\/pE2<A—C> = M (11)
0 0

veagH

For A./A¢ < 1, this equation yields

_1 _1 _

Ac s —uK\ "2 (PecH\ 2 (W

— o~ — . (12)

Ao B 2mve H
The power-law exponents for the pressure and aspect ratio are the same as those in Eq. (5). This equation indicates
that A. /Ao decreases as Pext or W/H increases. We plot A. /A given by Eq. (11) as thin solid lines in Fig. 3d,
which semi-quantitatively reproduces the results of the FEM analysis by choosing o g = 0.2 except for W/H = 1.
For small W/H, the size of the rod and the y-dependence of the displacement become relevant, which leads to
the deviation between the numerical and theoretical results.

The macroscopic static friction coefficient 1 is given by Eq. (6). For Ac/Ap < 1, substituting Eq. (12) into
Eq. (6), we obtain

1
1 L (PegH\ 72 (W
— ~ 7 — ol — . (13)
UM — UK (s — ux) aB<2mvc I

The macroscopic static friction coefficient py decreases as Peyt or W/H increases. The thin solid lines shown in
Fig. 2c are given by Egs. (6) and (11), and they semi-quantitatively reproduce the results of the FEM simulations
exceptfor W/H = L

Discussion

In this study, we numerically investigate the sliding motion of a 3D viscoelastic object using the FEM. The critical
area of the precursor slip and macroscopic static friction coeflicient decrease with an increase in the external pres-
sure, length, or width of the object. The analysis based on the simplified models reveals that the stability condition
determines the critical area of the precursor slip owing to the competition between the velocity-weakening fric-
tion and viscosity. The analysis explains the dependence of macroscopic static friction in the FEM simulations.

In a previous study'’, the aspect ratio of the system is fixed at L/H = 2 to investigate the size and load
dependences of the precursor slip and the breakdown of Amontons’ law. For L/H = 2, the nonuniformity of
the bottom pressure is remarkable, which is considered to be the origin of the precursor slip and the breakdown
of Amontons’ law. However, the present results with various aspect ratios show that the nonuniformity of shear
stress also causes these behaviors without non-uniform pressure. Although the model considered in the previ-
ous study reproduces the results of systems with a smaller L/H better, the simplified model in this study is more
appropriate for systems with a large L/H (see Supplementary Note).

The parameters for the FEM simulations employed here are those of a virtual material, and different from
those of poly methyl methacrylate (PMMA) employed in experiments'>!*. We choose them to compare our
results with the 2D simulations of previous studies'® and to reduce the computational load (see Methods). It also
should be noted that the driving rod employed in experiments is hard but has finite stiffness, which is different
from the rigid rod used in this study. The effect of the finite stiffness of the driving rod is considered to be small
because it is taken into account as a deformation of the viscoelastic block around the driving point. In addition,
we have ignored the aging effect” in the local friction model because a previous experiment using PMMA®?
indicates that the time scale of the aging is larger than that of the stick of the macroscopic stick-slip motion. The
difference in the parameters, the driving method, and the local friction model may affect our results. However,
FEM simulations employing similar parameters semi-quantitatively reproduce the external pressure dependence
of the macroscopic static friction coefficient obtained in the experiment using PMMA!2. The dependence of the
macroscopic static friction coefficient on the aspect ratio for PMMA is also considered to be consistent with our
present results. The dependence on material parameters, the driving methods, and the local friction model will
be investigated in future work.

The dependence of the static and kinetic friction coefficients on the pressure or block shape has been studied
in experiments using rubber blocks**-*%. The results of these experiments are partially consistent with ours, but
there is a difference in the dependence on the aspect ratio. In these experiments, the methods to change the
aspect ratio and drive the block differ from those used in this study. For the rubber block, the local Amontons’
law used in this study may not be applicable because the real contact area can become comparable to the appar-
ent contact area, which contradicts the assumption of the Amontons’ law. We need further investigations to
determine the origin of the difference.

Recent numerical simulations of spring-block models have shown that the friction coeflicient changes with
the geometric pattern of the frictional interface®*-**. However, our results indicate that an object shape can also
control the macroscopic static friction coefficient. This might lead to new insights into methods for controlling
friction in various objects, including shoe soles and tires.

Precursor slip has been investigated experimentally for the sliding motion of PMMA blocks based on fracture
mechanics?®*7~*!. Such a precursor slip is related to pre-earthquakes that occur a few days or months before a
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major earthquake*~*, which are studied using frictional spring-block models*. However, these studies have

focused on 1D frictional interfaces or discrete models, which differ from 2D friction interfaces in more real-
istic systems. Our results for a 3D system with a 2D interface will provide new insights into the precursor slip
observed in realistic situations.

Methods
Setting of system
The equation of motion for a viscoelastic body is given by

pii=V 0o (14)

with displacement u, stress o, and second-order time derivative it of displacement. The stress ¢ is given by the
sum of the elastic stress o () obeying Hooke’s law and the viscous stress o V), which is proportional to the strain
rate. We assume that the viscoelastic body is isotropic. The elastic stress tensor o;; ~ is given by

(E) E vE
o = &ij + —
1+v 14+v)(1-2v)

ekkbij (15)

with the Kronecker delta §;; and the strain tensor &;;. The viscous stress tensor cri](y) is given by
\4 . .
ai; ) = N1 &ij + N2 Exkdij (16)
with the strain rate tensor éij46. The boundary conditions for the top surface at z = H are 0, = —Peyt and

Oz = 0z = 0. At the free surface for x = 0, W or y = 0, L, we assume ¢ - n = 0 with the normal vector n of
the surface. The boundary conditions at the contact surface with a rigid rod (y = 0) are given by oy = 05, =0
and i1, = V4, where 11y, is the velocity in the y direction and Viq is the velocity of rigid rod. At the bottom of
the block (z = 0) in contact with a rigid substrate, the bottom pressure p = —o,; is determined such that the
displacement u; in the z direction is 0. However, the bottom pressure is limited to p > 0. The region of the bottom
surface with u; > 0and p = 0 becomes a free surface with ¢ - n = 0. The boundary condition in the tangential
direction at the bottom with p > 01is given by

t=—v/vup (17)

with the tangential stress vector £(x, y) = (0zx, 0zy), local slip velocity vector v(x,y) = (i, ity), velocity ity in
the x direction, and velocity i, in the y direction. The direction of the frictional stress is opposite to that of the
local slip velocity. Frictional stress is defined as o {0 y) = |t|. The slip velocity is defined as v(x, y) = |v(x, y)|

The frictional stress o i©) is given by Eq. (1). In the case v(x, y) = 0, the frictional stress is balanced with the
local shear stress, where the maximum magnitude of the former is given by usp(x, y). The local friction coef-
ficient ¢ (v) linearly decreases from s to g for 0 < v < v and puk for v > v.. Amontons’ law is expected to
hold locally if the local region considered in the frictional interface contains a sufficiently large number of real
contact points and has negligibly small spatial variations in internal stress®**".

To treat static friction in the numerical simulation, we introduce a small velocity scale ve. The local friction
coefficient u(v) is given by

UsV/Ves 0<v=<ve
uw) = q pus — (Us — UKIV/Ve, Ve <V < V¢ . (18)
MUK V=V

We consider the limit ve — +0. The region with 0 < v < v, corresponds to static friction. The slip area A is
defined as the region with v > ve.

Details of 3D FEM simulation

The viscoelastic block is divided into cubes with length Ax consisting of six tetrahedra. The displacements and
velocities within each element are approximated using a linear interpolation. We choose the characteristic veloc-
ity ve/Viod = 2.5 x 1072 such that ve/Vyoq < 11is satisfied. In the FEM simulations, we select Ax/H = 1/40,
At/(H/p/E) = 107°, where At is a time step, and V;og+/p/E = 2.83 x 107>, We have confirmed that the
numerical results do not change, even if we use smaller values.

First, we apply an external uniform pressure Py to the top surface and relax the system to an equilibrium
state. After relaxation, the center of the side surface (x, y, z) = (W /2,0, H/2) is pushed along the y direction by
a rigid rod from time t = 0 with a sufficiently slow speed V4. The displacement of the rigid rod is denoted by
U(t) = Vioqt. The length of one side of a rigid square rod is 0.1H, and the height of its center from the bottom
is 0.5H.

Details of analysis based on simplified models

Model for large L/H: The second term on the right-hand side of Eq. (2) represents local friction. Here, we
assume a constant bottom pressure given by Pey, which is verified in the FEM simulations for L/H > 1as
shown in the Supplementary Note and Supplementary Video S1. The local friction coefficient p is expressed as
a function of v = iz, |. Note that 0 < u < j15 when v = 0. The boundary conditions are du,(y = L,t)/dy =0
and u,(y = 0,t) = U(#). In our analysis, we set the origin of U immediately after the bulk sliding and assume
that the ratio of the frictional stress to Pey; is equal to ug at U = 0.
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Model for large W/H: The second term on the right-hand side of Eq. (9) represents the friction. The bottom
pressure is almost independent of x in the FEM simulations, as shown in the Supplementary Note and Supple-
mentary Video S2. Therefore, we assume a constant bottom pressure given by Pex;. The boundary conditions are
duy(lx| = W/2,t)/dx = 0and uy(x = 0,¢) = U(t).

Parameters

The parameters for the viscoelastic object are chosen asv = 0.34,71 /(H+/pE) = 1.41,andn2/n1 = 1, whereas we
set the parameters for the friction as us = 0.38, ux = 0.1, and vc/p/E = 4.81 x 1074, following previous FEM
simulations'’. These values are different from those adopted for the experiment using PMMA!*'2 The parameters
for the PMMA blocks!? are estimated as L/H = 5, W/H = 0.25, Pext/E = 3 x 1074, v = 0.4, us = 1.2, and
ux = 0.2, and much smaller vc/p/E and 51/ (H+/pE) are used in the previous study'’.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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