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Drug–target interaction prediction 
based on protein features, using 
wrapper feature selection
Hengame Abbasi Mesrabadi 1, Karim Faez 2* & Jamshid Pirgazi 3

Drug–target interaction prediction is a vital stage in drug development, involving lots of methods. 
Experimental methods that identify these relationships on the basis of clinical remedies are time-
taking, costly, laborious, and complex introducing a lot of challenges. One group of new methods 
is called computational methods. The development of new computational methods which are more 
accurate can be preferable to experimental methods, in terms of total cost and time. In this paper, 
a new computational model to predict drug–target interaction (DTI), consisting of three phases, 
including feature extraction, feature selection, and classification is proposed. In feature extraction 
phase, different features such as EAAC, PSSM and etc. would be extracted from sequence of proteins 
and fingerprint features from drugs. These extracted features would then be combined. In the next 
step, one of the wrapper feature selection methods named IWSSR, due to the large amount of 
extracted data, is applied. The selected features are then given to rotation forest classification, to 
have a more efficient prediction. Actually, the innovation of our work is that we extract different 
features; and then select features by the use of IWSSR. The accuracy of the rotation forest classifier 
based on tenfold on the golden standard datasets (enzyme, ion channels, G-protein-coupled 
receptors, nuclear receptors) is as follows: 98.12, 98.07, 96.82, and 95.64. The results of experiments 
indicate that the proposed model has an acceptable rate in DTI prediction and is compatible with the 
proposed methods in other papers.

Predicting the interactions between drugs and targets is vital in the drug discovery task. Recently, the focus of 
researchers has been on innovative drug development strategies on the basis of knowledge regarding the avail-
able drugs1. In order to attain their functions, drugs are generally coated with at least one protein. Therefore, 
finding out new interactions among drugs and target proteins is pivotal for new drug development, because the 
misconceived statement of proteins may give rise to drug side effects2. Identifying DTIs is highly crucial in dis-
covering and developing new drugs. Due to the high cost and the time required to recognize DTIs experimentally, 
computational approaches have been suggested which can recognize potential DTIs in order to accelerate devel-
oping new drugs3. Valuable insights into the function of the drug mechanism are the results of computational 
approaches for DTI prediction4. Computational approaches fall into three categories: Ligand-based approaches, 
Docking-based approaches and Chemogenomic-based approaches5. Each approach has its advantages and dis-
advantages. Ligand-based approaches are beneficial even in the absence of an empirical 3-dimensional struc-
ture. These approaches have high computational complexity and require large amount of data to obtain correct 
information6. Docking-based approaches model the reality more accurately, despite their high computational 
cost and low scalability. Another advantage of these approaches is that they are as flexible as Ligand-based 
approaches. These approaches problem is the lack of data 3-dimensional structure. Considering that they require 
this 3-dimensional structure, Ligand-based approaches are proposed that these approaches will work well even 
in the case of the lack of data 3-dimensional structure7. Third category of computational approaches are chem-
ogenomic-based approaches. One of the advantages of this approaches is that special analogs in drugs can be 
detected more easily. Another benefit of these approaches is that the coverage of the chemical space is more 
complete. Moreover, the results obtained from a drug may be used for the discovery of relevant drugs. In addi-
tion, using this approach makes attaining structure–activity relationships easier8. The basis of the studies on 
the prediction of DTIs can be one of the methods of machine learning. Machine learning methods in this area 
include feature based methods (FBM), Kernel based methods (KBM), and Similarity-based methods (SBM)9.
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Newly, kernel-based methods have been widely applied to identify DTIs. In addition to modeling nonlinear 
relationships, these methods propose models that can be applied to various data such as stings and time-series 
data. The problem with these methods is that the proposed models have low interpretability and understanding. 
Also, if large datasets are applied, these methods are not computationally efficient10.

In feature-based approaches, each Drug and protein is represented by a numerical feature vector, which 
demonstrates the different types of physical, chemical, and molecular features of each of the relevant samples11. 
One of the advantages of feature extraction methods is that they can reveal the intrinsic features of compounds 
and targets that have a crucial role in DTIs, the outcome of which would be more interpretable11.

Feature-based methods are divided into two categories: methods according to deep learning, and classical 
feature-based methods12. The input to deep learning methods is often the protein sequence and the structure of 
the drug. From this type of data, different features are extracted during different layers. In the end, the prediction 
of DTIs occurs in the final layer13,14.

In15 sequence-based deep learning,16 deep neural multi-function learning,17 deep convolution neural net-
works,18 light deep convolution neural networks,19 end-to-end deep learning approaches are applied to predict 
interactions between drug and target. In using Autoencoders, we can also mention20 and21 that were done in 2021.

The remaining of the paper is organized as follows. In the next Section, we introduce the related works. Then 
we explain the method. After that, we report experimental results obtained on different classification. Finally, 
we draw the conclusions.

Related works
Numerous computational methods have been developed for DTI prediction problem. In 2021, Jiajie Peng and 
colleagues used the learning representation graph to provide a framework22. In another study, the data needed 
to predict DTIs were described1.

Kernel-based methods are one of the machine learning methods that many people have studied in this 
field. Muhammad Ammad-ud-din et al. analyzed integrated and personalized QSAR approaches in cancer by 
kernelized Bayesian Matrix Factorization23. In a study conducted in 2018, Anna Cichonska et al. proposed a 
method with multiple pairwise kernels for effective memory and time learning24. Another important category 
is similarity-based methods25. Similarity-based approaches rely on the hypothesis that compounds which are 
biologically, topologically, and chemically similar, have similar functions and bioactivity, therefore have similar 
targets26. In27 a similarity-based monitoring technique was presented to identify the interactions among new 
drugs and known targets.

In order to predict DTI, a similarity model is proposed, in 2021 that uses two-dimensional CNN in the exter-
nal products between column vectors corresponding to two similarity matrices in drugs and targets28.

There are also various machine learning methods for this prediction. Using multi-tag learning, Seo May et al. 
represented a framework for predicting interactions29. In another work by Nin Metai et al. in 2020, similarity-
based methods, as well as machine learning approaches, were used30. Although machine learning-based methods 
have been proven to be effective in identifying DTIs, there are still many challenges:

•	 Most methods that are in the form of supervised learning have difficulty selecting negative samples.
•	 Predictive models on the basis of machine learning are usually constructed and evaluated with overly simple 

experimental settings.
•	 Most machine learning-based methods have poor descriptive features. Therefore, it is difficult to distinguish 

a potential drug mechanism from its function considering a pharmacological perspective31,32.

More generally, the key challenges in predicting DTIs include the extraction of all critical drug–target features, 
the issue of data inconsistencies, and data class imbalances during the prediction process. Feature-based methods 
are one of the machine learning methods that many people have studied in this field. Articles that have been 
written so far based on feature-based methods for identifying DTIs have often been innovative in four areas: 
feature extraction, feature selection, balancing and new classifier33.

In the field of feature extraction, Cheng Wong et al. tested features with fingerprint for electro topological 
status of drugs and APAAC of target proteins in 202032. In 2021, a FastUS algorithm was proposed to work with 
unbalanced data34.

In2, the features of drugs and proteins are combined to provide the features of per drug-protein pair. In35 they 
has proposed a new predictive method that used the SMOTE method to work with data that is not balanced. In36, 
Zheng Yang et al. applied a new computational model along with the PSHOG gradient and the PSSM matrix for 
feature extraction. In a 2020 study, a new computational approach was proposed which used the GIST feature37. 
In another study by Zheng Wong et al. in 2020, a useful computational methodology was proposed which applied 
protein sequence information38.

In another study39, an efficient computational method was proposed using the Rotation Forest classifier and 
the LBP feature extraction method in predicting PPIs from the PSSM matrix. In 2019, Hassan Mahmoud et al. 
proposed a new computational model to identify DTIs40. In the realm of proposing a new classifier, Dmitry Kara-
sov et al. proposed an approach providing the Fuzzy classification of target sequences41. In another study in 2020, 
a new DTI prediction method was proposed in which bi-clustering trees were built on reconstructed networks42.

In the present methods, no attention has been thrown to the extraction of effective features. While this matter 
causes a high discrimination quality, an increase in the verification rate, and therefore a higher detection quality. 
Furthermore, in extracting features, the dimension of the features is high, so this issue is needed to be managed.
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Data imbalance is another problem that currently exists. So that unknown interactions are many times more 
than True-Positive interactions. As a result, the imbalance between the two classes is a challenge that needs to 
be worked on.

In addition to the challenges that are commonly associated with deep learning-based DTI models, due to 
the fact that deep learning methods require a large amount of data for network training and also have a high 
computational load, we have omitted this method in this study. Hence, classical methods have been considered, 
in which the feature is extracted from the sequence of drug and protein1,43.

Method
In this work, a machine-based learning method is proposed to identify DTIs. In this method, first, different 
features are extracted from the sequence of proteins, and the feature vector of proteins is formed. Then, a finger-
print is extracted from the structure of the drug. These features are combined, that Due to the high dimension 
of the features, the features are then selected based on the IWSSR method. Finally, the rotation forest model is 
then trained to identify interactions. Figure 1 shows the proposed method flowchart. The details of each step 
are given below.

Feature extraction.  In this step, the information of each sequence is returned to a numeric vector by the 
use of a feature extraction algorithm. This step is one of the most important steps in classification phase that will 
directly affect the results of the model prediction. Regarding the fact that this study has two inputs of drug and 
protein, feature extraction is divided into two categories: feature extraction from drugs and feature extraction 
from proteins.

Feature extraction of drugs.  Researchers have shown that molecular fingerprints can describe the struc-
ture of a drug. The fingerprint of structural relationships shows drugs as the vectors of Boolean substructure 
through separating the molecular structure of drugs into various sections.

Even though each molecule is divided into separate parts, it preserves the structural information of the entire 
drug. These descriptors curtail the possibility of information failure and imprudent encounters in the description 
and screening procedure. In particular, a predefined dictionary that includes all the infrastructures corresponding 
to the fragments of the drug molecule. In case a fragment is present in the dictionary, its location on the user’s 
device is set to "one"; Otherwise it is considered as "zero". The database of the complete fingerprint creates an 
effective way for the description of the drug molecular formation in the shape of binary fingerprint vectors. In 
this paper, a map of the chemical formation derived from the PubChem system at https://​pubch​em.​ncbi.​nlm.​
nih.​gov/ is used. This scheme contains 881 molecular infrastructures. Therefore, the descriptors of the structure 
of drug molecular of features have used the 881-dimensional binary vector format28.

Feature extraction of proteins.  One of the most significant phases in identifying DTIs is the extraction 
of important features from protein sequences. For this purpose, in this paper, various features from protein 
sequences have been extracted. These features include EAAC, EGAAC, DDE, TF-IDF, k-gram, BINA, PSSM, 
NUM, PsePSSM, PseAAC. The description and the feature extraction method of each is presented below:

•	 Enhanced amino acid composition (EAAC)

This method was proposed by Chen et al. In this algorithm, protein sequence information is extracted and 
the amino acid frequency information is calculated based on it. This method is calculated based on the follow-
ing equation:

In this relation, m shows the amino acids, n indicates various windows with different size, H(m,n) is the 
number of amino acids of type m and H(n) is the window longitude n44.

•	 Enhanced grouped amino acid composition (EGAAC)

In this method, protein sequences are converted to numerical vectors based on their features. This method 
is an influential feature elicitation algorithm that is applied in bioinformatics study area namely, prediction of 
malonation sites, etc. 20 different sorts of amino acids are set into five groups regarding five physical and chemi-
cal features (physicochemical): The aliphatic group includes GAVLMI amino acids, the aromatic group includes 
GFYW amino acids, the positively charged group includes KRH amino acids, the negatively charged group 
includes DE amino acids, and the uncharged group includes STCPNQ amino acids. Depending on the basis of 
this grouping, the following equation is recommended for the calculation of EGAAC:

In this formula, H(g,n) demonstrates the number of amino acids in group g in window n and H(n) is equal 
to window longitude n. In this study, the window size is considered to be L-5 (L is length of proteins sequence)44.

(1)g(m, n) =
H(m, n)

H(n)
,m ∈ {1, 2, . . . , 21}, n ∈ {W1,W2, · · · ,WL}

(2)G
(

g , n
)

=
H
(

g , n
)

H(n)
, g ∈

{

g1, g2, g3, g4, g5
}

, n ∈ {W1,W2, . . . ,WL}

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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•	 Dipeptide deviation from the expected mean (DDE)

In45, which has been studied in the field of feature extraction based on amino acid composition, the Dipeptide 
Deviation method from the expected mean (DDE) has been proposed and developed in order to distinguish 
epitopes of a cell from non-epitopes by the use of this feature extraction method. For this purpose, the Dipeptide 
composition of a protein (DC) sequence is first calculated as follows:

(3)DC(m, n) =
Hmm

H − 1
m, n ∈ {A,C,D, . . . ,Y}

Figure 1.   General steps of the proposed method.
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In this regard, Hmm is the amino acid pairs number mn and H is the amount of the protein sequence. The sec-
ond step is to compute the theoretical mean (TM) and theoretical variance (TV) of a protein sequence as follows:

In this regard, Cm is the codons number that encodes the first amino acid and Cn is the number of codons 
that encodes the second amino acid, and CH is the aggregate of all probable codons.

At last, DDE is calculated according to DC, TM and TV values. The computation of the DDE feature vector 
is as follows44:

•	 Term frequency-inverse document Frequency (TF-IDF)

The TF-IDF feature extraction method consists of two terms: TF, meaning term frequency, and IDF, which is 
called inverse document frequency. To obtain the TF-IDF equation, each of these two terms must be calculated 
separately and the product of the two terms must be multiplied. Each of the two terms is calculated as follows: 
TF (t, d) is the number of repetitions of the amino acid t over the total number of proteins. There are opinions, 
how to calculate this value as follows:

After calculating these two terms, the TF-IDF value is obtained based on the following equation46:

•	 1-gram

1-g is the specification of k-grams for which k is arranged to 1. The relative frequencies of all 21 sorts of 
amino acids (20 standard amino acids and the unreal code O when their length are not equal) are computed in 
1-g applying the equation which is presented as follows:

where Nr designates the number of amino acid r and N designates the longitude of the section. Consequently, a 
21-dimensional vector would be achieved for each section47.

•	 2-gram

2-g computes the relative frequencies of all probable dipeptides in the sequence. The factors of the feature 
vector are described as:

where Nrs declares the number of the dipeptide rs, N states the longitude of the section and N-1 shows the total 
number of dipeptides in the encoded section47.

•	 Numerical representation for amino acids (NUM)

NUM aims to reverse sequences of amino acids into sequences of numerical values as by mapping amino 
acids in an alphabetical range: the 20 standard amino acids are given as 1, 2, 3, …, 20, and the unreal amino acid 
O is demonstrated as 2147.

•	 BINA

The binary encoding of amino acids transforms per amino acid in a part to a 21-dimensional orthogonal binary 
vector. Not the same as NUM defined over, BINA indicates per amino acid as a 21-dimensional binary vector 
encoded by one ‘1’ and 20 ‘0’ factors. For example, alanine (‘A’) is demonstrated as 100,000,000,000,000,000,000, 

(4)TM(m, n) =
Cm

CH
×

Cn

CH

(5)TV(m, n) =
TM(m, n)(1− TM(m, n))

H − 1

(6)DDE(m, n) =
DC(m, n)(1− TM(m, n))√

TV(m, n)

(7)IDF(t) = log

(

|D|
DF(t)

)

(8)TF − IDF(t) = TF(t, d)× IDF(t)

(9)f (r) =
Nr

N
r = 1, 2, . . . , 21

(10)f (r, s) =
Nrs

N − 1
r, s = 1, 2, . . . , 21
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cysteine (‘C’) is demonstrated as 010000000000000000000, etc., when the dummy amino acid ‘O’ is demonstrated 
as 00000000000000000000147.

•	 PSSM

PSSM, or position-specific scoring matrix, is a kind of scoring matrix applied in BLAST protein surveys, 
where a score for an amino acid is assigned separately on the basis of its position in a sequence of several proteins. 
In general, this method extracts evolution-based features.

In this regard, L shows the size of the protein sequence, 20 shows the 20 amino acids, and Pi, j, the possibil-
ity of mutation of the amino acid ith to the amino acid jth in the process of biological development. Therefore, 
PSSM scores are demonstrated as positive or negative integers. Positive scores show that the presented amino 
acid replacement takes place at a greater rate than is accidentally expected, but negative scores manifest that 
replacement takes place not more than what is anticipated. PSSM contains protein sequence positional informa-
tion and evolutionary information46.

•	 PsePSSM

PSSM which is described above, has two major problems as follows:

•	 As protein sequence length changes, machine learning algorithms cannot handle them directly.
•	 PSSM does not apply to the sequence order information.

To overcome these two problems, PSSM is replaced by PsePSSM.
PsePSSM or Pseudo Position-Specific Score Matrix can be calculated using the following formulas:

The nth rank correlation factor is shown by pjn which can be obtained through computing PSSM scores relat-
ing to two consecutive Amino Acid residues respecting j in one protein sequence.

ε is related to the amount of rank correlation factor which is needed to be less than the length of the smallest 
protein sequence48.

•	 PseAAC​

The concept of PseAAC or pseudo amino acid composition is representative of the advanced version of AAC. 
A sequence protein is demonstrated by P, and L represents Amino Acid residues.

PseAAC formula is calculated as follows:

AAC is a 20-dimensional array and each element of this array represents the number of each Amino Acid 
occurrence in the P sequence by the length L.

AAC has the problem of lacking sequence order data. So, when classifying there would be no chance of using 
a protein sequence. To overcome this problem, PseAAC is recommended which is a set of 20 + λ discrete factors. 
The first 20 factors in PseAAC can be equal to conventional AAC. Although factors from 20 + 1 to 20 + λ dem-
onstrate various sequence order correlation factors. The number of λ factors can change and relate to the size 
of functions of Amino Acids that can be collected. Therefore with AAC, features can be elicited on the features 
such as mass, which can be different for various Amino Acids and can be calculated in the previous studies49. 
Extracted features from protein sequences are listed in Table 1.

Combination of features.  Regarding the fact that the goal is to identify DTI, the features relevant to drug 
and protein are combined and each pair is considered as a sample. If there is a connection between them, it is 
labeled "one". Otherwise, the label “zero” is assigned to them.

(11)PSSM =







P1,1 · · · P1,20
...

. . .
...

pL,1 · · · PL,20







(12)PsePSSM =
[

p1, p2, . . . , p20, p
ε

1, p
ε

2, . . . , p
ε

20

]T

(13)pεj =
1

L− ε

L−ε
∑

i=1

[

Pi,j − Pi+ε,j

]2
, (j = 1, 2, . . . , 20; ε < L

(14)P = [R1R2R3 −−−−RL]

(15)P =
[

f1f2f3 . . . f20
]T
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Feature selection.  Because of the high number of features in each pair of drugs and proteins, giving rise 
to problems such as time complexity, as well as the possibility of model preprocessing, it is better to select the 
related features and remove the unrelated ones by the use of feature-selecting methods. Thus, at this stage, the 
IWSSR method is used to reduce the number of input variables for developing the prediction model. Hence, 
duplicated, irrelevant, and noisy features are discarded since they enhance the complexity of the model and make 
it harder to predict DTI. Moreover, they make the training of the model more difficult, and therefore the results 
of the predictions will not be reliable.

In this step, applying the IWSSR hybrid algorithm, the effective features are looked for in the space of fea-
tures. The IWSSR algorithm, which is an expansion of the IWSS algorithm, is one of the algorithms for selecting 
a feature subcategory based on the wrapper. In this strategy, first of all, in the filter level, the relationship per 
feature to the class labels is computed and weight is related to each feature. In IWSSR, the SU standard is applied 
to weight features. SU is a standard based on nonlinear information theory. This standard assesses each feature 
separately and allocates a number to each of them in the range of [1 and 0] that indicates the weight of every 
feature according to its class label. The vast amount shows the great significance of the feature. This standard is 
computed as follows:

where C is the class label, Fi shows the ith feature, and H represents the entropy. Next, in the wrapper step, the 
features are set in decreasing manner based on their weight. An additional method is then applied to choose 
a subcategory of features. Figure 2 reveals the pseudo-code of the IWSSR algorithm. In this algorithm, S is the 
candidate subcategory of the chosen features. Initially, the selected subcategory is empty, and in the first repeti-
tion, the feature with the highest rank is joined to the selected subcategory.

After that, a classifier is taught on the basis of the selected subcategory and the training data. Classification 
accuracy is kept as the greatest outcome obtained. The next step is done in two levels; in the first level, a high-
ranking feature that has not been assessed yet is substituted with every feature in the selected set. After per 
replacement, a new classifier is trained applying the gained subcategory. The accuracy of the classifier is then 
computed. If the supplement of a recent feature increases the accuracy of the classifier in comparison with the 
former subcategory, the obtained outcome is retained as the greatest one. In this way, the dependency of the 
selected feature is measured with the previously chosen features, and if it is not dependent on any of the chosen 
features, it will be joined to the selected subcategory. In the next level, the investigated feature (the feature that 
was substituted by the features of the chosen subcategory in the first level) is joint to the chosen subcategory S 
(gained in the preceding level) and a recent classifier is trained on the basis of the recent subcategory, and the 
accuracy of the classifier is computed. If the accuracy of the subcategory is better than the accuracy of the elected 
subcategory in the first level, it will be kept as the greatest obtained outcome. After the first and second levels, if 
we achieve a greater subcategory in every level, the most satisfactory subcategory is chosen as the subcategory 
of this cycle (repetition) and the desired feature is used in the chosen subcategory50.

Classification of features.  The classifier used in this article is Rotation Forest. Due to the fact that this 
classifier has diverse parameters to be adjusted, the Cross-validation K-Fold method or passing evaluation is 
used to adjust the parameters of the classification model. Rotation Forest is a classification method that is mainly 
applied in supervised learning. This method was first offered by Rodriguez et al.35 and its prophesy accuracy is 
similar to that of an Ensemble learning classifier. In the Rotation Forest algorithm, the feature set S is split into 
K size of subcategories by chance, and the Bootstrap prototyping technique is used to train 75% of the genuine 
samples in every feature subcategory so that the sparse rotation matrix is obtained. The classifier is then built 
in several steps applying matrix features. The work of the Rotation Forest algorithm is on the basis of feature 
transfer and feature selection, and concentrates on improving the accuracy and the difference of the base clas-
sifiers. The Principal Component Analysis (PCA) method is applied to do feature deformation in all the split 
subcategories whose aim is to store data effectively. Not only does this method distinguish per subcategory from 

(16)SUi,c(Fi , C) = 2
H(Fi)−H(Fi|C)
H(Fi)−H(C)

Table 1.   Extracted features from protein sequences.

Row Feature Dimension

1 Enhanced amino acid composition (EAAC) 100

2 Enhanced grouped amino acid composition (EGAAC) 25

3 Dipeptide deviation from the expected mean (DDE) 400

4 Term frequency-inverse document frequency (TF-IDF) 20

5 2-g 400

6 Numerical representation for amino acids (NUM) L

7 BINA 21*L

8 Position-specific score matrix (PSSM) 20*L

9 Pseudo position-specific score matrix (PsePSSM) 220

10 pseudo amino acid composition (PseAAC) 28
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the other, but it also plays an important task in data preprocessing. Thus, Rotation Forest can develop Ensemble 
variety and increase the accuracy of the foundation classifier. Assume that W = [W1 , W2,…, Wn ] includes n fea-
tures of a sample. We consider W as a set of training samples whose amount is N * n. N indicates the number of 
samples. Assume H as a range of features, assuming the corresponding label is Y = [Y1 , Y2,…, Yn ] ^ T. The feature 
set is split into K non uniform subcategories by chance. Assume that the number of decision trees is equal to L, 
which can be represented as T1 , T2,…, TL , respectively. The steps for building a Rotation Forest classifier are as 
follows (Fig. 3):

1.	 Choose the appropriate parameter for K; the feature set H is split into K subcategory (s) by chance where 
per subcategory includes (n/K) features.

Out: S feature subset
1       S={F[1]}
2       Bestfeature = evaluate(C,S,D)
3       for i=2 to F.size()
4             best = null;
5             for j=1 to S.size()
6                  S_sel=update(S,swap(S[j],F[i]))
7                  Data = evaluate(C,S_sel,D)
8                  if (Data > Bestfeature)
9                               best = (S[j],F[i])
10                             Bestfeature = Data
11                Saux = S U {F[i]}
12                Data = evaluate(C,S_sel,D)
13                if (Data>Bestfeature)
14                             best= add(F[i])
15                             Bestfeature = Data
16                if (best != null)
17                             update(S, best)

In :  D: training Data, C: classifier, F: feature set 

Figure 2.   IWSSR pseudo-code algorithm50.

Figure 3.   Rotation forest51.
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2.	 Hij represents the jth subcategory of the training subcategory that is applied to train the ith classifier ( Ti) . 
For every subcategory, a recent Wij training set is made after a re-sampling from bootstrap, with 75% of the 
W training set.

3.	 To produce the coefficients in the effective Pij matrix, principal component analysis (PCA) is used on Wij 
that is an M * 1 matrix. Pij is displayed as Bij (1),…, Bij ( Mj).

4.	 The coefficients obtained in the Pij matrix have formed a sparse rotation matrix called Ri , which is shown 
below:

At the time of prediction, using the sample ω, dij in (x Ra
i  ) is considered as a probability that predicts whether 

ω belongs to λj or not by using the Ti classifier. Then the level of trust in the class is calculated using the average 
combination, the formula of which is as follows:

The category with the highest probability will be considered as a test sample x36,37.

Predicting the new DTI.  The final step is to predict interactions. In the end, after training the Rotation 
Forest model, the model is used to predict the new DTI. On the basis of the chosen evaluation criteria, which are 
described in detail in “The Results” section, acceptable results have been obtained from this step.

The results
Evaluation criteria.  In this paper, we have applied 4 evaluation criteria to evaluate the efficiency of the pro-
posed method. These criteria include accuracy (Acc), sensitivity (Sen), precision (Pre), and Matthew correlation 
coefficient (MCC), which are calculated as follows:

In addition, Receiver Operating Characteristic curves (ROCs) have been used to describe the results, and the 
space under the curve (AUC) has been computed to confirm the possibility of making predictions36.

Data set.  This study has applied the Gold Standard data set utilized by Yamanishi et al.52 as a Benchmark 
dataset downloaded from http://​web.​kuicr.​kyoto-u.​ac.​jp/​supp/​yoshi/​drugt​arget/. In the Gold Standard Data-
base, information on DTIs is gained from the KEGG BRITE, BRENDA, Super-Target, and DrugBank datasets. 
This dataset is split into four major datasets including enzymes, ion channels (IC), G-protein-coupled receptors 
(GPCR), and nuclear receptors (NR). The number of understood drugs in these datasets are 445, 210, 223, and 
54, in the order given; and the number of known proteins in these datasets are 664, 204, 95, and 26, in the order 
given. After precise testing of these drugs and proteins, an amount of 5,127 pairs of DTIs were gained, and the 
number of interactions between drug and protein couples known so far in each dataset was 2926, 1476, 635, 
and 90, in the order given. Extended information on drugs and proteins is available from the KEGG database 
before further analysis53,54. Each protein is displayed using an amino acid sequence and after that stored in a text 
file. The chemical form of every drug molecule is converted to the Mol file format, after which the file format is 
downloaded. The information of the datasets applied in this article is presented in Table 235.

Results from different features.  As stated above, in order to predict DTIs precisely, different features 
must be extracted from the protein-drug sequence. Given that the purpose of this paper is to extract the effective 
features of the protein sequence, the extracted features are analyzed in this section. In this paper, 10 feature-
extraction methods are applied to protein sequences and extract different kinds of protein features.

(17)Ri =
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
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(19)Acc =
TN + TP
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(20)Sen =
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(21)Pre =
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(22)MCC =
TN ∗ TP − FN ∗ FP

√
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In order to evaluate the extracted features by each method, the rotation forest model is trained using each of 
the EAAC, EGAAC, DDE, TF-IDF, K-gram, BINA, PSSM, PsePSSM, PseAAC and NUM features on the basis 
of cross-validation with the value of k = 10. The results of this experiment are demonstrated on Enzyme data 
set in Table 3.

As evident in Table 3, the features extracted by  PsePSSM have greater differentiating power and have a higher 
detection rate in the whole data set. Moreover, PSSM, PseAAC and BINA methods have acceptable performance 
too. Each of these features represents a pattern of data that makes the classification model identify interactions 
well.

In order to compare the extracted features, the ROC diagram in Fig. 4 is drawn for 5 types of features by the 
use of different methods. In this diagram, it is also obvious that the PSSM feature performs better than the other 
ones and has a higher area under the diagram. The TF-IDF method had lower performance compared with the 
other methods. On the basis of the results of Fig. 4 and Table 3, it can be concluded that the combination of 
diverse features improves the performance of the classification model in identifying DTIs.

For this purpose, the extracted features are combined in various modes, and the classifier is trained and tested 
on the basis of the combination of features. Among the various modes, three had better performance. In the first 
mode, the features related to the methods (PSSM, EGAAC, EAAC) are combined and the resulting feature vector 
has 2125 features. In the second mode, the features relevant to PSSM, EGAAC, EAAC, DDE, BINA methods are 
combined and the feature vector length is 4625, and in the third mode, the features pertinent to PSSM, EGAAC, 
EAAC, DDE, BINA, K-gram, TF-IDF, NUM, PsePSSM, PseAAC methods are combined. In this mode, the result-
ing feature vector length contains 6293 features. As it is evident, in all these three modes, the performance of the 
classification model is greater than the mode before the combination of features. This indicates that the variety of 
features increases the efficiency of the models. On the other side, in the second mode, the performance of most 

Table 2.   Database information used in this article35.

Dataset Drug Protein Interaction

Enzyme 445 664 2926

IC 210 204 1476

GPCR 223 95 635

NR 54 26 90

Table 3.   System efficiency criteria for different features. Significant values are in bold.

EGAAC​ EAAC​ DDE TF-IDF K-gram BINA PSSM NUM PsePSSM PseAAC​

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10

Accuracy 84.46 81.86 76.47 80.74 80.83 86.74 87.23 86.45 88.18 84.43

Sensitivity 79.13 77.2 71.91 76.71 76.84 81.04 83.54 82.23 84.23 82.31

Specificity 88.45 85.35 79.88 83.77 83.82 89.87 88.27 88.67 89.09 86.71

Balance rate 83.79 81.28 75.9 80.24 80.33 84.79 85.9 85.45 86.68 84.23

Figure 4.   ROC diagram for the comparison of the five features.
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classification methods is better than that of the third ones. In the second mode, the features are combined well. 
However, in the first one, there are still some related features that are not included in the combination; hence, 
the accuracy of the model does not increase much. In addition, in the third mode, since the number of features 
shows an excessive increase, the model has been over-fitted and the accuracy of the model has been decreased. 
Therefore, it is better to identify the effective and relevant features and remove the unrelated and noise ones via 
selecting features. Table 4 shows the results on different categories, without feature selection. The comparison 
has done on SVM32, RF35, XGBoost55, and DNN13 classifiers.

As evident in Table 4, all features are combined with the purpose of selecting the effective ones. Then, impor-
tant features are selected using the IWSSR method. The number of the selected features varies in different data-
sets. By the use of the IWSSR method, 22 features have been selected in the enzyme dataset, 30 features in the 
ion channel dataset, 27 features in the GPCR dataset, and 18 features in the nuclear receptor set. This number of 
features is much less compared with the main ones. In addition, the performance of the classification model is 
substantially enhanced on various datasets. This indicates that the IWSSR method has prevented the over-fitting 
of the classification models and has selected the related features in the prediction of interactions. Table 5 shows 
the results of feature selection on different classifiers.

Error analysis is carried out to show stability and resistivity of the model. The error bar shows estimated errors 
in order to attain a deeper understanding of the measurements. Generally, error bars are utilized to show the 
standard error, standard deviation, or minimum/maximum values in a data. The size of the error bars shows the 
uncertainty in the measurements. A small error bar indicates the certainty and significance of the measurements 
whilst a long error bar addresses sparsity and a lesser number of data values. The accuracies of the models via 
a tenfold cross-validation are showed out in Fig. 5 for the underlying datasets. As evident from Fig. 5, RF has 
outperformed the others, and SVM and DNN depicts the highest error regarding the lengths of the bars. This 
shows that RF results are more reliable and meaningful.

For better evaluation, the proposed method, AUROC curves for different classifiers on the basis of the pro-
posed features are shown in Fig. 6, respectively. As it is clear from the results, on the basis of the selected features, 
the Rotation Forest classifier has a better performance in comparison with the other methods. This is because 
the selected features have a good distinguishing feature. In addition, since the Rotation Forest classifier selects 
the most suitable features for constructing trees, it turns out to be well-generalizable. According to the figures, 
it is apparent that other classifiers have acceptable performance as well.

In order to better evaluation, in this paper, each dataset is divided into two datasets; a test dataset and an 
independent dataset. 90% of the original data is chosen randomly for the training and test dataset and 10% for 
the independent dataset. For this purpose, the training dataset is used to train, and test data is used to evaluate 
and justify the proposed method, and the independent dataset is applied for final performance evaluation of the 
proposed method. The results of these experiments are shown in Table 6. The results approve that the proposed 
method is robust and it has high accuracy rate. Therefore, the method can be used to classify new-drug, new-
target, and new drug-new target with high accuracy.

Comparison with other methods.  For better evaluation, the proposed method has been compared to 
the other available methods that have utilized the mentioned data set. The results of this experiment are shown 
in Table 7. The compared methods have extracted various features from the protein sequence and used differ-
ent classifiers. As evident, the values of Acc, Sn, Sp, and MCC of the proposed method are the best ones. In the 
enzyme dataset, the proposed accuracy rate is 98.12, which is at least 0.8 and at most 9% better than the other 
methods. This efficiency can also be seen in other data sets. This represents that the extracted and selected fea-
tures have absolutely good differentiating power.

One of the reasons that our proposed method is better, compared to other methods, is that our method 
offers better features by defining and selecting the features that end in more accurate results. In fact, our method 
observes specificity and sensibility and also considers balance in classes. Hence, bias is not towards the majority 
class. Unlike Reference 4, where one of its specificity is 87 and its sensibility is 90, in our method, these two do 
not make so much difference. That is, it doesn’t care what data is used.

Conclusion
In this paper, a DTI prediction based on protein features, using wrapper feature selection was proposed. This 
machine learning model consisted of three phases, including feature extraction, feature selection, and classifica-
tion. In the first phase, it would extract different features such as EAAC, PSSM and etc. from sequence of proteins 
information and fingerprint information from drugs. These extracted features would then be combined. In the 
next step, one of the wrapper feature selection methods named IWSSR, due to the large amount of extracted data, 
is applied. The selected features are then given to Rotation Forest classifier, to have more efficient prediction. 
Actually, the innovation of our work is that we define the features; and then select a feature selection method such 
as IWSSR. The results of experiments indicate that the proposed model has an acceptable rate in DTI prediction 
and is compatible with the proposed methods in other papers.
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Table 4.   Comparison of efficiency criteria of various classifications of different features, without feature 
selection. Significant values are in bold.

Dataset Combination Classifier Acc(%) Sp (%) Sn (%) MCC AUC​

Enzyme

PSSM,EGAAC, EAAC​

SVM 59.33 57.75 60.91 0.6839 0.7223

XGBoost 91.44 93.78 93.45 0.8902 0.9695

RF 95.18 95.21 93.03 0.9049 0.981

DNN 68.63 51.14 86.09 0.7348 0.7891

PSSM,EGAAC, EAAC, DDE,BINA

SVM 67.03 65.73 68.34 0.8261 0.8834

XGBoost 96.69 95.79 93.59 0.9151 0.9711

RF 97.21 95.72 94.31 0.9279 0.9768

DNN 92.99 93.52 92.46 0.9023 0.9649

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 66.83 64.84 68.83 0.8311 0.8714

XGBoost 96.69 95.38 93.27 0.9147 0.9723

RF 97.22 95.78 94.64 0.9311 0.9781

DNN 90.10 80.92 99.25 0.8973 0.9578

Ion channel

PSSM,EGAAC, EAAC​

SVM 65.90 65.38 66.42 0.7482 0.8831

XGBoost 92.15 93.42 90.88 0.9087 0.9489

RF 94.18 95.08 96.18 0.9234 0.9634

DNN 77.99 68.22 87.75 0.7841 0.9043

PSSM,EGAAC, EAAC, DDE,BINA

SVM 69.86 71.04 68.67 0.8418 0.8931

XGBoost 93.24 94.02 91.76 0.9287 0.9528

RF 95.22 97.14 97.32 0.9448 0.9749

DNN 91.17 94.89 94.36 0.9142 0.9328

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 68.66 69.45 67.87 0.8346 0.8911

XGBoost 92.73 93.61 91.24 0.8971 0.9518

RF 94.71 96.42 97.10 0.9371 0.9659

DNN 91.45 92.61 93.45 0.9017 0.9503

GPCR

PSSM,EGAAC, EAAC​

SVM 64.37 63.58 65.16 0.7934 0.8942

XGBoost 91.46 93.02 91.90 0.8872 0.9537

RF 92.88 93.78 95.23 0.8943 0.9644

DNN 72.85 56.56 89.14 0.8136 0.8993

PSSM,EGAAC, EAAC, DDE,BINA

SVM 71.74 72.56 70.91 0.8623 0.9061

XGBoost 92.76 94.48 93.23 0.9023 0.9573

RF 94.31 95.34 96.47 0.9217 0.9721

DNN 90.87 94.09 92.43 0.8983 0.9382

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 70.95 71.41 70.49 0.8582 0.9035

XGBoost 92.21 93.47 93.82 0.8991 0.9548

RF 93.29 94.62 95.93 0.915 0.9692

DNN 91.15 94.56 93.72 0.8932 0.9376

Nuclear receptors

PSSM,EGAAC, EAAC​

SVM 70.95 71.41 70.49 0.8582 0.9035

XGBoost 92.21 93.47 93.82 0.8991 0.9548

RF 93.29 94.62 95.93 0.915 0.9692

DNN 91.15 94.56 93.72 0.8932 0.9376

PSSM,EGAAC, EAAC, DDE,BINA

SVM 70.95 71.41 70.49 0.8582 0.9035

XGBoost 92.21 93.47 93.82 0.8991 0.9548

RF 93.29 94.62 95.93 0.915 0.9692

DNN 91.15 94.56 93.72 0.8932 0.9376

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 70.95 71.41 70.49 0.8582 0.9035

XGBoost 92.21 93.47 93.82 0.8991 0.9548

RF 93.29 94.62 95.93 0.915 0.9692

DNN 91.15 94.56 93.72 0.8932 0.9376
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Table 5.   Comparison of efficiency criteria of various classifications of different features, with feature selection. 
Significant values are in bold.

Dataset Combination Classifier Acc (%) Sp (%) Sn (%) MCC AUC​

Enzyme

PSSM,EGAAC, EAAC​

SVM 68.18 66.23 67.23 0.6839 0.7223

XGBoost 94.37 95.11 95.22 0.9231 0.9741

RF 96.41 97.11 96.76 0.9523 0.9871

DNN 73.42 62.17 86.21 0.7672 0.7934

PSSM,EGAAC, EAAC, DDE,BINA

SVM 71.12 69.18 72.5 0.8532 0.9213

XGBoost 97.12 96.4 94.89 0.9437 0.9817

RF 97.67 96.21 96.64 0.9582 0.9835

DNN 94.89 95.71 94.82 0.9348 0.9782

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 73.42 76.08 72.45 0.8632 0.8941

XGBoost 98.1 97.26 95.16 0.9461 0.9847

RF 98.12 98.74 98.02 0.9921 0.9982

DNN 92.09 88.46 97.25 0.9217 0.9709

Ion channel

PSSM,EGAAC, EAAC​

SVM 68.72 69.18 70.06 0.7731 0.8977

XGBoost 94.22 95.82 93.4 0.9307 0.9632

RF 96.18 97.28 97.73 0.9486 0.9736

DNN 81.12 72.41 88.43 0.8022 0.9215

PSSM,EGAAC, EAAC, DDE,BINA

SVM 71.97 74.37 72.86 0.8899 0.9128

XGBoost 95.47 96.72 94.38 0.948 0.9735

RF 96.89 97.74 98.07 0.9511 0.9807

DNN 93.47 95.82 96.09 0.9348 0.9572

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 72.81 73.47 72.81 0.8523 0.926

XGBoost 95.71 96.89 95.12 0.9541 0.9773

RF 98.07 98.6 98.42 95.42 0.9911

DNN 93.86 96.11 96.44 0.9385 0.9617

GPCR

PSSM,EGAAC, EAAC​

SVM 66.37 64.7 68.34 0.8237 0.8872

XGBoost 93.72 94.29 92.63 0.9145 0.9608

RF 93.78 95.56 96.48 0.9138 0.9742

DNN 75.23 77.81 89.11 0.8173 0.9217

PSSM,EGAAC, EAAC, DDE,BINA

SVM 73.82 75.18 73.69 0.8943 0.9243

XGBoost 93.71 95.82 94.63 0.9137 0.9682

RF 95.38 96.73 97.28 0.9381 0.9792

DNN 92.39 95.6 93.52 0.9187 0.9558

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 75.12 74.52 73.94 0.8853 0.9275

XGBoost 94.58 94.89 95.23 0.9228 0.9783

RF 96.82 98.17 97.33 94.32 0.9925

DNN 93.36 96.58 95.68 0.8272 0.9632

Nuclear receptors

PSSM,EGAAC, EAAC​

SVM 72.65 73.68 72.65 0.8817 0.9172

XGBoost 93.41 94.18 91.88 0.9167 0.9637

RF 93.76 95.47 93.35 0.9273 0.9611

DNN 91.43 95.83 93.59 0.9156 0.9477

PSSM, EGAAC, EAAC, DDE, BINA

SVM 73.48 74.51 73.36 0.8943 0.9135

XGBoost 94.37 95.89 92.83 0.9248 0.9634

RF 94.8 95.71 93.27 0.9241 0.9645

DNN 92.73 95.59 93.88 0.9208 0.9486

PSSM,EGAAC, EAAC, DDE,NUM, K-gram,TF-IDF, 
BINA

SVM 74.69 75.92 74.46 0.9028 0.9145

XGBoost 94.78 94.92 93.08 0.9351 0.9639

RF 95.64 96.75 94.78 93.08 0.9653

DNN 93.39 95.21 94.09 0.9274 0.9403
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Figure 5.   Studying classification models based on error bars for underlying datasets.

Figure 6.   ROC curves of different classifiers on the data sets.
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Data availability
This study has applied the Gold Standard data set utilized by Yamanishi et al.52 as a Benchmark dataset down-
loaded from http://​web.​kuicr.​kyoto-u.​ac.​jp/​supp/​yoshi/​drugt​arget/.
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