www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Modified Whale Optimization
Algorithm based ANN: a novel
predictive model for RO
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In recent decades, nature-inspired optimization methods have played a critical role in helping
industrial plant designers to find superior solutions for process parameters. According to the literature,
such methods are simple, quick, and indispensable for saving time, money, and energy. In this regard,
the Modified Whale Optimization Algorithm (MWOA) hybridized with Artificial Neural Networks
(ANN) has been employed in the Reverse Osmosis (RO) desalination plant performance to estimate
the permeate flux (0.118—2.656 L/h m?). The plant’s datasets have been collected from the literature
and include four input parameters: feed flow rate (400—600 L/h), evaporator inlet temperature
(60—80 °C), feed salt concentration (35—140 g/L) and condenser inlet temperature (20—30 °C). For
this purpose, ten predictive models (MWOA-ANN Model-1 to Model-10) have been proposed, which
are capable of predicting more accurate permeate flux (L/h m?) than the existing models (Response
Surface Methodology (RSM), ANN and hybrid WOA-ANN models) with minimum errors. Simulation
results suggest that the MWOA algorithm demonstrates a stronger optimization capability of finding
the correct weights and biases so as to enable superior ANN based modeling without limitation of
overfitting. Ten MWOA-ANN models (Model-1 to Model-10) have been proposed to investigate the
plant’s performance. Model-6 with a single hidden layer (H=1), eleven hidden layer nodes (n=11) and
the thirteen search agents (SA =13) produced most outstanding regression results (R?=99.1%) with
minimal errors (MSE =0.005). The residual errors for Model-6 are also found to be within limits (span
of - 0.1to 0.2). Finally, the findings show that the screened MWOA-ANN models are promising for
identifying the best process parameters in order to assist industrial plant designers.

This section has been separated into three parts: the first part describes the background of ANN and WOA,
while the second part details the literature review. The third part explains the major objectives, contributions,
and research outline.

Background. The human ambition to do tasks more quickly, easily and inexpensively has led to the increas-
ing development of efficient operations worldwide'2. In the same way, the process plant industry is changing to a
culture where decisions are being made based on data analysis and experimental outcomes®*. In this regard, the
plant’s experimental datasets have been collected and evaluated to gather new insights, which aids in decision-
making for plant designers to save processing time, operational cost, and energy">*.

In recent decades, process plant industries have become considerably more dynamic and have turned to
advanced analytics, optimization algorithms, and machine learning tools to provide predictive and prescriptive
solutions to improve their performance®*'!. These algorithms and tools are simple, adaptable, and efficient for
analyzing datasets of small as well as large-scale plants. Some commonly used intelligent algorithms and tools
being used lately include Artificial Neural Networks (ANN)'?-1%, Artificial Bee Colony (ABC)'®!7, Cat Swarm
Optimization (CSO)'®*°, Particle Swarm Optimization (PSO)*-??, Firefly Algorithm (FA)*, Bat Algorithm
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(BA)*?%, Whale Optimization Algorithm (WOA)"*-%, Grey Wolf Optimizer (GWQO)'7*>28-% Butterfly Opti-
mization Algorithm (BOA)*', Ant Lion Optimizer (ALO)"Y, Support Vector Machine (SVM)'*#32% Response
Surface Methodology (RSM)****, Non-Dominated Sorting Genetic Algorithm (NSGA)** and their hybrid.

Problems with ANN. ANN, in general, follows the backpropagation (BP) training algorithm while it finds
an optimum set of node connection weights and biases to reduce the error. An accurate prediction of weights
and biases is very important to ensure high model performance. The BP approach employs a gradient descent
algorithm and necessitates a large number of iterations®. Literature suggests that one of the biggest challenges in
using the gradient descent technique is its trapping in the local optima. This is entirely tied to the initial values of
weight considered®’, which affects the final accuracy of the models. Therefore, researchers have found alternative
solutions such as GA, PSO, GWO, and WOA to minimize these issues"®.

Why hybridization? Hybridization is now the most widely used technology for analyzing a plant’s performance
precisely as it combines two algorithms and tools into one and allows them to work synergistically"*. Literature
suggests various hybrid models, such as GA-ANN?*, PSO-ANN?, ABC-ANN'¢, SVM-ANN??, PSO-SVM™¥,
WOA-ANN®, and others, have focused on system model effectiveness in the investigation of the various fields
of engineering and in assessing plant’s performance. Among them, ANN with hybrid models is the most exten-
sively utilized technology to investigate plant datasets correctly>®.

Why modified WOA in ANN? With the motivation of literature’®**, we have developed hybridized models
using modified WOA (MWOA) with ANN to model and analyze the performance of reverse osmosis (RO)
desalination plants. The models are then simulated to assess the capability of such hybridization so as to find
the optimum biases and weights used in algorithms to increase the ANN model’s accuracy and precision. More
specifically, this paper explores the possibility of using the MWOA algorithm in the ANN model to overcome the
limitations of BP training algorithms for improving model performances and, thereby, enabling better modeling
of desalination processes and realization or prediction of its performance. The datasets used previously by Gil
et al.* have been utilized here as well so as to make a comparison with results published by them. It is observed
from the simulation that modified WOA serves as a superior optimization for ANN in this investigation com-
pared to BP-assisted ANN used earlier® and simple WOA algorithms.

Literature review. As stated in the background subsection, many researchers have been using ANN and
their hybrid models to examine plant performance. Some of them are particularly relevant to desalination plants
and ANN modeling, which we discuss further in this section to help better understand the significance of such
models. Lee et al.** developed an ANN model to predict the permeate total dissolved solids (TDS) (354.2 to
745.7 ppm) and permeate flow rate (454.0 to 470.2 m*/h) of the seawater RO desalination plant. They have
investigated a one-year operation dataset of the Fujairah seawater RO desalination plant, United Arab Emirates
(UAE)™. The entire dataset was divided into three parts for modeling investigations: 60% for training, 20% for
testing, and 20% for validation. They predicted permeate TDS (regression coeflicient, R?=96%) and permeate
flow rate (R*=75%) for the testing stage. Further, Aish et al.’* proposed a multilayer perceptron (MLP) neural
network and radial basis function (RBF) neural network to predict TDS concentrations (training 10 to 430 mg/L
and testing 11.80 to 340 mg/L) and permeate flow rate (training 9.5 to 17 bars and testing 10 to 15.5 bars) of
RO desalination plant, Gaza Strip, Palestine'?. The data was collected for over six months (March to September
2013) and divided into two parts, 70% for training and 30% for testing. They have reported the best-predicted
TDS concentrations with minimum error (Mean Squared Error, MSE =0.023) for testing of the MLP model. In
addition, they have also reported the best-predicted permeate flow rate with minimum error (MSE =12.645) for
testing the RBF model.

Likewise, Cabrera et al."* developed models to assess the optimal operating pressure (bars) and feed flow
rate (m*/h) of an RO desalination plant, Gran Canaria, Spain, using the ANN model. While modeling, they
utilized 505 sets of data and reported a good agreement between the predicted and experimental outcomes with
minimum errors (0.026 m*/h) for feed flow rate and (0.252 bars) for operating pressure. They have also reported
using a large number of 38 and 56 nodes in the first hidden layer and 4 and 9 nodes in the second hidden layer as
most suitable for the proposed ANN modeling. Recently, Panahi et al.*! proposed a hybrid ALO-ANN model to
predict clean water production in seawater greenhouses in arid lands. They reported that the ALO-ANN model
outperformed the ANN, BA-ANN, and PSO-ANN in the testing phase, with RMSE % values of 39, 18, and 33%,
respectively, lower than that of the ANN, BA-ANN, and PSO-ANN models.

Recent studies of WOA and their variants motivate researchers to work in this field, such as Fu et al.*? utilized
nicely hybrid long short-term memory with WOA and variational modes to estimate monthly evapotranspiration.
Ding et al.¥* proposed three improved versions of the WOA to enhance the exploration abilities, also employed
to improve population diversity. Similarly, Ju et al.** suggested a hybrid strategy of WOA based on nonlinear
convergence factor, chaos initialization, and mutation concepts. Further, Chakraborty et al. proposed various
artificial intelligence models using WOA and their variants for numerous applications, such as for COVID-19
X-ray image segmentation*’, global optimization***’, numerical optimization*®, and other applications*->2

Literature reveals that the accurate achievement of the model’s targets depends on the specific selection of
the algorithms and the modeling parameters. Literature also suggests that nature-inspired algorithms have
excellent search capabilities to achieve global optima. In addition, these algorithms are able to adjust themselves
as per the objective functions. But some algorithms and models, such as BP-ANN, have limitations in finding
the global minima. In this context, this study focuses highly on WOA algorithms because of their uniqueness
and capability to find optimum weights and biases in the global optima. Therefore, this investigation employs a
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Modified WOA (MWOA) algorithm to achieve the global optima and support ANN for an accurate outcome with
minimum errors. For this, we have employed reverse osmosis (RO) desalination plant datasets for investigating
and validating the results with the existing models.

The primary focus of this research is to investigate the use of artificial intelligence technologies in the fields
of desalination and water treatment. However, many researchers have worked in this area and produced sev-
eral models for improving plant performance. Yet, to the best of our knowledge and over literature review, the
MGWO-ANN technique is being proposed and applied to the modeling of the RO desalination plant for the
first time.

Major objectives, contributions, and outline. According to WHO and UNICEF reports (2017)*3, By
2025, ‘half of the world’s population may live in water-scarce places. Therefore, it is imperative for researchers
to accelerate research in the improved desalination field to ensure a sustainable life for humans, animals, and
plants. We intend to promote this by utilizing the modified WOA algorithm in ANN to appropriately model such
systems and improve process parameter prediction of desalination plants. According to the literature findings
and our best knowledge, the hybrid MWOA-ANN models have been employed herewith for the first time to
predict the RO desalination plant permeate flux (0.118—2.656 L/h m?).

The remaining part of the paper is organized as follows: Section “Datasets and methodology” defines the
datasets and methodology, whereas Section "Results and Discussion” describes the results and discussion. Finally,
in Section “Conclusion’, the conclusion of this work is presented.

Datasets and methodology

This section has been separated into two parts: the first part describes the datasets used in this investigation,
while the second part details the proposed methodology. The second part explains the concepts of ANN, MWOA,
and the hybrid MWOA-ANN models employed herewith for a better understanding of the model developed
by the reader.

Dataset details. In this research investigation, the desalination plant’s experimental datasets from the pre-
vious work by Gil et al.*® have been used for the proposed modeling. The plant module referred by them was
designed by the Fraunhofer Institute for Solar Energy Systems that uses a W. L. Gore Associates commercial
membrane [Permeate Gap Membrane Distillation (PGMD)] with an active Polytetrafluoroethylene (PTFE)
layer®. Four input parameters: salt concentration, flow rate, evaporator, and condenser intake temperatures
were used, while permeate flux was the output parameter of the model. The details of the ranges of parameters
are presented in Table 1 *.

Proposed methodology. Artificial neural network (ANN) architecture. ANN is the elementary model
of this research, which has been improved in this investigation through its hybridization with an advanced
optimization process. It is based on the activity of biological neurons in human brains, and the concept of
neural network learning was first proposed by McCulloch and Pitts®. It showed a strong capacity to anticipate
various engineering applications’ performance and effectively handle complex, linear, and nonlinear tasks. In
the literature, ANN architectures such as generalized regression neural network (GRNN), radial basis function
(RBF), and multilayer perceptron (MLP) are suggested, with MLP being the most prevalent and frequently used
in numerous applications'. In general, ANN employs three layers: (input, hidden, and output), and follows the
backpropagation (BP) learning technique with a Levenberg-Marquardt (LM) training algorithm®. The models
map the relationship between inputs and targets>°. We have proposed an architecture of this type {(I1, n4): (H1,
n1-20): (O1, nl)} as illustrated in Fig. 1. Here, (I1, n4) represents a single input layer with four nodes, (H1,
n1-20) represents a single hidden layer with 1 to 20 nodes, and (O1, n1) represents a single output layer with
one node.

Modified Whale Optimization Algorithm (MWOA). Whales are the world’s largest mammals and the most
beautiful creatures in nature. Whales have spindle cells in their brains that are similar to ‘human spindle cells’
and are responsible for emotions, judgment, and social behaviors, according to Hof and Gucht™. They have fan-
tastic behavior in that they can live alone or in groups. In addition, the fascinating aspect of ‘humpback whales’
is their unique hunting technique, known as bubble-net feeding?. This hunting skill focuses on forming various

A Parameters (feed/input) Parameters value with range
i) Condenser inlet temp. (T,ynq) 20-30°C

ii) Evaporator inlet temp. (T,,) 60-80 °C

(
(
(
(

ii) Feed flow rate (F) 400-600 L/h
iv) Feed salt concentration (S) 35-140 g/L
B Parameter (permeate/output)
(i) Permeate flux, (Pg,,) 0.118-2.656 L/h m?

Table 1. Parameters involved in the proposed modeling of RO desalination plants®.
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(Inputs)

Feed flow rate

(400 L/h — 600 L/h)

Feed salt concentration
(35g/L - 140 gL)

(Output)

Permeate flux
(0.118 L/h-m* —
2.656L/h-m?)

Evaporator inlet temp.
(60°C — 80°C)
Condenser inlet temp.
(20°C - 30°C)

H1.nl-20

Input layer Hidden layer Output layer

Figure 1. Illustrates the basic ANN architecture {(I1, n4): (H1, n1-20): (O1, n1)}. b1 represents single bias, W
represents weights between the input and hidden layers, and Wy, represents weights between the hidden and
output layers.

bubbles along a ‘9’ shaped path or circle, as displayed in Fig. 2, which helps the humpback whales finally catch
the smaller fishes near the surface of the water?’.

The mathematical formulation of MWOA. The mathematical formulation of MWOA involves three steps,
namely, Step 1: Encircling prey, Step 2: Bubble-net attacking method (Exploitation Phase), and Step 3: Search for
prey (Exploration Phase)?”*.

Step 1.  Encircling prey*”*:

Whales first locate their prey and then start to encircle them. They try to estimate the best candidate
solution, also known as the best search operator (BSO), and then update their positions accordingly
to match the BSO. The following equations mathematically represent this behavior:

D=|C-X*(t) - X(1)]: X(t+1)=X*®)—A-D (1)

where, D= displacement in the position of the prey; X*= position vector of the best solution obtained so far;

X =position vectors; , = current iteration; A and C = coefficient vectors; A = 24 - 7| — 4 andC = 2 - ;71 and 7,
N 25 . . .

random vectors in [0, 1];a = 2 (1 - iz—s), and ,,, = maximum iterations.

Step2.  Bubble-net attacking method (Exploitation Phase)?*¢;

x|
x,7)
(@e—r—"9
& D
05 i 11
(a) (b)

Figure 2. (a) Bubble-net feeding behavior of humpback whales (b) Spiral updating position. Photo: Courtesy
Mirjalili and Lewis®.
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As stated earlier, whales swim in a ‘9’-shaped path around the prey in the shrinking circle, as illus-
trated in Fig. 2. This technique has been found to form various bubbles in water along a circle. This is
simulated by choosing a shrinking encircling scheme (Fig. 2b) with a 50% chance during iterations.
Thus, the following equations mathematically represent this bubble-net attacking behavior as:

- X*(t)—A-D if p<05
X =< "> -

¢+D { D' el cos 2nl) + X* (1) if p>05 @
where, [ is the random number in [- 1, 1], p is the arbitrary number in [0, 1]; and b is the constant (for identify-
ing logarithmic spiral shape).

Step 3. Search for prey (Exploration Phase)*”>¢:

In the exploration stage, rather than the exploitation stage, the position of the search operator is
updated using a randomly chosen search operator (Xfan 2)- This strategy will emphasize exploration
while also allowing MWOA to complete a global search. For the exploratory phase, the following
equation is used:

D=|C X} —X(®|; X(t+1) =X () —A-D (3)

where, )_i':‘a ,q is the position vector (random) selected from the current population. In addition, the MWOA
algorithm’s pseudo-code is shown in Fig. 3 ?°. MWOA can be called a global optimizer from a theoretic point
of view because it contains collective exploitation and exploration capability.

Proposed MWOA-ANN models. According to the literature, several hybrid models accurately predict the per-
formance of diverse domains. This study used the MWOA technique to train the ANN model. For this, we have
suggested ten hybridized models with ANN (MWOA-ANN Model-1 to Model-10) to estimate the RO desalina-
tion plant’s performance. Thus, the vital objective of this study is to minimize the error (least MSE). Hence, the
error (MSE) is defined as the following?"?%%;

Initialize the whales population X; (i =1, 2, ..., n)
Calculate the fitness of each search agent
X* = the best search agent
while (t < maximum number of iterations)
Jor each search agent
Update a, 4, C, I, and p
ifl1(p<205)
if2(d4\ <1
Update the position of the current search agent by the Eq. (1)
elseif2 (|4|=1)
Select a random search agent (X, ;)
Update the position of the current search agent by the Eq. (3)
end if 2
elseif1(p=0.5)
Update the position of the current search by the Eq. (2)
end if 1
end for
Check if any search agent goes bevond the search space and amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
t=1t+1
end while
refurn X*

Figure 3. The MWOA algorithm’s pseudo-code. Photo: Courtesy Mirjalili and Lewis?”>¢.
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Define dataset of desalination plant
(88 input-output sets)

v

Perform dataset division in (%)
{Training - Validation - Testing}

v

Select initial modeling parameters [{(/1, #4) :
(H1, n1-20) : (01, nl)}, logsig, purelin,
iteration = 1000, MSE]

v

Initialize the Whale Population
(Search agent = 20)

{

Train ANN: Evaluate the fitness of
-
each Whale

v

Determine the best
fitness/accuracy

Update the position
of Whale

¥ Yes

Get the best parameters, training
datasets to define the model

Figure 4. Flow diagram of the proposed (MWOA-ANN) model.

MSE :%ZE(%—&‘}Z)Z (4)

p=1 k=1

where, j/i predicted output of the neural network, yi real output; M no. of output nodes and N no. of patterns. The
complete flow diagram of the suggested model (MWOA-ANN) is displayed in Fig. 4. Primarily, collect the RO
desalination plant data and define the data sets. In this work, we have collected datasets from previous work by
Gil et al.*. Then, according to the model’s computational requirements, we arrange the data and execute dataset
division (%) into training, validation, and testing. For simulating the model, the appropriate initial modeling
parameters are selected. Then, the whale population or search agent (SA) is initialized and each whale’s fitness
is evaluated. Further, determine the best fitness; if it meets the desired requirement or criteria, then record and
stop; otherwise, update the whal€’s position and re-evaluate the fitness until the desired fitness is achieved.

Results and discussion
This section has been divided into three parts to comprehend the research findings better: “Optimization”, “Best-
optimized models”, and “Best-of-best optimized model and their novelty”.

Optimization. Literature suggests a model’s accuracy is dependent on a perfect design and a systematic
approach of the model. The right choice of modeling parameters and appropriate dataset divisions makes the
model design perfect. In addition, the best model is a step-by-step systematic approach carried out in a proper
manner. As a result, we have employed both principles to improve our model and choose the finest models in
this section. For the best selection of the model, we have optimized three important modeling parameters [#,
SA, and dataset division (%)] step-by-step in a systematic manner and achieved various fruitful outcomes. The
best model selection criteria are better outcomes than the existing models (RSM and basic ANN structure)®.

The number of hidden layer nodes (n) optimization. 'The number of hidden layer nodes (n) plays an essential
role in optimizing the model. In order to do this, we varied the hidden layer nodes one by one (n=1 to 20), and
the results obtained are presented in Table 2. For easier comprehension and evaluation, the results are also shown
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100

Results {Pg,, (L/h m?)}
Training Validation Testing All
Number of hidden layer nodes (n) | R>(%) |MSE |R?*(%) |MSE |R*(%) |MSE |R?(%) |MSE
1 95.2 0.027 |97.7 0.029 | 952 0.040 |95.8 0.028
2 95.5 0.025 |96.9 0.037 | 934 0.051 |95.7 0.029
3 96.2 0.036 |98.3 0.017 |98.6 0.015 |96.8 0.032
4 98.9 0.006 |98.2 0.019 |98.4 0.016 |98.6 0.009
5 98.0 0.011 |98.8 0.011 |99.0 0.006 |98.3 0.011
6 97.9 0.013 |98.0 0.019 |99.2 0.010 |97.9 0.014
7 98.5 0.009 |98.9 0.012 |99.3 0.005 |98.6 0.009
8 98.8 0.007 |98.0 0.023 |98.7 0.006 |98.5 0.010
9 98.9 0.006 |98.0 0.019 |97.9 0.015 |98.6 0.009
10 98.7 0.007 | 98.4 0.016 |99.4 0.004 | 98.6 0.009
11* 98.7 0.007 |98.9 0.010 |99.6 0.005 |98.8 0.007
12 99.6 0.001 |95.7 0.047 |93.4 0.044 |98.0 0.013
13 98.1 0.011 |99.0 0.018 |99.8 0.003 |98.3 0.012
14 98.4 0.010 |98.0 0.019 | 99.7 0.006 |98.2 0.012
15* 99.2 0.005 |98.6 0.018 |99.9 0.009 |98.9 0.008
16 97.9 0.013 | 98.3 0.018 |99.7 0.007 |98.1 0.014
17 98.7 0.009 |97.3 0.029 |99.9 0.023 |98.2 0.014
18 98.5 0.009 |98.0 0.020 |98.3 0.009 |98.3 0.011
19 98.8 0.008 |96.9 0.031 |97.8 0.023 |98.1 0.013
20 99.2 0.004 |96.3 0.036 |98.7 0.025 |98.2 0.012

Table 2. Permeate flux prediction at various stages using the proposed MWOA-ANN model. The number of

hidden layer nodes was selected as the optimization modeling parameter. *Significant predicted values for all

datasets.
| (a) A 0.05 (b) Minimum error: T:ra.inin.g
. 1. MSE = 0.001, = 12 — Validation
2. MSE=0.010,n=11 Testing
S 0.04 3. MSE = 0.004, 7 =10 —All
4.MSE=0.007, n=11 |
] 0.03
5 —
Best performance: E
1.R =99.6%, n=12 0.02 4
] 2.R =99.0%,n=13 P
3R =99.9%,n=15 AN 0.01+
T Lo Validation
. 4. R =989%,n=15 Testing \/
All 0.00 17
T T T T T o T v T z T F
0 5 10 15 20 0 5 10 15 20

Number of hidden layer nodes (n) Number of hidden layer nodes (n)

Figure 5. Optimization of hidden layer nodes (n) for different stages (training, validation, testing, and all) for:
(a) Regression coefficients (R?), (b) MSE.

graphically in Fig. 5. We observed that though models with #=12 and 13 demonstrate the best performance for
training and validation individually, the model with n =15 yielded the best performance for testing and all data-
sets. Finally, we screened two models (with n=11 and 15), which achieved our selection criteria for best simula-
tion results (highest R?=98.8, 98.9% and lowest MSE =0.007, 0.008) and recorded them as favorable models.

The number of whales population/search agents (SA) optimization. The second essential modeling parameter
is the number of whale population/search agents (SA) that may play an important role in designing a perfect
model. In order to do this, we varied the search agents one by one (SA =1 to 20) and obtained a variety of results,
which are shown in Table 3. For easier comprehension and evaluation, the results are also shown graphically in
Fig. 6. We have observed that (SA=10, 7, and 16) individually demonstrate the best performance for training,
validation, and testing cases, respectively, while (SA =13) yielded the best performance for all datasets. Finally,
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Results {Pg,, (L/h m?)}
Training Validation Testing All
Number of search agents (SA) | R?*(%) |MSE |R?>(%) | MSE |R*(%) |MSE |R?(%) | MSE
1 98.1 0.012 |98.2 0.019 |98.8 0.014 |98.1 0.014
2 98.4 0.011 |98.0 0.022 | 99.7 0.007 |98.3 0.013
3 98.9 0.006 |98.5 0.016 |99.5 0.012 | 98.7 0.008
4 99.1 0.005 |98.1 0.020 |98.8 0.012 |98.7 0.008
5 98.5 0.008 |98.6 0.014 |97.7 0.027 |98.4 0.010
6* 99.4 0.003 |98.2 0.018 |97.7 0.013 | 989 0.006
7 98.3 0.010 |99.1 0.009 |98.5 0.007 |98.6 0.010
8* 99.2 0.004 |98.1 0.019 |99.0 0.013 |98.8 0.008
9 99.2 0.005 |97.6 0.026 |99.4 0.007 |98.7 0.009
10* 99.7 0.001 |97.9 0.022 | 96.1 0.048 |98.8 0.008
11 99.2 0.005 |97.9 0.024 |99.3 0.011 |98.7 0.010
12 98.7 0.007 |98.2 0.019 |98.9 0.010 |98.5 0.010
13* 99.5 0.002 | 98.2 0.017 |99.7 0.009 |99.1 0.005
14 98.4 0.010 |98.2 0.019 |98.9 0.025 |98.3 0.012
15* 98.7 0.007 | 98.9 0.010 |99.6 0.005 |98.8 0.007
16* 99.2 0.004 |98.1 0.021 |99.8 0.004 | 989 0.007
17 99.4 0.003 |97.4 0.030 |96.3 0.020 |98.6 0.009
18 97.8 0.013 |98.3 0.022 |98.4 0.012 |97.9 0.015
19 98.7 0.007 |97.5 0.024 | 975 0.025 |98.2 0.011
20 98.7 0.011 |98.3 0.026 |99.2 0.012 | 98.5 0.014

Table 3. Permeate flux prediction at various stages using the proposed MWOA-ANN model. The number of
search agents (SA) was selected as the optimization modeling parameter. *Significant predicted values for all
datasets.

@) 0.05{ () Training
Minimum crror: Validation
SE = 0.001, 2 =10 Testing
0.04
 0.034
=
0.02 1
Best performance:
LR =99.7%,n=10 Training 0.01 -
964 2R'=99.1%.n=07 Validation i
3R =99.8%.n=16 Testing
4R =99.1%, n=13 —All 0.00 1 §
95 T T T . : . , . ; .
0 S 10 15 20 0 5 10 15 20
Number of search agents (S4) Number of search agents (SA4)

Figure 6. Illustration of variation in (a) regression coefficients (R?) and (b) MSE as a function of the number of
search agents (SA) to explore the optimum value.

we have screened six models (with SA=6, 8, 10, 13, 15, and 16), which achieved our selection criteria for best
simulation results considering all datasets and recorded them.

Dataset division optimization. We used dataset division (75 percent training, 20 percent validation, and 05
percent testing) as part of earlier recommendations by Gil et al.** in the first and second optimizations to validate
the proposed models. We found eight models that outperformed the Gil et al. (2018) model results (ANN and
RSM). We have divided datasets into several combinations and recorded numerous useful outcomes, as indi-
cated in Table 4, for a more indepth analysis. Finally, we screened two models (with dataset division=70-15-15
and 80-00-20), which achieved our selection criteria and recorded them.

Best-optimized models. We developed ten models (MWOA-ANN Model-1 to Model-10) by regressive
optimization (1, SA, and dataset division as variables), which are found to be superior to the existing RSM, ANN,
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Results {Pg,, (L/h m?)}

Training Validation Testing All
Dataset division (%) R? (%) | MSE R?*(%) |MSE |R*(%) |MSE |R*(%) | MSE
60-20-20 98.8 0.007 | 95.0 0.045 |97.2 0.027 |97.3 0.019
70-15-15* 99.9 ~0.000 |98.5 0.013 | 96.7 0.036 |98.9 0.007
80-10-10 98.1 0.012 | 98.8 0.011 |99.7 0.017 |98.2 0.012
90-05-05 98.4 0.011 | 99.7 0.003 |99.4 0.005 |98.5 0.011
60-00-40 98.6 0.008 | - - 88.5 0.108 |93.2 0.047
70-00-30 99.5 0.002 | - - 89.8 0.086 |98.5 0.028
80-00-20* 99.9 ~0.000 |- - 96.7 0.033 | 98.9 0.007
90-00-10 99.2 0.005 | - - 98.6 0.015 |98.8 0.008

Table 4. Permeate flux prediction at various stages using the proposed MWOA-ANN model. The optimization
modeling parameter chosen is dataset division (%). *Significant predicted values for all datasets.

Desalination plant performance prediction {Pg,, (L/h.m?)}
Optimization parameters Results
Number of Number of hidden Training | Dataset Error performance | Search
Models hidden layers (H) | layer nodes (1) Activation function function | division (%) | function agents (SA) | R? (%) | Error
[A] existing models
RSM Model, Gil et al.* - - - - - - 98.5 0.100
ANN Model, Gil et al.*® {4:7:2:1} Logsig-logsig-purelin Trainlm | (75-20-05) | RMSE - 98.8 0.060
[B] other models
WOA-ANN Model-1 {4:10:1} Logsig-purelin Trainlm | (75-20-05) | MSE 15 98.8 0.008
WOA-ANN Model-2 {4:11:1} Logsig-purelin Trainlm (75-20-05) | MSE 15 98.9 0.007
WOA-ANN Model-3 {4:13:1} Logsig-purelin Trainlm (75-20-05) | MSE 15 98.9 0.007
[C] Proposed Models
MWOA-ANN Model-1 {4:11:1} Logsig-purelin Trainlm | (75-20-05) | MSE 15 98.8 0.007
MWOA-ANN Model-2 {4:15:1} Logsig-purelin Trainlm (75-20-05) | MSE 15 98.9 0.008
MWOA-ANN Model-3 {4:11:1} Logsig-purelin Trainlm | (75-20-05) | MSE 06 98.9 0.006
MWOA-ANN Model-4 {4:11:1} Logsig-purelin Trainlm | (75-20-05) | MSE 08 98.8 0.008
MWOA-ANN Model-5 {4:11:1} Logsig-purelin Trainlm (75-20-05) | MSE 10 98.8 0.008
MWOA-ANN Model-6* {4:11:1} Logsig-purelin Trainlm (75-20-05) | MSE 13 99.1 0.005
MWOA-ANN Model-7 {4:11:1} Logsig-purelin Trainlm | (75-20-05) | MSE 15 98.8 0.007
MWOA-ANN Model-8 {4:11:1} Logsig-purelin Trainlm | (75-20-05) | MSE 16 98.9 0.007
MWOA-ANN Model-9 {4:11:1} Logsig-purelin Trainlm (70-15-15) | MSE 13 98.9 0.007
MWOA-ANN Model-10 {4:11:1} Logsig-purelin Trainlm | (80-00-20) | MSE 13 98.9 0.007

Table 5. Comparison of the modeling efficiency of the proposed models with that of the other models. *Best-
of-best optimized proposed model.

and WOA-ANN models. As evident from Table 5, MWOA-ANN Model-6 has outperformed most with the least
errors (0.005 L/h m?). We also noticed that all the ten considered models needed only one hidden layer, whereas
Gil et al.** models needed two to accomplish a reasonable extent of modeling efficiency. According to the litera-
ture, additional hidden layers complicate models. Therefore, our models are less complicated than the existing
models. In summary, the modeling parameters (1, SA, and dataset division) assume critical significance in the
modeling process and significantly impact the model’s success.

Best-of-best optimized model and their novelty. As shown in Table 5, the MWOA-ANN Model-6
outperforms the other ten proposed models, as well as the RSM and ANN models proposed in the literature
for the same datasets. Hence, it is important to explore and express the novelty of this model in depth. All the
proposed models have been developed in MATLAB version 2019b (Neural Network Toolbox). The simulation
results reveal that this model shows the best performance (across training, validation, and testing stages) at
epoch 8, as shown in Fig. 7. The performance results show fast convergence of the model. Further, the beauty of
this model is that it displays excellent performance (R?=99.5%) with minimum error (MSE =0.002) in the train-
ing stage, which is very close to zero, indicating a close fit with experimental as evident in Fig. 8al. The residual
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Figure 7. Best performances (training, validation, and testing) at epochs 8 of Model-6. *Used Neural Network
Toolbox of MATLAB version 2019b for investigations.

errors observed in the training stage are quite reasonable and acceptable (span of — 0.1 to 0.1), as apparent from
Fig. 8a2. Likewise, validation performance also recorded acceptable performance (R?>=98.2%, MSE=0.017)
with residual errors (span of — 0.1 to 0.1), as illustrated in Fig. 8b1 and b2. Furthermore, an excellent test-
ing performance is also noted (R*=99.7%, MSE=0.009) with desirable residual errors (span of 0.0 to 0.2), as
shown in Fig. 8cl and c2. At last, all dataset performance also demonstrates acceptable outcomes (R?=99.1%,
MSE =0.005) with desirable residual errors (span of -0.1 to 0.2), as shown in Fig. 8d1 and d2. In summary, we
conclude that Model-6 (R?=99.1%, MSE=0.005, H=1, n=11, SA=13) is most suitable for investigating the RO
desalination plants performance with fast convergence and minimum error.

Statistical evidence and validation of best-of-best optimized model 6

The performance of the RO desalination plant’s experimental permeate flux was compared with the proposed
model’s predicted permeate flux to validate the best of the best-optimized Model 6. In this case, ¢-test was per-
formed using 88 observations for both the experimental and predicted models. We noticed that the experimental
permeate flux values match the predicted permeate flux estimates for the proposed Model 6. As a result, the
proposed model was found to be valid by the experiment with a 96% level of significance (a=0.05). As displayed
in Table 6, the proposed models’ p-values satisfy the t-test conditions (p-value <0.05), have good Pearson cor-
relation (0.99), and have desirably hypothesized mean differences of zero.

Conclusion

A hybrid Modified Whale Optimization Algorithm (MWOA) based Artificial Neural Network (ANN) models
(MWOA-ANN) have been presented in this study. The humpback whale hunting behavior inspires the MWOA
algorithm. It has three operators to simulate mathematically; search for prey, encircling prey, and bubble-net
foraging. We employed it to explore the optimal weights and biases for ANN models, and the resulting hybrid
models produced superior results than the non-hybrid ones (RSM, ANN) reported in the literature. The per-
formance of the model for predicting permeate flux (L/h m?) of a reverse osmosis (RO) desalination plant was
assessed in this study. There are 88 sets of input (4)—output (1) data collected from the literature. Ten models
(MWOA-ANN Model-1 to Model-10) have been proposed to investigate the plant’s performance. According to
simulation findings, all proposed models outperform existing ANN and response surface methodology (RSM)
and hybrid WOA-ANN models. Among the ten proposed models, the MWOA-ANN Model-6 with a single hid-
den layer (H=1), eleven hidden layer nodes (n=11), and the thirteen search agents (SA =13) produced the most
outstanding regression results (R?=99.1%) with minimal errors (MSE =0.005). The residual errors for Model-6
are also found to be within limits (span of — 0.1 to 0.2), further considering model efficiency. Finally, simulation
findings demonstrate that the MWOA algorithm is an efficient optimizer that can outperform backpropagation
(BP) and WOA algorithms in such cases of desalination plant modeling and may appear indispensable in similar
process plants applications. During the simulations, possibility of limitations such as “Overfitting” are possible.
However, it is effortlessly controlled by a step-by-step and systematic approach in this investigation. The MWOA-
ANN hybrid model has been currently tested for 88 data sets provided by Gil et al.**. In the future, the authors
shall conduct suitable RO-based desalination experiments to obtain higher number of datasets and explore the
superiority of these hybrid models over previous models when considering huge data sets.
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Figure 8. Scatter and observed residual errors box plots for Model-6: (al, a2) training (b1, b2) validation (c1,
c2) testing and (d1, d2) all datasets.

Scientific Reports | (2023) 13:2901 | https://doi.org/10.1038/s41598-023-30099-9 nature portfolio



www.nature.com/scientificreports/

t-test parameters Experimental permeate flux | Predicted permeate flux best-of-best optimized model 6
Mean 1.14 1.14

Variance 0.35 0.34

Observations 88 88

Pearson correlation - 0.99

Hypothesized mean difference | - 0.00

p-value - 0.01

Table 6. Statistical validation using t-test of the proposed Model 6.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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