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Obesity can cause various diseases and is a serious health concern. BMI, which is currently the popular
measure for judging obesity, does not accurately classify obesity; it reflects the height and weight

but ignores the characteristics of an individual’s body type. In order to overcome the limitations of
classifying obesity using BMI, we considered 3-dimensional (3D) measurements of the human body.
The scope of our study was limited to Korean subjects. In order to expand 3D body scan data clinically,
3D body scans, Dual-energy X-ray absorptiometry, and Bioelectrical Impedance Analysis data was
collected pairwise for 160 Korean subjects. A machine learning-based obesity classification framework
using 3D body scan data was designed, validated through Accuracy, Recall, Precision, and F1 score,
and compared with BMI and BIA. In a test dataset of 40 people, BMI had the following values:
Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462, while BIA had the following
values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had
the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792. Thus, our
accuracy was higher than BMI as well as BIA. Our model can be used for obesity management through
3D body scans.

Grading a patient’s obesity level is an important activity in healthcare'. Obesity acts as a risk factor for various
diseases, including chronic diseases, type-2 diabetes, heart disease, and certain cancers®. Knowing that you
are obese can motivate you to manage your weight®°. In addition, intentional weight management can lower
the risk of poor health and is associated with the benefit of a lower risk of disease'’. However, Body Mass Index
(BMI), which represents the criteria for obesity defined by the World Health Organization (WHO), does not
accurately classify obesity as it does not sufficiently reflect body-type factors!!-'. Nutrition varies between
regions and body types'*'>. Reflecting the body-type factor requires anthropometric measurements. However,
traditional anthropometric methods are impractical because such measuring requires trained experts. As an
alternative, research on using a 3D scanner for human body measurement is being actively conducted'®-*" as
it is a less-invasive method than traditional anthropometric measurements. Computed Tomography (CT) or
Dual-energy X-ray absorptiometry (DXA), which is the gold standard for measuring human body fat percent
(bf%), involve the risk of exposure to radiation when frequent measurements are taken. Unlike CT or DXA, 3D
scanners do not expose the human body to radiation®. In addition, health risks can be analyzed or predicted
through various measures, not just a single one. Therefore, in this study, 3D body scan data and DXA data were
collected in pairs for Koreans, and obesity classification was performed using anthropometric values obtained
from the 3D body scan data.

Loffler-Wirth et al. classified the body types of residents in Leipzig, Germany using a 3D scanner'”. Body
measurements were extracted from 8499 people through a 3D scanner. After dividing this by height, the body
types were grouped through Self-organizing Map (SOM). Clustering body types using a Machine Learning meth-
odology through large-scale experiments is meaningful, but it is not scalable because it cannot be paired with
clinical information such as DXA. Pleuss et al.>* conducted a sampling study to supplement Loffler-Wirth et al.
but the number of samples was quite small. In Ng et al. and Bennett et al. 3D scanner data and DXA showed a
strong correlation through statistical analysis; the relationship can be explained but it is difficult to estimate bf%
through various factors of the human body'®?”. Some studies used machine learning; Harty et al.*! developed a
new bf% estimation equation based on 3D human body data and 4C model anthropometric data. Using a deci-
sion tree model is useful in that important factors and the criteria necessary for formulas can be distinguished.
Lu et al.?* proposed a methodology to predict bf% through a machine learning-based framework after extracting
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features from 3D body data obtained using a 3D scanner. Although it showed higher accuracy than BMI and
BOD POD, the experiment was conducted on relatively few subjects, i.e., 50 men. Although active research is
underway on DXA and 3D body scan data, not many machine learning models have been studied.

Most obese people do not perceive themselves as obese?®??, which may hinder public health initiatives®.
Knowing one’s obesity group can serve as a prerequisite for behavior change for health® and will be helpful for
health management and disease prevention.

The purpose of our study is to develop a machine learning framework to classify obesity among Koreans based
on the bf% of DXA—considered the gold standard—using body measurements extracted from 3D scanners. By
selecting input features through a Genetic Algorithm, we not only improve the performance of the Machine
Learning model but also observe the selected input features to help in healthcare.

Method
Materials. The collection and use of data used in this study and ethical review were approved by the Insti-
tutional Review Board of Korea National Sport University (20220411-021). All methods were carried out in
accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/or
legal guardians regarding including their information/images in an online open-access publication and paper.
We confirmed that informed consent was obtained from all subjects (for participation). This experiment faith-
fully followed the strict regulations and guidelines of the Institutional Review Board. The dataset used in this
study was collected between 2022-04-11 and 2022-06-30. Recruitment was based on BMI to have a BMI dis-
tribution similar to Size Korea. There were a total of 160 subjects: 73 women and 87 men. As shown in Fig. 1,
the men wore tight-fitting bottoms and swimming caps and the women wore tight-fitting tops and bottoms and
swimming caps. The subjects were measured using a 3D scanner, DXA, and BIA. Through this, a total of 160
3D body data, DXA data, and BIA data were obtained. Statistics for the collected data are presented in Table 1.
First, we verified whether our 160 data were a fair representation of general Korean anthropometric data.
The 8th Anthropometric Data collected between 2020 and 2021 by Size Korea was used for validation®’. As our
main participants were in their 20 s and 30 s, we used the data of 1547 women and 1306 men in 20 s and 30 s
from amongst the 8th Anthropometric Data for accurate comparison. In order to verify whether the anthropo-
metric characteristics of Koreans can be viably represented, a Kolmogorov-Smirnov (KS) test was conducted
to confirm that the two sample distributions were identical. This test is useful for determining the difference in
variance between two samples. In the case of men, the p value of the KS test came out as 0.926, which is valid at
the significance level of 0.01. In the case of women, the p value of the KS test was 0.052, which is valid at the sig-
nificance level of 0.01. And a t-test was conducted to compare the average BMI within the data we collected with
the average BMI within the Size Korea data. For men, the t-test result was a p value of 0.5807, at a significance
level of 0.01, so we hypothesized that there is no difference between the average BMI of Korean men in 20 s and
30 s and the average BMI of men we collected. Similarly, for women, the t-test result was a p value of 0.0532, and
at a significance level of 0.01, so we hypothesized that there is no difference between the average BMI of Korean

Figure 1. Subjects’ attire and posture.

Gender Statistics | Age | Height (cm) | Weight (kg) | BMI (kg/m?) | DXA BF(%) | BIA BF(%)
Average 24.07 |178.10 77.92 24.64 20.13 18.45
Std 4.25 5.37 13.52 4.00 8.70 7.42
Male (87)
Min 20.00 | 165.55 54.30 16.22 5.50 5.40
Max 39.00 |191.83 120.90 37.61 37.40 37.00
Average 24.14 | 165.63 57.01 20.74 27.55 25.83
Std 4.54 4.96 10.13 3.34 6.94 6.29
Female (73)
Min 20.00 | 155.87 40.70 15.70 6.70 11.70
Max 37.00 |173.99 89.60 32.25 46.00 45.70

Table 1. Collected data statistics.
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women in 20 s and 30 s and the average BMI of women we collected. Thus, we verified that the data we collected
was representative of Koreans in 20 s and 30 s.

3D scanner. The 3D scanner was a PFS-304A model (PMT innovation company, Gyeonggi-do, Korea, PFS
software ver. 1.3). Figure 2a shows the 3D scanner used in this study, wherein the camera module rotates 360°
through a motor mounted on the top when it scans and subjects can be measured in a stationary position. The
subjects’ postures were measured by taking the A-pose recommended by ISO-7250%. If the A-pose is not taken
(e.g., anthropometry is not performed when the arm is close to or attached to the body), a blind spot is formed
and the correct mesh shape is not created. As shown in Fig. 2a, the measurements of the 3D scanner were taken
in an indoor lighting environment, and they are summarized in Table 2.

Dual-energy X-ray absorptiometry (DXA). Lunar (GE Healthcare, Madison Wisconsin, America,
EnCore software ver. 13.60.03) in Fig. 2b was used for DXA. DXA is a body component-measuring instrument
that measures body fat, lean body mass, and bone mass and has long been regarded as the gold standard for
measuring body components. The DXA device was handled and measured by an expert; during measurement,
the subject maintained an immobile posture while lying down, and the following body parts were examined: arm
(left, right), leg (left, right), trunk (left, right), Android, and Gynoid. BMD, BMC, fat%, fat(g), and lean(g) were
obtained through DXA for each body part. Here, BMD represents bone density and BMC represents bone min-
eral mass. Fat% represents fat percentage, fat (g) represents fat weight, and lean (g) represents weight excluding
fat. This study classified obesity in individuals based on the total body fat% (bf%) according to DXA.

Bioelectrical impedance analysis (BIA). BIA is a method of measuring body composition through the
impedance difference between body fat and lean body mass*. As shown in Fig. 2¢, Inbody770 was used as the
measuring device and the subjects were measured in the same clothing and immobile posture as in the previous
experiments. Total Body Water (TBW), IntraCellular Water (ICW), ExtraCellular Water (ECW), protein, min-
erals, Body Fat percentage (bf%), and Fat-free Mass (FFM) were obtained through BIA. Among them, bf% was
used for comparison using the methodology proposed in this study. The obesity group of BIA was divided using
the bf% criteria presented in Table 3.

Data preprocessing. Data obtained through DXA and BIA only used bf%. Based on the bf% obtained from
the DXA of the test subjects in the experiment, the obesity class label was derived as per the cutoff in Table 3. The
bf% standard cutoff for Obesity was set in accordance with the WHO? classification, and the standard cutoffs
from Lobman et al. were used for the rest, namely underweight, normal, and overweight®. Currently, there is
no clear obesity category for DXAY, but the cutoff for obesity was based on 25%(bf%) for men and 35%(bf%)
for women by the Korean Society for Obesity, and the rest of the groups were classified by reference to McArdle
and Chang®®*. Therefore, subjects were labeled into four groups: underweight, normal, overweight, and obese.
The distribution results of labeling based on bf% measured by DXA Table 3 are depicted in Table 4. As shown in
Fig. 3, the data obtained from the 3D scanner extracted body measurements from the mesh data based on five
landmarks: the back of the neck, the umbilicus, the groin, and the armpit (left, right).

Framework. We propose a machine learning-based methodology to classify obesity groups. Figure 4 shows
the proposed machine learning-based framework. Body measurements are first obtained from the 3D scanner,
and then data preprocessing is performed by matching it with the bf% of DXA and labeling it. After that, the
final model is selected through the process of “Choose ML model” and “Feature selection Genetic Algorithm.”

(a) (b) (c)

Figure 2. Equipment used in the experiment. (a) 3D scanner (PFS-304 of PMT), (b) DXA (Lunar of GE), (c)
BIA (Inbody770).
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position

Value description Value description

WCR Waist-to-chest ratio Thick thing cir tC}lliirl‘gcklllmference of the thickest part of the innermost

WHR Waist-to-hip ratio Middle thigh cir Circumference of the middle of the thigh

WHIR Waist-to-height ratio Knee cir Eorlzontal circumference through the midpoint of the
neecap

THR Thigh-to-height ratio Calf cir Circumference of the most convex part of the calf

Height of the back of the neck Height from floor to the back of the neck in a standing | ., cir Circumference of the thickest part of the arm

Height from floor to the shoulders in a standing posi-

Shoulder height tion CS. area of the back of the neck | Cross-sectional area of the back of the neck
. In a standing position, the height from floor to the top .
Chest height of the nipples and the beginning of the chest Shoulder CS Cross-sectional area of the shoulder
. . . . . . Cross-sectional area of the part passing through the
(breast) Chest height Height from floor to nipple in standing position Chest area midpoint of the sternum
Waist height Height from ﬂpor to the point in front of the waist in a (breast) Chest area C}'oss-secFional area of the part passing through the
standing position nipple point
Cross-sectional area of the part passing through the
Navel height Height from the standing position to the navel Waist CS front of the waist, the side of the waist, and the back
of the waist
Height below the navel The height from the standing position to the iliac bone Navel waist CS Crst—sectional area pf the‘part passing through ngvel
below the navel point, navel level, waist point, navel level, back point
Hip height Height from floor to hip protrusion in standing posi- Area below the navel Qross-sectional area of the part that passes through
tion iliac crest below navel
Groin height Vertical height from floor to groin (actual leg length) Hip CS Cross-sectional area of the part passing through the
buttock protrusion
Thick thigh height Height from floor to the thickest part of the thigh Groin area Cross-sectional area of the groin
Midthigh height Height from floor to mid-thigh Thick thigh area CrOSS-S?Cthnal area of the thickest part of the inner-
most thigh
Knee height Vertical height from floor to the top of the shinbone Meddle thigh area Cross-sectional area of the middle part of the thigh
Calf height Height from floor to the point of the thickest part of Knee CS Cross-sectional area passing through the midpoint of
the calf the kneecap
Neck cir Circumference passing under the back of neck and Calf CS Cross-sectional area of the most convex part of the calf

under the shield cartilage

Shoulder cir

Circumference from the end of the shoulder to the end

of the shoulder opposite the back of the neck Total volume

Volume of total body

Cir. of the chest

Horizontal circumference through the midpoint of the

Shoulder volume Volume of shoulder

sternum

(breast)Chest cir Horizontal circumference through nipple point Chest volume Volume of chest
Horizontal circumference passing through the point in

Waist cir front of the waist, the point in the side of the waist, and | Epigastric volume Volume of epigastrium

the point in the back of the waist

Navel waist cir

Horizontal circumference passing through navel point,

navel level, waist point, navel level, back point Volume of lower abdomen

Lower abdominal volume

Horizontal circumference through the iliac crest below

Below navel cir the navel Thigh volume Volume of thigh
Hip cir i—il(t))rrllzontal circumference through the buttock protru- Calf volume Volume of calf
Groin cir Groin circumference Abdominal volumetric Volume of abdominal

Table 2. Measurement of 3D mesh data.

Index Sex Underweight | Normal Overweight | Obesity
BMI (kg/m?) Male/Female | BMI<18.5 18.5<BMI<23 | 23<BMI<25 |25<BMI
Male BF% <10 10<BF%<20 20<BF%<25 | 25<BF%
BIA, DXA
Female BF% <20 20<BF%<28 28<BF%<35 |35<BF%

Table 3. Obesity class standard cutoff.

Choose ML model. In data preprocessing, the data in the state of finished preprocessing the 3D body meas-
urements and Sex are used as input values for the Logistic Regression*’, Decision Tree*!, Random Forest*?, Sup-
port Vector Machine (SVM)*, Gradient Boosting*, and AdaBoost* and fivefold cross validation is performed.
It is divided into 120 training sets and 40 test sets. Among these models, Accuracy, F1, Recall, and Precision
values were compared, and a model with good performance was selected and used as a classifier in the “Feature
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Train set

Class Male | Female | Total
Underweight 8 4 12
Normal 23 23 46
Overweight 12 12 24
Obese 25 13 38
Test set

Class Male | Female | Total
Underweight |3 3 6
Normal 6 8 14
Overweight 5 6 11
Obese 5 4 9

Table 4. Subject class distribution.

Figure 3. Sample of the 3D mesh data and standard landmarks for measurement.

Choose ML model Feature selection
Genetic algorithm

@ O Logistic regression Waist Cir
DecizionTree Hip Cir

Select final model

° Random Forest Thick Thigh Cir
{é}@ SVM Arm Cir
GradientBoosting Chest area
AdaBoost

Preprocessing

Figure 4. Overall framework of this study.

selection Genetic Algorithm” process. In Table 4, as the quantity of data is small and imbalances exist, the model
is selected by referring to Precision, Recall, and F1 score values rather than simply using Accuracy. Accuracy
is the ratio of correctly predicted numbers to the total number. Precision is the sum of true positives and false
positives and the ratio of true positives. Recall is the sum of true positives and false negatives and the ratio of true
positives. F1 score is the harmonic mean of Precision and Recall.

Logistic regression predicts the probability of occurrence by using a linear combination between variables
of input data, and the result is classified into a specific class. This study used multiclass logistic regression with a
cross-entropy function. Decision Tree is the most preferred machine learning model as an explanatory model.
It outputs a class in which input data is classified based on input variables through a tree structure; it is a way to
perform a query on a node and branching out. Its performance is not as good as other models, and it is vulnerable
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to overfitting. Random Forest is a machine learning model that uses a bundle of basic decision trees and aver-
ages them to compensate for performance. Through this, the performance can be generalized and made more
robust against overfitting compared to a decision tree. Support Vector Machine determines the hyperplane to
maximize the margin between support vectors; its purpose is to maximize the distance between various classes
and to find a hyperplane that has a large difference from the training data to which the hyperplane is closest. The
main idea of Gradient Boosting is to connect multiple non-deep decision trees, that is, weak learners. As basic
trees can classify some data well, performance improves when trees are added. The loss function is defined and
gradient descent is used to supplement the value to be classified by the next tree. AdaBoost stands for Adaptive
Boosting. Unlike Gradient Boosting, this model is trained by adding weights to the classified samples. At this
time, the learning model is created by adding weights to the next model in the sample that is poorly classified.

Feature selection Genetic Algorithm. This process selects the input features of the previously selected
machine learning model through a Genetic Algorithm. Selectively choosing the input features of the machine
learning model not only improves the model’s performance but also identifies whether a specific value among
the 3D body measurements in Table 2 affects the classification of obesity.

While selecting input features, finding the Global Optimum by comparing all sets of input features combina-
tions is practically impossible. Therefore, a meta-heuristic algorithm approach was chosen to find an optimal
solution close enough to the Global Optimum. Previous studies have demonstrated that the Genetic Algorithm
is superior to other meta-heuristic algorithms in variable selection*®*’. In this study, the Genetic Algorithm
(GA) was used as a feature selection method. GA takes a meta-heuristic approach to solving complex problems
through efficient trial and error*®, hence mimicking Charles Darwin’s theory of natural selection and mammalian
reproduction. In this study, GA aims to find the best input feature through repeated generation reproduction.
GA involves six steps. In Step 1, it initializes the combination of chromosomes, i.e., the initial input features, and
sets the parameters. These parameters include population and mutation ratio, where population refers to the
number of chromosomes in each generation, i.e., the number of combinations of input features. The mutation
ratio refers to the ratio of gene mutations among all chromosomes; this corresponds to the ratio of selection of
input features. We set the population to 100 and the mutation ratio to 20%. Step 2 involves learning each input
feature in a Random Forest. In Step 3, fitness was evaluated for the chromosomes of each input feature and the
fitness function was used to determine the accuracy. In Step 4, out of the current generation and current chro-
mosomes, we selected excellent chromosomes with Accuracy. In this study, the top 80% were selected as excellent
chromosomes. Step 5 involved generating next-generation chromosomes through crossover and mutation. In
this case, crossover means mixing the selected adoptive parent chromosomes in half. We set this to stop when
the 100t generation was passed, and until then, it was set to return to Step 2 and repeat all intervening steps. In
Step 6, we selected the final model, picking the model that generated the highest Accuracy.

A total of 100 generations were generated and the input feature of the generation with the highest Accuracy,
Recall, Precision, and F1 score was selected. Among the 100 generations, the generation with Accuracy, Recall,
Precision, and F1 score of 0.8, 0.767, 0.842, and 0.792 was the highest and the corresponding input feature was
selected as the final input feature. Accuracy reached 80% in the 50th epoch, after which it converged or even
decreased. Figure 5 shows the flow of accuracy by generation. Table 5 presents the final selected features.

Results
Accuracy, Recall, Precision, and F1 score were calculated using DXA as the Ground Truth for the reference group
classification. BIA classified obesity based on the bf% obtained through Inbody770, and BMI classified obesity
according to the WHO Asian standard cutoff'*. The cutoff for BIA and BMI is listed in Table 3.

Table 6 shows the results of classification using the above models; among them, as its Accuracy, Recall, Preci-
sion, and F1 score were 0.725, 0.692, 0.661, and 0.78, i.e., all higher than those of other models, Random Forest
was selected as the machine learning model in the process.

Y- accuracy / X - population

20 40 60 80 100 120

Figure 5. Accuracy flowchart by generation.
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Value Value Value

WCR Hip cir Hip CS

Groin height Thick thing cir Groin area

Thick thigh height | Middle thigh cir Thick thigh area
Midthigh height Arm cir Calf CS

Knee height Shoulder CS Total volume
Calf height Chest area Shoulder volume
Shoulder cir Navel waist CS Thigh volume
(breast) Chest cir Area below the navel | Sex

Table 5. Selected features of the “Feature selection Genetic Algorithm”.

Rank | Classifier Accuracy | Recall | Precision | F1 score
1 Random Forest 0.725 0.661 | 0.780 0.692
2 GradientBoosting | 0.700 0.599 0.655 0.609
3 Logistic 0.500 0.515 0.443 0.462
4 SVM 0.650 0.477 0.383 0.412
5 DecisionTree 0.475 0.484 0.478 0.465
6 AdaBoost 0.425 0.358 0.431 0.356

Table 6. Results of the choosing the ML model. Significant values are in bold.

The performance of the proposed approach is better than that using BMI. In Table 7, there is a difference of
0.271 in Accuracy from 0.529 to 0.8, 0.295 in Recall, 0.384 in Precision, and 0.33 in F1 score. This means that
obesity can be classified more comprehensively by reflecting the various dimensions of the human body consider-
ing the body type rather than just the BMI, which classifies obesity through simple height and weight. Although
BIA is widely used in body composition studies, concerns about its accuracy still exist***?. As BIA assumes that
the percentage of body water is approximately 73% and estimates it accordingly, low accuracy may ensue when
the percentage of body water of an individual does not meet these conditions®!. Furthermore, depending on the
statistical model derived from a specific population, BIA may have differences in gender, age, ethnicity, and so
on®. The Pearson’s correlation between bf% of DXA and bf% of BIA in our collected data was 0.95. When evalu-
ated after the obesity classification presented in Table 3, there was a misclassification. BIA scored 0.752, 0.742,
0.751, and 0.739 in Accuracy, Recall, Precision, and F1 scores, respectively. The proposed obesity classification
showed an improvement of 0.048, 0.025, 0.091, and 0.053 in Accuracy, Recall, Precision, and F1 scores, respec-
tively, compared to BIA. This shows that the Accuracy, Recall, Precision, and F1 score are 0.075, 0.1, 0.106, and
0.062 higher, respectively, than in the Random Forest model without feature selection. The selected features affect
the classification of obesity more than the unselected features. We also compared with the model provided by
Tian et al.*%>. Denotes, Tian’s model is a regression model, not a classification model, and we obtained results by
dividing it by the criteria of the Table 3. The R* and RMSE values of Tian’s model were 0.56 and 5.74, respectively.

Conclusion
We collected 3D body scans, DXA, and BIA data pairwise for Korean subjects and used this data to classify
obesity in individuals. By using not only 3D body data but also DXA and BIA, we developed a technique for
clinically clear obesity judgment that is expandable in terms of healthcare.

This study proposes a methodology for classifying obesity using various body measurements through a 3D
scanner, unlike the BMI, which classifies obesity solely based on height and weight. The present study specifically

Classifier | Accuracy | Recall | Precision |F1score | R%/RMSE
Ours 0.800 0.767 | 0.842 0.792
w/o GA 0.725 0.661 0.780 0.692
BIA 0.752 0.742 0.751 0.739
BMI 0.529 0.472 0.458 0.462
Tian et.al 0.472 0.379 0.448 0.321 0.56/5.74

Table 7. Comparison between our method, BMI, BIA and Tian et al. within the test set. w/o without, GA
genetic algorithm. Significant values are in bold.
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considers Korean body types. The proposed methodology showed better performance in classifying obesity than
the BMI through the machine learning methodology. It also showed better performance than BIA.

Pleuss et al. and Harty et al. conducted analysis using one or two machine learning models, but in this study,
six machine learning models were compared to select a model suitable for obesity classification®*. We performed
feature selection through a Genetic Algorithm to identify the measurements of the human body that have an
impact on determining obesity.

The proposed system showed superior performance over BMI and BIA. It can be used for long-term obesity
healthcare monitoring by measuring one’s body with a 3D scanner. Furthermore, as future healthcare is predicted
to be Predictive, Preventive, Personalized, Participatory (4P)*, a system that classifies obesity as an indicator of
health can be utilized as a new healthcare service that satisfies the 4P.

Our study has certain limitations. First, there are limits on data. The collected data included males and females
in their 20 s and 30 s. As such, it is not common to all age groups. It does not reflect the adult group over 40 years
of age. Furthermore, obesity was not evenly distributed, and there was a limited amount of data. Given that the
measurement values were extracted and used from the mesh data generated by the 3D human body scanner, it is
difficult to ensure that the 3D information was fully used. Second, there are spatial and cost limitations associated
with 3D scanners that make them unpopular. Third, it provides users with categorical information rather than
continuous information. It does not reflect the continuous variation of human.

We intend to collect continuous pair data as future work and conduct experiments in various age groups as
well as compare between men and women in their 20 s and 30 s. Furthermore, we intend to conduct experiments
on patients with specific diseases or disorders. By referring to previous studies®, we intend to consider using a
three-dimensional representation such as curvature. In the Genetic Algorithm selection, selection methods such
as elitism and tournament can be introduced to reduce computation complexity and optimize future research®-.
In order to reflect the continuous variability of human beings, we intend to introduce the regression methodol-
ogy as a future study. We would like to observe the consistency of data obtained from different scanner devices
and DXA as future research. We need to confirm this and do future work to validate the data and other models.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available because they contain
personal information but are available from the corresponding author upon reasonable request.
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