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A transparent artificial intelligence 
framework to assess lung disease 
in pulmonary hypertension
Michail Mamalakis 1,2,4*, Krit Dwivedi 1,4, Michael Sharkey 1, Samer Alabed 1,4, David Kiely 1,3 & 
Andrew J. Swift 1,4*

Recent studies have recognized the importance of characterizing the extent of lung disease in 
pulmonary hypertension patients by using Computed Tomography. The trustworthiness of an 
artificial intelligence system is linked with the depth of the evaluation in functional, operational, 
usability, safety and validation dimensions. The safety and validation of an artificial tool is linked 
to the uncertainty estimation of the model’s prediction. On the other hand, the functionality, 
operation and usability can be achieved by explainable deep learning approaches which can verify the 
learning patterns and use of the network from a generalized point of view. We developed an artificial 
intelligence framework to map the 3D anatomical models of patients with lung disease in pulmonary 
hypertension. To verify the trustworthiness of the framework we studied the uncertainty estimation 
of the network’s prediction, and we explained the learning patterns of the network. Therefore, a 
new generalized technique combining local explainable and interpretable dimensionality reduction 
approaches (PCA-GradCam, PCA-Shape) was developed. Our open-source software framework was 
evaluated in unbiased validation datasets achieving accurate, robust and generalized results.

Pulmonary hypertension (PH) is a complex condition characterized by elevated pulmonary arterial pressures 
and presenting with a varying degree of lung parenchymal disease. Computation Tomography (CT) imaging is 
the gold-standard imaging modality for non-invasive assessment of lung disease and is recommended by the 
latest European Respiratory Society/European Society of Cardiology PH guidelines1. Recent work in the medical 
literature has highlighted the need to better characterize and quantify lung disease in pulmonary hypertension2,3. 
There is a prognostic significance of lung parenchymal disease on CT with presence of emphysema and ground 
glass predictive of early mortality4.

Deep learning approaches are used to quantify pulmonary ground-glass opacity nodules detection5, and 
emphysema regions using High-Resolution Computed Tomography scans of patients with chronic obstructive 
pulmonary disease6. Moreover, deep learning tries to automate the detection of PH existence or absence7,8 and 
predict elevated pulmonary artery pressure9. The current trend is the use of patch-based approaches for texture 
extraction and feature classification to either segment or classify medical pathologies and regions of interest in 
a variety of different organs10–12. For instance, Tang et al.13 proposed a patch-based network with random spatial 
initialization and statistical fusion on overlapping regions of interest, for three-dimensional abdominal organ 
segmentation on high-resolution computed tomography. Ben naceu et al.10 utilized a deep learning-based selec-
tive attention using overlapping patches and multi-class weighted cross-entropy to segment fully automatically a 
brain tumour. Borne et al.14 developed an automatic labelling of cortical sulci using patch and CNN-based seg-
mentation techniques combined with bottom-up geometric constraints. Lastly, Aswathy et al.15 used a Cascaded 
3D U-net architecture for segmenting COVID-19 infections from lung CT volume images.

Artificial intelligence (AI) approaches show great promise in clinical application particularly in their ability 
to automatically quantify different radiological lung disease features16. However, the use of AI in clinical appli-
cations always gives rise to the limitation of introducing bias, and the limitations posed by privacy and security 
constraints, and lack of transparency and explainability of the networks17,18. Translating AI networks from the 
prototyping version to support clinical stakeholders during routine care brings challenges, especially as decisions 
impact human lives. It has been observed that when experts interact with AI frameworks, they became biased 
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to reach decisions, and they may be disproportionately inclined to follow the AI’s predictions19. That may be 
problematic because of the AI’s lack of generalization and confidence prediction combine with the risk of learning 
wrong patterns during the training process. These circumstances motivate the need for transparent AI systems19. 
The latest review of Ciecierski-Holme et al.20 highlights that the main limitations of the existing AI studies are 
related with the lack of successful development and adaptation of well-performing AI tools, the limited available 
data, the lack of transparent and cost-effective AI tools in low-income and middle-income countries. Shad et al.21 
state that studies of explainability, uncertainty and bias should be core components of any clinical AI tool stud-
ies. Even though there are studies using explainability techniques to increase the transparency of their AI tools 
they lack generalized approaches as they mainly use local explainable techniques like salience maps, GradCam, 
or feature engineering approaches22–24.

To this end, we developed a transparent AI considering the lack of prediction in high uncertainty circum-
stances and validating the usability of the system by verifying the correct patterns of learning during the training 
process. We estimated the epistemic and aleatoric uncertainty of the framework and we developed a new general-
ized local explainable and interpretable dimension reduction technique (PCA-GradCam, PCA-Shape) to study 
and validate the prediction of the AI framework. Moreover, we comprehensively studied a pulmonary hyper-
tension multi-classification task by using different deep learning networks (Vgg-16, ResNet-50, DenseNet-121, 
DenRes-131). We used the deep learning classifier to develop the pathological ratios of lung diseases and to map 
the 3D anatomical lung models of patients with evidence of pulmonary hypertension. To the authors knowledge, 
this is the first study to develop a transparent artificial intelligence framework to map and diagnose a patient’s 
pulmonary hypertension profile in three dimensions.

Results
We evaluated the results of the multi-classification pulmonary hypertension task in the ‘seen’ validation and 
test datasets. Moreover, we implemented an ablation study of the framework for different 3D patch sizes, to 
observe how the variety of the patch sizes influence the performance of the AI framework. Lastly, we validated 
the AI framework in the ‘unseen’ dataset which includes patients with a challenging pathological pulmonary 
hypertension profile.

Multi‑classification task in the ‘seen’ validation and testing cohort.  The AUC-ROC curves, 
precision, recall, and f1-score metrics have been used to evaluate the generalization and accuracy of the net-
works’ classification. Supplementary Fig. S2 presents the AUC-ROC curves of different deep learning models 
(DenseNet-121 and DenRes-131) on the datasets. The accuracy of the deep learning classifiers has been tested 
for a variety of different 3D patch sizes ( 64× 64× 3 , 32× 32× 3 , 16× 16× 3 , and 8× 8× 3 , Supplementary 
Fig. S2a–d, e–h, i–l and m–p, from left to right, respectively). The performance of the networks decreased as 
we reduced the 3D patches size of the multi-classification task. The best results scored by the 64× 64× 3 patch 
size, with an AUC-ROC higher than 98.0% in DenseNet-121 and higher than 96.8% in the DenRes-131 in the 
validation cohort for all the different classes. In the test cohort (Supplementary Fig. S2i–p) DenseNet-121 per-
formed higher than 96.1% AUC-ROC accuracy in all the classes, whilst DenRes-131 scored higher than 90.9%. 
The 32× 32× 3 patch size in the validation cohort DenseNet-121 outperformed the accuracy of DenRes-131 in 
honeycomb, emphysema, and abnormal classes and it was outperformed by the accuracy of DenRes-131 in nor-
mal, pure ground glass, and ground glass reticulation classes. On the other hand, in the test cohort DenRes-131 
outperformed the accuracy of the DenseNet-121 in all classes, verifying the higher generalization of the model 
compared to the DenseNet-121 (Fig. 1).

Figure 2 presents different metric scores (f1-score, AUC-ROC, Recall, Precision) of the deep learning net-
works (VGG-16, ResNet-50, DenseNet-121 and DenRes-131) for the test cohort of the ‘seen’ dataset. Figure 2a–d, 
shows that DenseNet-121 and DenRes-131 outperformed ResNet-50 and VGG-16 in all the metrics except preci-
sion. DenRes-131 delivered the best results in all metrics compared with DenseNet-121. Figure 2e–h, present the 
results of the different patch sizes. Figure 2e–h highlights all the metrics scores for each patch size for DenRes-131 
and Fig. 2i,j, we summarize the AUC-ROC and f1-score values of the four different patch sizes. The most robust 
results were scored for the 16× 16× 3 and 8× 8× 3 sizes followed by the 32× 32× 3 and 64× 64× 3 . The 
highest average value was for the 16× 16× 3 followed by the 32× 32× 3 and 64× 64× 3 in the AUC-ROC and 
f1-score metrics, respectively. Summarizing, in the multi-classification task the highest performance was by the 
DenRes-131 network and 16× 16× 3 patch size followed by the 32× 32× 3 patch size.

Validation of the AI framework in the ‘unseen’ cohort.  To evaluate the 3D-patch framework in 
the ‘unseen’ cohort we used the measurements of Jaccard score, Hamming distances, Root Mean Square Error 
(RMSE), f1-score, recall, precision, Matthews correlation coefficient (MCC), and accuracy. Table 1 presents the 
scores of ResNet-50, DenseNet-121 and DenRes-131 for the four different patch sizes in the full lungs slices 
of the ‘unseen’ cohort. In 64× 64× 3 the ResNet-50 outperformed the other networks with 74.63% Jaccard 
score and 1.246 RMSE score. In 32× 32× 3 and 16× 16× 3 DenRes-131 outperformed the other networks 
with 91.83% Jaccard score, 5.96 mm Hamming distances and 0.855 RMSE score and 89.01% Jaccard score, 7.99 
mm Hamming distances and 1.015 RMSE score respectively. DenseNet-121 outperformed all the networks in 
8× 8× 3 patch size with 69.20% Jaccard score, 18.27 mm Hamming distances and 1.361 RMSE score. The 
best performance of the networks was in 32× 32× 3 patch sizes followed by 16× 16× 3 . Generally, the high-
est average score was from the DenRes-131 and the 32× 32× 3 patch size (91.83%, 5.96 mm, 0.855, 93.87%, 
93.42%, 96.54%, 93.69% and 80.21%, respectively). The most robust results (lowest standard deviation) were 
presented in the DenRes-131 and 16× 16× 3 patch size for the RMSE, f1-score, precision, accuracy and MCC 
in the 16× 16× 3 (0.32, 4.87%, 2.20%, 3.27%, and 7.21%, respectively), as mentioned in Fig. 2. The results of 
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DenRes-131 for the 32× 32× 3 and 16× 16× 3 patch sizes in the ‘unseen’ cohort are highlighted in Figs. 3 and 
4. The figures presents twelve different patients of the ‘unseen’ cohort ( six in PART 1 Fig. 3 and six in PART 
2 Fig. 4) by using DenRes-131 with 32× 32× 3 and 16× 16× 3 patch sizes. From left to right the predicted 
results of the patch sizes ( 32× 32× 3 , and 16× 16× 3 ), the radiologist ground truth, the patient CT slice of 
short axis, the uncertainty mapping of 32× 32× 3 , and the uncertainty mapping of 16× 16× 3 are presented. 
The six different classes are shown in grey-scale colours. The uncertainty scale is with red scale from 0.00 to 
0.30 probability. To compare the performance of each patch size we presented the ground truth based on the 
two expert radiologists and the correspondence CT slice of the patient. In most cases the 32× 32× 3 estimated 
better than 16× 16× 3 , except for the 3rd, 2nd and 1st cases of Figs.  3a, 4a,b respectively. The 32× 32× 3 
patch size delivered clinically appropriate level of prediction, contrary to 16× 16× 3 which in most of the cases 
overestimated the results. The framework’s predictions and robustness were strengthened by the uncertainty 
estimation mapping of each prediction probability. Figures 3 and 4 presented the uncertainty mapping of the 
prediction.The combination of uncertainty prediction and the probability prediction strengthens the trustwor-
thiness of the AI tool, as for high uncertainty experts can ignore the prediction.

Figure 5a,b shows the 3D anatomical lung models with the diseased lung areas for two patients in the seen 
testing cohort. Moreover, Fig. 5a,b presents the ratio of the diseases and the middle slice results of the deep 
learning networks (DenseNet-121 and DenRes-131) for the four different patch sizes. The network with most 
accurate results based on Table 1, Figs. 3 and 4 was the DenRes-131 for the 32× 32× 3 patch size. Therefore, 
32× 32× 3 patch size and the DenRes-131 network were the most robust and generalisable combination for 
the multi-classification task. To this end, the 3D-patch framework overestimates the diseases in cases of small 
patch size ( 8× 8× 3 ) and underestimates in the large patch size ( 64× 64× 3).

Generalized explanation of the AI framework.  The most accurate deep learning network was the 
DenRes-131 with the 32× 32× 3 patch size (Fig. 6b). Therefore, we studied the local and generalized explain-
ability of that case.

Figure 6a shows the local explainable results of DenRes-131 for the six-classification task for the 32× 32× 3 
patch size. The local explanation is a collection of the colourful RGB patches, GradCam, and guided GradCam 
results of the six classes (healthy, ground glass, ground glass reticulation, honeycomb, emphysema and unhealthy, 
Fig. 6a). The GradCam and guided GradCam was extracted from the convolutional layer after the concatena-
tion of the ResNet-50 and DenseNet-121 networks. Regarding the guided GradCam results of all the six classes, 
the networks were focusing on the correct area of interest (healthy and pathological lung area). However, the 
evaluation of these three samples was highly biased to conclude about the general correct learning patterns of 
the network as GradCam is a local explainable method. To this end, we developed a combination technique that 
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Figure 1.   The artificial intelligence framework to diagnose pulmonary hypertension. (a) The extraction 
of 3D patches pipeline. We used four different size of 3D patches to discrete the lungs region, 64× 64× 3 , 
32× 32× 3 , 16× 16× 3 , and 8× 8× 3 . (b) Trained deep learning classifier is used to classify each 3D patch in 
one of the six classes (healthy, ground-glass, ground glass reticulation, honeycomb, emphysema or unhealthy). 
(c) The 3D volume rebuild of the lungs anatomy. (d) Profile of the disease of a specific patient. The profile 
includes the portion of the diseases appeared in the patient’s profile, the 3D anatomical lung model with the 
diseased areas, the explainability of the deep learning features and the uncertainty estimation of the predictions.
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utilized the PCA of different components (4,8 and 16) in the total sample of the patch images (PCA-Shape) and 
their corresponding local GradCam images (PCA-GradCam) to evaluate the learning patterns of each class. 
Figure 6c shows the PCA zero component of the PCA-Shape and the PCA-GradCam results of each class for 
the four principal component analysis. Moreover, the correlation coefficient of the PCA-Shape and the PCA-
GradCam with the total negative and positive pixels ratio is presented. The results showed that the network 
focused on the correct learning patterns (positive ratio higher than negative) in honeycomb, emphysema and 
unhealthy classes. On the other hand, the network learned wrong patterns in the ground glass class. The healthy 
class had almost the same number of the negative and positive ratio between the zero PCA component of PCA-
Shape and PCA-GradCam. Figure 8a,b presents the positive and negative ratio results of each class with respect 
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Figure 2.   Box and Whisker plots results of Vgg-16, ResNet-50, DenseNet-121, and DenRes-131 for the 
multi-classification task. (a–d) Box-plots results for the different deep learning networks (Vgg-16, ResNet-
50,DenseNet-121, and DenRes-131, respectively) for the combine results of all the different size of 3D patch 
sizes. The results presented are a variation of metrics (Recall, Precision, AUC-ROC, and f1-score) scores. (e–h) 
Box-plots results for the different patch sizes ( 64× 64× 3 , 32× 32× 3 , 16× 16× 3 , and 8× 8× 3 height, 
width and depth respectively) of all the deep learning networks combine results. (e–h) are presented the results 
of a variation of metrics (Recall, Precision, AUC-ROC, and f1-score). (i,j) Summarizing the f1-score and AUC-
ROC metrics results.
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to the PCA analysis of the four components. Even if the zero-component showed that the network learned the 
patterns of the unhealthy and ground glass reticulation classes corectly, the other three components showed that 
the network did not, as they had higher negative pixels ratio values than positive pixels ratio values (Fig. 8a,b). 
This instability between the components of the PCA analysis (4 components) justified the need to study differ-
ent numbers of PCA components (8, and 16) to conclude about the most stable dimension reduction analysis 
to generalize the local explainable observations. Therefore we present the eight components of the PCA-Shape 
and PCA-GradCam analysis for each class (Fig. 7). Figure 7a–f shows the generalized explainable results of 
DenRes-131 for the 32× 32× 3 patch size of multi-classification task. We computed the correlation coefficient 
of the PCA-Shape and the PCA-GradCam. We further computed the negative and positive pixels ratio of the 
correlation between the PCA-Shape and PCA-GradCam, to evaluate the generalized correct learning pattern of 
the network in each class.

The correlation coefficient of positive and negative pixels ratio is a way to evaluate the false positive or nega-
tive pixels and the true positive or negative pixels of the network’s learning patterns (analytical explanation of 
the network’s learning pattern of the generalized technique in: Supplementary material subsection 2.4). For 
instance, in the healthy and unhealthy classes the component zero, one and four of the PCA, focused correctly 
in the lung area. Moreover, the network correctly learned the pattern in the component six and seven of the 
ground glass reticulation class. In the ground glass the network was focusing correctly in the lung area of inter-
est in the components zero, one, and three. However, the network focused additionally in the peripheral areas 
that increase the false positive and false negative pixels ratio, and this concludes as a wrong learning pattern 

Table 1.   Quantitative evaluation metrics of the AI framework on the unseen dataset. ∗The highest 
performance of each metric score. Significant values are given in bold.

Metric ResNet-50 DenseNet121 DenRes-131

The AI framework for the 64× 64× 3 patch size

 Jaccard score (%) 74.63 ± 17.95 70.12 ± 18.32 69.21 ± 17.89

 Hamming distances (mm) 16.21 ± 6.21 18.01 ± 8.01 18.07 ± 9.03

 Root mean square error 1.246 ± 0.510 1.282 ± 0.634 1.281 ± 0.700

 f1 score (%) 77.33 ± 10.02 73.21 ± 13.54 73.01 ± 13.77

 Recall score (%) 78.21 ± 9.87 74.01 ± 14.01 73.99 ± 14.04

 Precision score (%) 78.33 ± 9.02 74.32 ± 14.21 74.35 ± 14.98

 Accuracy (%) 78.23 ± 10.00 74.00 ± 15.01 73.12 ± 16.00

 MCC (%) 67.23 ± 17.21 64.12 ± 18.12 63.89 ± 19.00

The AI framework for the 32× 32× 3 patch size

 Jaccard score (%) 69.41 ± 21.94 90.53 ± 4.38 *91.83 ± *3.48

 Hamming distances (mm) 17.29 ± 7.29 6.34 ± 3.82 *5.96 ± *3.17

 Root mean square error 1.171 ± 0.419 0.904 ± 0.54 *0.855 ± 0.40

 f1 score (%) 71.23 ± 10.11 92.06 ± 5.40 *93.87 ± 4.20

 Recall score (%) 70.12 ± 10.33 93.21 ± 4.11 *93.42 ± *2.84

 Precision score (%) 71.22 ± 10.43 94.53 ± 2.52 *96.54 ± 2.82

 Accuracy (%) 70.15 ± 10.32 93.02 ± 3.93 *93.69 ± 3.90

 MCC (%) 65.34 ± 20.32 77.74 ± 8.46 *80.21 ± 7.83

The AI framework for the 16× 16× 3 patch size

 Jaccard score (%) 70.05 ± 20.67 87.70 ± 8.90 89.01 ± 5.81

 Hamming distances (mm) 17.13 ± 7.11 8.08 ± 5.26 7.99 ± 4.48

 Root mean square error 1.146 ± 0.409 1.035 ± 0.42 1.015 ± *0.32

 f1 score (%) 72.01 ± 10.00 92.06 ± 5.10 92.27 ± *4.87

 Recall score (%) 71.00 ± 10.01 90.67 ± 4.53 91.64 ± 4.33

 Precision score (%) 71.87 ± 10.67 95.71 ± 2.08 95.65 ± *2.20

 Accuracy (%) 70.78 ± 10.78 90.88 ± 4.74 91.51 ± *3.27

 MCC (%) 66.01 ± 20.01 73.10 ± 11.71 74.80 ± *7.21

The AI framework for the 8× 8× 3 patch size

 Jaccard score (%) 68.56 ± 21.09 69.20 ± 18.52 69.10 ± 18.20

 Hamming distances (mm) 16.61 ± 6.23 18.27 ± 9.91 18.31 ± 9.83

 Root mean square error 1.587 ± 0.355 1.361 ± 0.839 1.432 ± 0.840

 f1 score (%) 74.13 ± 13.12 72.51 ± 15.54 72.41 ± 15.74

 Recall score (%) 72.41 ± 10.82 73.41 ± 16.01 73.49 ± 16.04

 Precision score (%) 72.63 ± 12.21 74.32 ± 17.22 73.35 ± 16.98

 Accuracy (%) 73.53 ± 11.90 73.60 ± 17.11 73.10 ± 16.89

 MCC (%) 61.43 ± 18.20 64.02 ± 19.18 63.59 ± 19.20
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in total for the classes of interest. As the PCA-Shape images had high intensity pixels in lung areas that are not 
of interest and low intensity pixels in lungs areas that are of interest in the majority of the eight components, 
the network correctly learned the patterns when the positive correlation coefficient ratio was lower than the 
negative correlation coefficient pixels ratio. The healthy, ground glass reticulation, ground glass and unhealthy 
classes had higher positive pixels ratio than negative pixels ratio in all the eight components. On the other hand, 
emphysema, honeycomb had lower positive pixels ratio than negative pixels ratio in all the eight components. 
To this end, the network correctly learned the patterns of emphysema, honeycomb and unhealthy classes but 
learned the other three classes wrongly.

Figure 8a–f presents the positive and negative pixels ratio results of each class with respect to the PCA analy-
sis with four, eight and sixteen components. This figure summarizes the observations we discussed above. The 
PCA with eight components (Fig. 8c,d) has the same behaviour as the PCA with sixteen components (Fig. 8e,f). 
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Figure 3.   The multi-classification results of six different patients of the ‘unseen’ cohort (PART 1). (a,b) From 
left to right the prediction results of the patch sizes ( 32× 32× 3 , and 16× 16× 3 ), the radiologist ground 
truth, the patient CT slice of short axis, the uncertainty mapping of 32× 32× 3 , and the uncertainty mapping 
of 16× 16× 3 . The six different classes are showing in gray-scale colours. The uncertainty scale is with red-scale 
from 0.00 to 0.30 probability.
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Therefore, the results of PCA analysis with eight components are more trusted compared with the PCA analysis 
of four components (Fig. 8a,b).

Uncertainty estimation.  A crucial dimension for a transparent artificial intelligence framework is the 
uncertainty estimation. Figure 9 shows the aleatoric and epistemic uncertainty of the testing internal cohort and 
the DenRes-131 network, respectively. Figure 9m,n shows the boxplots of the epistemic and aleatoric uncer-
tainty for each class. The healthy, unhealthy, ground glass, and honeycomb classes had a high value of aleatoric 
uncertainty. The emphysema and ground glass reticulation classes had a low value of aleatoric uncertainty. On 
the other hand, the ground glass, and healthy classes followed by the ground glass reticulation and honeycomb 
classes had high epistemic uncertainty. Figure  9a–l presents the normalized class probability and predictive 
uncertainty (epistemic) of each class. The coloured circles are the patch images (size of 32× 32× 3 ) of each 
class with respect to the average and standard deviation of the intensity pixels. The emphysema was the most 
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Figure 4.   The multi-classification results of six different patients of the ‘unseen’ cohort (PART 2). (a,b) From 
left to right the prediction results of the patch sizes ( 32× 32× 3 , and 16× 16× 3 ), the radiologist ground 
truth, the patient CT slice of short axis, the uncertainty mapping of 32× 32× 3 , and the uncertainty mapping 
of 16× 16× 3 . The six different classes are showing in gray-scale colours. The uncertainty scale is with red-scale 
from 0.00 to 0.30 probability.
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robust prediction class (high class probability, low predictive uncertainty) followed by the honeycomb classes. 
The ground glass was the least robust prediction class followed by the healthy and ground glass reticulation.

Statistical analysis results.  We utilized ANOVA analysis with p-value 0.05 to calculate the statistically 
significant differences between the different deep learning classifiers. All the results of the models were statisti-
cally significantly different with p < 0.05 . The DenRes-131 had significantly different results compare with the 
DenseNet-121 with a p-value of 0.04.

Discussion
Translating AI networks from the prototyping version to support clinical stakeholders during routine care is 
highly dependent on the trustworthiness of the AI tool. In most of the existent AI studies there is a lack of suc-
cessful development and adaptation of well-performing and context-specific AI tools. Even though there are stud-
ies using explainability techniques to increase the transparency of the AI tools, they lack generalization as they 
mainly use local explainable techniques. A transparent AI tool needs to include dimensions like explainability, 
uncertainty and bias for any clinical application as part of its core study. To this end, in this study we developed 
and analysed a transparent artificial intelligence framework to map the 3D anatomical models of patients with 
evidence of lung diseases in pulmonary hypertension.

To be sure about how thoroughly the framework evaluates in functional, operational, and usability dimen-
sions we studied the framework’s performance in different patch sizes ( 64× 64× 3 , 32× 32× 3 , 16× 16× 3 , 
8× 8× 3 ) in a multi-classification task and we trained and tested different established deep learning networks. 
The framework was evaluated by an unbiased validation profile of internal ‘seen’ and ‘unseen’ multi-scan and 
multi-vendors cohorts. The results highlighted that the patch size of 32× 32× 3 (and in some cases 16× 16× 3 ) 
was the most accurate, robust and generalised. The DenRes-131 network was the most accurate framework fol-
lowed by the DenseNet-121 in the multi-classification task. We verified the accurate and robust predictions of 
the framework in the ‘unseen’ cohort achieving metrics scores such as 91.83 ± 3.48% Jaccard score, 5.96 ± 3.17 
mm Hamming distances, 80.21 ± 7.83% MCC, 93.69 ± 3.90 accuracy, and 0.855 ± 0.40 Root Mean Square Error. 
Lastly, we justified that the framework predicts high performance and robustness in the emphysema and the 
honeycomb diseases but lacks accurate prediction of the ground glass reticulation and the ground glass diseases.
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Figure 5.   Results of two different patient of the ‘seen’ testing cohort. (a,b) The 3D mapping of two patients (a,b) 
for the DenseNet-121 and DenRes-131 in the multi-classification task. Four different 3D patch sizes volume: 
64× 64× 3 , 32× 32× 3 , 16× 16× 3 , and 8× 8× 3 height, width and depth respectively are presented. 
From left to right the four different 3D anatomical lung models, the ratio of diseases results of the patch sizes 
32× 32× 3 , and 8× 8× 3 , and the prediction results of the middle slice of short axis.
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To verify the transparency and trustworthiness of the AI framework we studied the uncertainty estimation 
of the network’s prediction, and we tried to explain the generalized learning patterns of the network. Therefore, 
a new generalized technique combines local explainable and interpretable dimension reduction approaches 
(PCA-GradCam, PCA-shape) was developed. We studied PCA analysis of different component numbers (4, 8 
and 16) and we concluded that the eight components of the PCA-Shape (PCA of total patch images) and the 
PCA-GradCam (PCA of total GradCam images) analysis were the most robust. Moreover, we computed the 
correlation coefficient of the PCA-Shape and PCA-GradCam and the negative and positive pixels ratio of the 
correlation between them. In this way, we evaluated the generalized correct and wrong learning pattern of the 
network in each class. The correlation coefficient of positive and negative pixels ratio was an approach to evaluate 
the false positive or negative pixels and the true positive or negative pixels of the network’s learning patterns. The 
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Figure 6.   The local explainability results of DenRes-131 and the 32× 32× 3 patch size of the multi-
classification task. (a) The colorful RGB patches, GradCam, and guided GradCam results of the six classes 
(healthy, ground glass, ground glass reticulation, honeycomb, emphysema and unhealthy). (b) the structure of 
DenRes-131 network. (c) The PCA zero component of the patch images (PCA-Shape) and GradCam results 
(PCA-GradCam) of each class for a four components analysis. The correlation coefficient between the PCA-
Shape (Average image) and the PCA-GradCam (PCA GRADCAM) with the negative and positive ratio is 
presented.
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network learned correct patterns in the emphysema and honeycomb classes and wrong patterns in the ground 
glass and ground glass reticulation classes. By using augmentation techniques with Monte Carlo simulations and 
Monte Carlo dropout layers we estimated the aleatoric and epistemic uncertainty of each class. The dataset had 
high aleatoric uncertainty in the ground glass, unhealthy, healthy and honeycomb diseases and the framework 
predicts high epistemic uncertainty in the ground glass, ground glass reticulation and healthy diseases.

Even if we delivered a transparent AI framework there is a limitation about the performance of the AI in the 
classes with high uncertainty like the ground glass and healthy classes. We can solve this problem by applying 
different pre-processing techniques, by increasing the samples variability of the high uncertainty classes and by 
applying domain adaptation techniques to increase the AI framework performance in the out of the distribution 
samples. Therefore as future work we will increase the variability of the datasets including more clear cases of 
ground glass and ground glass reticulation patients to reduce the aleatoric uncertainty. Furthermore, we will 
apply domain adaptation techniques in the classifiers like few shots, to increase the accuracy of the prediction 
and decrease the uncertainty in the ground glass and ground glass reticulation classes. Lastly, we aim to create a 
thresholding validation protocol to identify the appropriate threshold difference between the positive and nega-
tive pixels ratio of the correlation coefficient method of our combined local explainable and global interpretable 
techniques to justify uniquely and unbiasedly the correct and wrong learning patterns of the networks.

Our AI framework was tested in an unbiased validation protocol which accurately captures ordinary clinical 
trials, and it delivered accurate robust and generalized performance with uncertainty prediction probabilities 
and generalized explanations (Fig. 1d).
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Figure 7.   The generalized combined explainable technique of local explanable and interpretable reduced 
dimensionality techniques (PCA-GradCam, PCA-Shape). (a–f) The PCA of the patch images (PCA-Shape) and 
GradCam results (PCA-GradCam) of each class for the eight components analysis. The correlation coefficient 
of each component’s PCA-Shape and PCA-GradCam with the negative and positive ratio is presented. For each 
class from left to right, top to bottom the eight components results of the PCA analysis. The results are based on 
the DenRes-131 and 32× 32× 3 patch size for the multi-classification task.
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Methods
Dataset protocol.  The dataset protocol and methods were performed in accordance with relevant guide-
lines and regulations and approved by ASPIRE registry (Assessing the Spectrum of Pulmonary Hypertension 
Identified at a Referral Centre), reference c06/Q2308/8; REC 17/YH/0016. This study complies with the Declara-
tion of Helsinki. We confirm that all experiments were performed in accordance with relevant guidelines and 
regulations. Informed consent was obtained from all subjects and/or their legal guardian(s).

Validation datasets protocol.  To train and evaluate the networks in the multi-classification task, we used a 
cohort of 84 patients (‘seen’ cohort). From the ‘seen’ cohort 75 patients were used for training/validation and 9 
for testing. As the multi-classification task was based on a patch oriented deep learning approach, we utilized 
four different patch sizes ( 64× 64× 3 , 32× 32× 3 , 16× 16× 3 and 8× 8× 4 ) to study the sensitivity of the 

Figure 8.   The positive and negative ratio results of each class with respect of the PCA analysis of the four, 
eight and sixteen components respectively. (a,b) The positive (a) and negative (b) ratio results of each class with 
respect of the PCA analysis of the four components. The results are based on the DenRes-131 and 32× 32× 3 
patch size for the multi-classification task (c–f) The positive and negative ratio results of each class with respect 
of the PCA analysis of the eight (c,d) and sixteen components (e,f) respectively. The results are based on the 
DenRes-131 and 32× 32× 3 patch size for the multi-classification task.
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networks’ predictions. For each patch size we used a balanced number of images in each class, and a 70/30 
validation split protocol during training. More analytically, for the training task we utilized for each class: 8000, 
40,000, 185,000 and 600,000 images for the 64× 64× 3 , 32× 32× 3 , 16× 16× 3 and 8× 8× 3 patch sizes, 
respectively. For the testing task we utilized for each class: 4000, 22,000, 50,000 and 140,000 images for the 
64× 64× 3 , 32× 32× 3 , 16× 16× 3 and 8× 8× 4 patch sizes respectively. To evaluate the AI framework 
in an out of distribution task (OoD) we used a cohort of 19 patients with full annotated PH diseases (‘unseen’ 
cohort). This dataset was a collection of patients different from the ‘seen’ dataset with multi-vendors and multi-
scans variability.

CT imaging protocol.  For the ‘seen’ cohort all patients were diagnosed with PH between Feb 2001 and Jan 2019. 
They were identified in a specialist PH referral centre using the ASPIRE (Assessing the Spectrum of Pulmonary 
Hypertension Identified at a Referral Centre) registry. Around 17,500 CT slices were divided into six regions: 
healthy lungs, ground glass, ground glass reticulation, honeycomb, emphysema, unhealthy lungs. These classes 
were manually labelled in each slice by two specialist radiologists and differences resolved through consensus. 
The unhealthy class was a combination of lung diseases observations with low frequency in the dataset (centri-
lobular ground glass, fibrosis, consolidation and low attenuation). We combined these diseases in the ‘unhealthy’ 
class, as we needed to extract a balance training dataset with same number of samples in each class. We used 
these regions to train and validate the multi-classification task. The ‘unseen’ cohorts included a collection of 19 
patients with a diagnosis of PH from the ASPIRE registry. The unseen cohort was a collection of five anatomical 
CT slice levels exhaustively labeled by specialist radiologists (KD and AS with 3-years and 10-years experience) 
for each patient. The anatomical levels chosen were top of the aortic arch, bifurcation of the trachea, main pul-
monary artery bifurcation, mitral valve, and diaphragm.
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Figure 9.   The epistemic and aleatoric uncertainty profile of the ‘seen’ testing dataset of each class for the 
DenRes-131 deep learning network. (a–l) The normalized class probability and predictive uncertainty 
(epistemic uncertainty) of each class. Each patch image class presented by a different colour circle (patch size 
of 32× 32× 3 ) with respect of the average and standard deviation of the intensity pixels. (m,n) the box and 
Whisker plots results of the epistemic (m) and aleatoric (n) uncertainty for each class.
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Cohort’s pre‑processing image analysis.  Image analysis techniques have been applied to all slices to reduce the 
effect of noise and increase the signal-to-noise ratio (SNR), using noise filters such as curvature anisotropic 
diffusion image filters25. Moreover, we normalized the images and we have used data augmentation techniques 
including rotation (rotation around the center of the image by a random angle in the range of −15◦ to 15◦ ), width 
shift range (width shift of the image by up to 20 pixels), height shift range (height shift of image by up to 20 pix-
els), and ZCA whitening (add noise in each image)26.

Modeling framework.  We developed a patch-oriented AI framework to map the 3D anatomical models of 
patients with lung disease in pulmonary hypertension. The framework has four steps: the extraction of the 3D 
patches, the classification of each patch, the volume rebuild of the 3D anatomical model, and the analysis and 
evaluation of the pulmonary hypertension profile of the lungs (Fig. 1).
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To train the classifiers we extracted volume patches from the initial NIFTI and DICOM files of the CT images. 
We segmented the lung region using a nn-unet network27 and we used a variate of different sizes of the volume 
patch sizes to evaluate the performance of the classifiers. We have used four different patch sizes of 64× 64× 3 , 
32× 32× 3 , 16× 16× 3 , and 8× 8× 3 height, width and depth respectively (Fig. 1a). The extracted patches 
were used for training, validation and testing (‘seen’ cohort) for the deep learning classifiers.

We solved a multi-classification problem of six different classes: healthy, ground-glass, ground glass reticula-
tion, honeycomb, emphysema and unhealthy. To evaluate and optimize the solution of the multi-classification 
task we used three established networks VGG-16, DenseNet-121 and ResNet-50 and one state-of-the-art deep 
learning network DenRes-13128. VGG-16 is a well-established convolutional neural network (CNNs) with a 
combination of pooling and convolution layers29. ResNet-50 is a deep network, in which all layers have the same 
number of filters as the number of the output feature size. In case the output feature size is halved, the number 
of filters is doubled, thus reducing the time complexity per layer30. DenseNet-121 is an efficient convolutional 
network. The network comprises of deep layers, each of which implements a nonlinear transformation. Hauang 
et al.31 introduced a unique connectivity pattern information flow between layers to direct connecting any layer 
to all subsequent layers. DenRes-131 is a modified version of28 network which has two dropout layers to estimate 
the epistemic uncertainty of the model and to reduce the overfitting of the model (Fig. 6b). We used a probability 
of 0.3 in both layers. The original DenRes-13128 combines four blocks from ResNet-50 and DenseNet-121 with 
width, height, and frames of 58× 58× 256 , 28× 28× 512 , 14× 14× 1024 , and 7× 7× 2048 , respectively. 
Each of the four outputs feeds a block of convolution and average pooling layers. The final layer uses a soft-max 
regression, so that the network can conclude in the classification decision (Fig. 1b). For all the networks we used 
a three level multi-preceptor tuner layer and a combination of two Monte Carlo dropout layers to estimate the 
epistemic uncertainty of the model. We utilized the trained weights of the networks to classify the patches in one 
of the six classes (Fig. 1c). After we used these annotated patches to rebuild back the 3D anatomical model of the 
lungs. We defined the portions of each of the six diseased classes and we extracted the pulmonary hypertension 
profile of the specific patient.

Police learning.  After random shuffling each dataset had been partitioned into 70% and 30% of the total num-
ber of images to train and validate the networks. We used categorical cross-entropy as a cost function. The loss 
function was optimized using the stochastic gradient descent (SGD) method with a fixed learning rate of 0.0001. 
We applied transfer learning techniques to the networks using the ImageNet dataset (http://​www.​image-​net.​
org). The ImageNet dataset consists of over 14 million images and the task were to classify the images into one 
of almost 22, 000 different categories (cat, sailboat, etc.). We trained the DenRes-131 for 25 epochs and the other 
three networks for 100 epochs.

Explainability and uncertainty estimation.  The explainable analysis and uncertainty estimation of a 
network is a very important part of a classification study as it validates the functional, operational, safety and 
usability dimensions of a transparent AI tool. In this study we used an established local explainable technique 
in medical imaging applications, the GRAD-CAM method32. However the use of only local explainability tech-
niques can be biased. Thus we tried to remove the bias effect by using an interpretable non-linear dimensionality 
reduction technique, the principal component analysis (PCA). We utilized the PCA to study the variability and 
generalization of all the GradCam outputs (PCA-GradCam) and all the input patch images (PCA-Shape) of the 
testing cohort to evaluate the learning pattern of the deep learning network. We tested three different values of 
components for the PCA analysis (4, 8 and 16), and we studied their differences. We extracted the correlation 
coefficient of the PCA-GradCam and PCA-Shape to compare the positive and negative ratio between them. 
Therefore, we evaluated the similarities, and the accuracy in correct and wrong learning patterns of the networks.

The uncertainty of our multi-classification task was separated into aleatoric and epistemic uncertainty. Alea-
toric uncertainty captures noise inherent during the data collection. This noise can be product of different rea-
sons such as variation of biological (age, immunity level, gender, biochemical parameters) and environmental 
(lifestyle, emotional state, anxiety, stress, climate) conditions, social status (family support, friends’ interaction, 
financial security etc.) or variability in the scanning machines or medical tools were used for the medical data 
collection. On the other hand, epistemic uncertainty studies the uncertainty in the model’s prediction based on 
the variability of the network’s parameters33. Epistemic uncertainty refers mainly to lack of knowledge of the way 
to solve a specific medical problem (features and parameters involved in study). For example, when someone 
develops a machine learning network to solve a cancer risk assessment problem, he takes into consideration 
specific biomarkers (features) related with the prediction of the severity level of each sample. Because there is 
a gap of knowledge of other possible biomarkers which can contribute to the risk assessments of each sample, 
he needs to include the possibility that other networks with different parameters can solve the same problem. 
Monte Carlo dropout method samples the training data for limited iterations and it generates an estimation of the 
posterior distribution (network with trained parameters). Thus, we estimated the posterior distribution provid-
ing information on whether the input data exists in the learned distribution. MC dropout is the most common 
way to estimate the epistemic uncertainty in Bayesian networks33. To estimate the aleatoric uncertainty we used 
a Monte Carlo test-time augmentation method34. The uncertainty can be estimated by using the variance or the 
entropy distribution p(Y | X) . Here we utilized the entropy distribution given by:

We used a Monte Carlo simulation of n = 21 samples of data augmented patches (rotation, shrink, scale, 
noise) to extract prediction results of Y = y1, y2, . . . yN . Suppose there are M unique values in Y. For classification 

(1)H(Y | X) = −

∫
p(y | X)ln(p(y | X))dy

http://www.image-net.org
http://www.image-net.org
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tasks, this typically refers to M labels. Assume the frequency of the m unique value is pm , then H(Y | X) is 
approximated as:

The frequency of the prediction of a specific patch is given by pm = argymax(p(y | X)).
The epistemic uncertainty was estimated by using Monte Carlo dropout layers in the multi-preceptor level 

of the networks (Fig. 1b). The simulation number was again T = 21 (where T the times that the dataset feds to 
the networks). The average result was given by:

The epistemic uncertainty computed by the variance operation of:

where x denotes the input features from training images, the predictive mean E[y] denotes the expected model 
output given the input x, and σ 2 denotes the aleatoric uncertainty. This process was repeated T times for T inde-
pendent identical distributions y1(x), . . . , yT (x) . These output values are empirical samples from an approximate 
predictive distribution.

Statistical analysis.  Continuous variables were presented as proportions, means ± standard deviations, or 
median and interquartile range for data not following a normal distribution. We used an ANOVA analysis with 
p-value 0.05 to calculate the statistically significantly differences between the different deep learning classifiers. 
The statistical analyses were carried out using the lifelines and Python35) and R libraries36.

Ethics approval.  The methods were performed in accordance with relevant guidelines and regulations and 
approved by ASPIRE registry (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Cen-
tre), reference c06/Q2308/8; REC 17/YH/0016.

Data availability
This study has the appropriate research ethics committee approval of ASPIRE registry (Assessing the Spectrum 
of Pulmonary Hypertension Identified at a Referral Centre), reference c06/Q2308/8; REC 17/YH/0016. The data 
are available as requested from the corresponding author Dr. Andy Swift.

Code availability
The code developed in this study is written in the Python programming language using Keras/TensorFlow 
(Python) libraries. For training and testing of deep learning networks, we have used an NVIDIA cluster (JADE2) 
with 4 GPUs and 64 GB RAM memory. The code is publicly available in https://​github.​com/​INSIG​NEO/​PH_​
3Dpat​ches.
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