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Analysis and construction 
of the coal and rock cutting state 
identification system in coal mine 
intelligent mining
Meichen Zhang 1*, Lijuan Zhao 2,3,4 & Baisheng Shi 2

The recognition of cutting state of coal-rock is the key technology to realize “unmanned” mining in 
coal face. In order to realized real-time perception and accurate judgment of coal-rock cutting state 
information, this paper combined the field test sampling, construction technology of complex coal 
seam, virtual prototype technology, bidirectional coupling technology, data processing theory, 
image fusion method, and deep learning theory to carry out multi domain deep fusion experimental 
research on multi-source heterogeneous data of coal and rock cutting state. The typical complex 
coal seam containing gangue, inclusion, and minor fault in Yangcun mine of Yanzhou mining area 
was taken as the engineering object. The high-precision three-dimensional simulation model of the 
complex coal seam that can update and replace particles was constructed. Based on the simulation 
results of Discrete Element Method-Multi Flexible Body Dynamics (DEM-MFBD), the one-dimensional 
original vibration acceleration signals of the key components of the shearer cutting part were 
determined, including spiral drum, rocker arm shell, and square head. After transforming one-
dimensional original signal data into two-dimensional time–frequency images by Short-time Fourier 
Transform, morphological wavelet image fusion technology was used to realize the effective fusion of 
characteristic information of spiral drum, rocker arm shell, and square head under different working 
conditions. Based on the deep learning theory, the DCGAN-RFCNN (Deep Convolutional Generative 
Adversarial Networks-Random Forest Convolutional Neural Networks) coal and rock cutting state 
recognition network model was constructed. Combining convolution neural network with random 
forest recognition classifier, RFCNN coal and rock cutting state recognition classification model 
was constructed, and the recognition network model was trained to obtain the model recognition 
results. Through the comparative experimental analysis of the RFCNN network model with different 
recognition network models and different synthetic sample numbers in the recognition network, the 
effectiveness of the recognition network model was verified. The results show that: When synthetic 
samples are not included in each working condition in the RFCNN model, the average recognition rate 
is 90.641%. With the increase of the number of synthetic samples, the recognition rate of coal and 
rock cutting state increases. When the number of synthetic samples added to each working condition 
reaches 5000, the recognition effect is the best, and the average recognition rate reaches 98.344%, 
which verifies the superiority of enriching the data set by using the improved DCGAN network. Also, 
the RFCNN outperformed the other variants: it obtained higher recognition accuracy by 25.085, 
21.925 and 19.337%, respectively, over SVW, CNN, and AlexNet. Also, the experimental platform of 
shearer cutting coal and rock was built, where the coal and rock cutting state recognition network was 
trained and tested based on the migration learning theory. Through the statistical test results, the 
accuracy of coal and rock cutting state recognition is 98.64%, which realizes the accurate recognition 
of coal and rock cutting state.
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90% of China’s coal is mined by underground mining, and the intelligent level of mining equipment is low, which 
leads to many coal mining disasters, weak adaptability of coal machinery, high failure rate, and low efficiency. 
Improving the intelligent level of coal machinery equipment is one of the main tasks of coal mine intelligent 
development1–5. Shearer is the core equipment of a fully mechanized mining face. The accurate identification 
of its cutting state is not only the key to realizing the intelligent and efficient cutting of shearer, but also the 
necessary basic guarantee of intelligent unmanned mining in a fully mechanized mining face. Many scholars 
have carried out research in this area. Ankita Singh et al.6 combined with the gray information of coal and rock, 
selected the grayscale threshold to segment the coal and rock image, and designed the Gray Level Co-occurrence 
Matrix to extract the features of the segmented image, so as to achieve the purpose of identifying coal and rock 
with different properties. Sushma Kumari et al.7 realized the depth perception of the cutting target of mining 
machinery through real-time image mosaic, image enhancement, CNN Network and other processing methods 
based on the intelligent vision enhancement technology, so as to achieve the purpose of intelligent mining of 
mining machinery under harsh conditions. Wang et al.8 processed the cutting force signal in the cutting process 
of shearer through DBC technology, and obtained the power spectrum, variance and other characteristics of 
the signal, so as to realize the identification of the coal and rock cutting state. Zhang et al.9 constructed a coal 
and rock cutting vibration signal recognition network based on cepstrum distance. The problem of low adapt-
ability and sensitivity of conventional methods was solved through taking cepstrum distance as the eigenvalue 
of recognition network, so as to realize the judgment of coal and rock cutting state. Cheng et al.10 built a coal and 
rock mixed medium analysis test platform based on Bruggeman medium theory. The experimental results show 
that the coal content detection model can quantitatively describe the cutting state of coal and rock. Lu et al.11 
extracted the vibration signal of auger bit of drilling shearer during operation. At the same time, the Wavelet 
decomposition was used to obtain the characteristic vector of the signal, and finally the coal and rock cutting 
state recognition model was successfully constructed based on BP Neural Network. Wang et al.12 mentioned in 
the latest development technology of coal mine intelligence that the coal and rock intelligent sensing technol-
ogy based on multi-source data information is the key content of intelligent mining. Sun et al.13 constructed a 
new coal and rock recognition evaluating indicat based on the improved YOLOv3 depth perception intelligent 
recognition algorithm, so as to improve the accuracy of the coal and rock recognition.

The shearer working under the condition of coal and rock with gangue has bad working conditions and 
complex environment. The occurrence conditions of cut coal and rock, the kinematic parameters of shearer, the 
gradual change characteristics of power transmission system and the interaction between spiral drum and coal 
and rock will affect the cutting and crushing process of shearer directly or indirectly. Although the research on 
recognition technology based on coal and rock image can realize the recognition of coal and rock interface, the 
adverse underground environment makes it impossible to obtain coal and rock image with clear characteristics. 
At the same time, the complexity and diversity of coal and rock characteristics also restrict the recognition 
accuracy14. Although the research of Ground penetrating radar and other technologies15 is not affected by the 
underground mining environment, the recognition accuracy is low and the effect is poor due to long-distance 
transmission, so it is difficult to realize mining while detecting. Therefore, how to accurately and quickly per-
ceive the cutting state of coal and rock online and then realize the real-time control of the attitude of the shearer 
spiral drum is still the technical bottleneck to realize the intelligent and efficient cutting of the shearer, which 
still needs to be deeply studied.

Based on this, we combined the field test sampling, construction technology of complex coal seam, virtual 
prototype technology16–20, bidirectional coupling technology, data processing theory, image fusion method, 
and the deep learning theory21,22 to carry out multi domain deep fusion experimental research on multi-source 
heterogeneous data of coal and rock cutting state. We constructed a high-precision 3D simulation model for 
a complex coal seam and completed the bidirectional coupling model between it and the cutting part of the 
shearer. Then, we obtained the vibration signal of the coal and rock cutting state. Reasonable data information 
conversion and fusion rules were designed, and the raw data information image set of coal and rock cutting state 
was constructed. A sample expansion method was constructed based on the analysis of the characteristics of 
the image dataset, and a coal and rock cutting state recognition network was designed combined with the image 
information. This provides a technical foundation and theoretical method for the successful application of coal 
and rock cutting state identification technology in the intelligent development of coal mines.

Extraction and analysis of vibration signals in the coal and rock cutting
Construction of high‑precision 3D simulation model for complex coal seam.  Construction of 
initial basic model for high‑precision 3D simulation of complex coal seam.  The average thickness of of 17 layers 
in the Yanzhou mining area is 1 m. The dip angle of coal seam is 5° ~ 13°. The firmness coefficient of coal seam is 
1.39, with wide distribution and stable occurrence conditions. However, the coal seam structure is complex and 
generally contains iron sulfide inclusion. The thickness and length of inclusions are generally 100 ~ 200 mm and 
200 ~ 300 mm respectively. The firmness coefficient of inclusions reaches 8.4, and the distribution density is 0.88 
pieces/m223,24 The coal seam contains 1 ~ 2 layers of gangue, with a thickness of 0.02 ~ 0.44 m, and the lithology 
is carbon-rich sandstone. The roof of the coal seam is limestone, with an average thickness of 5.85 m. The floor 
of the coal seam is aluminum mudstone, with an average thickness of 1.17 m. The coal seams in Yanzhou mining 
area were sampled and tested according to the sampling principle and testing standards25,26. The relevant experi-
ments are shown in Fig. 1. Table 1 shows the specific physical and mechanical properties parameters of coal and 
rock obtained from the experiment.

According to the modeling technology of irregular particle inclusions, the filling technology of coal and rock 
particles simulating multi mineral composition and the calculation technology of user-defined contact model of 
coal seam working face developed by our research group27, and based on the physical and mechanical property 
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parameters of coal and rock obtained in the experimental process in Fig. 1, a high-precision 3D simulation initial 
basic model of 17 coal layers in Yanzhou mining area was constructed. The simulated fault structure, gangue layer, 
inclusion, roof and floor were randomly filled into the solid space according to the occurrence conditions. The 
final simulation initial basic model is shown in Fig. 2. Figure 2a shows the 3D structure of complex coal seam. Fig-
ure 2b shows the slice structure organization model of coal seam. Through the slice structure organization of its 
internal space, the filling shape and effect of inclusion particles in complex coal seam can be accurately displayed.
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Figure 1.   Tests of the physical and mechanical parameters of coal-rock.

Table 1.   Physical and mechanical property parameters of the coal and rock.

Coal and rock Density (kg/m3)
Elastic modulus 
(MPa) Poisson’s ratio

Tensile strength 
(MPa)

Compressive 
strength (MPa)

Soundness 
coefficient/f

Coal 1 1280 2010 0.28 0.3 12 1.4

Coal 2 1319 5240 0.31 1.73 23.79 2.38

Coal 3 1420 9560 0.15 2.31 34.26 3.8

Rock 1 (Gangue) 2460 3260 0.24 1.19 30 3.5

Rock 2 (Hard 
gangue) 2630 12,100 0.23 3.76 42 5.1

Rock 3 (Floor) 2610 18,300 0.21 5.24 52 6.8

Rock 4 (Roof) 2600 21,500 0.19 7.17 64 7.4

Rock 5 (Inclusion) 2972 15,000 0.18 8.31 84 8.4
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(a) The 3D structure of complex coal seam     (b) The slice structure organization model of coal seam 

Figure 2.   The initial basic model for high-precision 3D simulation of complex coal seam.
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Update and replace of high‑precision 3D simulation model structure of complex coal seam.  The geological struc-
ture of complex coal seams is changeable. According to the change of coal seam data information, the 3D model 
needs to be reconstructed to realize data modeling and provide reliable data information for the coal and rock 
cutting state identification. Therefore, with the help of EDEM discrete element secondary development function, 
the structure of the initial basic model of high-precision 3D simulation of coal seam was update and replace to 
form a complex coal seam discrete element model with replaceable particles. The process of structural replace-
ment and correction is shown in Fig. 3.

In Fig. 3, the initial basic model of coal seam can be replaced n times by compiling the API file of the replace-
ment model. Nn is the number of times of replacement, M1 is the structural particle to be replaced in the initial 
basic model, Mn is the structural particle to be replaced for the nth time, Qn-1 is the structural particle after the 
nth-1st replacement, and Pn-1 is the attribute file of the particle to be replaced for the nth time. P.txtn, D.txtn 
and PR.dll are EDEM external files that need to be loaded respectively in the process of structure replacement 
and correction. Among the three EDEM external files, P.txtn and D.txtn respectively record the name, quantity, 
coordinate position and simulation node time before and after the replacement of structural particles, which are 
the particle factory information files of the replacement structure; PR.dll file is an extended library for particle 
replacement function in EDEM/API. It is in the form of dynamic. It can call the particle factory file information 
according to the instructions given at the simulation time point to complete the replacement and correction 
between structures.

The high-precision 3D simulation model of complex coal seam needs to realize the synchronization of mul-
tiple structural particles in the process of replacement and correction. Therefore, it is necessary to control the 
generation of particle clusters based on the particle attribute information in the initial basic model of high-
precision 3D simulation of coal seam. Based on this, the replacement model of multi types particle cluster was 
constructed. Firstly, the attribute information of all particle types in the initial basic model of coal seam was 
called respectively, so as to provide data for the compilation of multi types particle cluster replacement file. For 
the API of multi types particle cluster replacement, P.txtn and D.txtn external files need to be prepared, and their 
contents are shown in Fig. 4.

N1

PR.dll

P.txt1 D.txt1

N2

PR.dll

P.txt2 D.txt2

Nn

PR.dll

P.txtn D.txtn

M1 M2
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Figure 3.   The process of structural replacement and correction.

Figure 4.   Particle factory information file of coal seam initial basic model replacement structure.
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As can be seen from Fig. 4, the P.txtn and D.txtn files contain the particle factory information of six types of 
replaced structures. Due to the huge amount of data and limited by article length, only one round of data was 
displayed. Using the above compiled multi types particle cluster replacement API, completed the replacement 
of each structure of the initial basic model of high-precision 3D simulation of coal seam, as shown in Fig. 5.

Construction of rigid‑flexible coupling virtual prototype model of shearer cutting part.  A 
large amount of data and information support is the key problem in the construction of the coal and rock cut-
ting state identification system. If the relevant coal and rock cutting experiments are carried out in the actual 
underground, the signal acquisition is difficult and has great risks. It is not only expensive but also difficult to 
ensure the high efficiency and high reliability of the design if the laboratory experiment is used to prepare the 
coal and rock wall with a large variety of working conditions. Based on this, it is an effective way to build the 
original database of coal and rock cutting state to simulate the cutting process of shearer using the virtual proto-
type model with multi-domain modeling and collaborative simulation technology as the core. Virtual prototype 
technology pursues a success of physical prototype. Using virtual prototype instead of physical prototype to 
combine it with a variety of complex intelligent algorithm strategies can solve many technical problems in the 
coal and rock cutting state identification.

Based on the structure and material parameters of the gear transmission system of the shearer cutting part, 
the values of the contact parameters were added to the model. Finally the rigid model of the shearer cutting part 
is shown in Fig. 6.

The shearer working in complex coal seam is affected by the changeable physical and mechanical properties 
of the cut coal and rock, and the load in its working process is nonlinear and time-varying. The rigid-flexible 
coupling Virtual Prototype Simulation after flexibility of key parts can improve the accuracy of vibration related 
information of the cutting part system. Because the flexibility of parts will greatly reduce the speed of simulation, 
in order to obtain accurate vibration information and improve the feasibility of simulation implementation, select 
the parts with obvious vibration in the cutting process of the shearer cutting part to implement flexibility. In 
the process of cutting and crushing, the spiral drum is in direct contact with the coal wall, and the high impact 
and nonlinear load lead to large vibration in the working process of the drum; The rocker arm shell is not only 
impacted by the meshing process of its internal gear transmission system, but also subjected to the alternating 
impact load generated from the working process of the spiral drum. Therefore, the rocker arm shell is the key 
part of vibration produced in the cutting process of the cutting part; the square head is the key part connecting 
the spiral drum and the output shaft. The transient impact loads produced by the spiral drum and the alternating 
torque produced by the output shaft will cause large vibration in the working process of the square head. There-
fore, according to the above analysis, the spiral drum, rocker arm shell and square head were flexible treatment. 
Finally, the rigid drum, rocker arm shell and square head were replaced with flexible parts to form a rigid-flexible 
coupling virtual prototype model of the shearer cutting part, as shown in Fig. 7.

Construction of the two‑way coupling model for shearer cutting section to cutting complex 
coal seam with gangue.  The bidirectional coupling model of the cutting process of the shearer cutting 
part was established through the coupling interface between Edem and RecurDyn, which can realize the cor-
relation between the high-precision three-dimensional simulation model of the complex coal seam with updated 
and replaced particles and the rigid-flexible coupling virtual prototype model of the cutting part. The bidi-
rectional coupling data exchange process is shown in Fig. 8. Through DEM-MFBD interactive interface, the 
position information of shearer cutting part relative to coal wall working face in EDEM is transmitted to the 
corresponding geometry in RecurDyn, so as to realize the real-time transmission of motion information and the 
coal-rock state characteristic signal data. It can ensure the accuracy of simulation results.

Figure 5.   Structure replacement of initial basic model for high precision 3D simulation of coal seam.
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Before the simulation of the bidirectional coupling system, the sampling frequency is determined to be 
2000 Hz according to the sampling frequency theorem28, so the simulation step size is 0.0005 s. Set the shearer 
traction speed of 4 m/min, drum rotating speed of 95 r/min and the cutting depth of 630 mm to complete the 
bidirectional coupling simulation of the cutting process of the shearer cutting part. Using the high-precision 3D 
simulation model of complex coal seam and based on the replacement function of multi types particle cluster, 
updated the simulation model of complex coal seam and iterated repeatedly to construct 66 groups of different 
simulation conditions as shown in Table 2.

Data processing.  The simulation data of spiral drum, rocker arm shell and square head in 66 groups of the 
coal and rock cutting models were extracted through the RecurDyn post-processing module. Taking one group 
of simulation working conditions (coal: rock = 1:3, fcoal = 2.38, frock = 6.8) as an example, the statistical results 
of vibration acceleration signals of spiral drum, rocker arm shell and square head in X, Y and Z directions are 
shown in Fig. 9 and Table 3.

It can be seen from Fig. 9 and Table 3 that the vibration intensity in the cutting resistance direction of the 
spiral drum is the largest, and the rocker arm shell and the square head are the largest in the vertical direction. In 
order to increase the sensitivity of the recognition system, the direction with the most severe vibration intensity 
of the spiral drum, rocker arm shell and square head was selected as the characteristic sample data to character-
ize their vibration degree.

Figure 6.   The rigid model of the shearer cutting part.

Drum flexible part

Rocker arm flexible part

Square head flexible part

Rigid-flexible coupling virtual

prototype model of the shearer cutting part

Figure 7.   Display the rigid-flexible coupling model of shearer cutting part and flexible part of key components.
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Characteristic recognition and analysis of vibration signal of the spiral drum.  Due to the limitation of article 
length, the 4 groups of typical working conditions were taken as examples for comparative processing and analy-
sis. During the cutting process of the shearer (Fig. 10), the vibration acceleration in the cutting resistance direc-
tion of the spiral drum is shown in Fig. 11.

It can be seen from Fig. 11 that when there are differences in hardness and proportion of the coal and rock, 
the fluctuation amplitude of vibration information changes. However, their waveforms are similar and there 
is no significant difference. We cannot identify the specific cutting state of coal and rock only through Fig. 11. 
Therefore, the STFT algorithm29,30 defined in Eq. (1) was used to convert the vibration signal of the spiral drum, 
and its parameter settings are shown in Table 4. After STFT split and merge, the two-dimensional time–frequency 
images of the spiral drum vibration signal with the size of 128*128 under different cutting states were obtained, 
as shown in Fig. 12.

(1)STFTx

(

t, f
)

=

m−1
∑

δ=0

x(δ)p(δ − t)e−jωδdδ
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drive
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corresponding geometry in
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Figure 8.   Interactive process of the two-way coupling.

Table 2.   Simulation working condition.

Firmness coefficient of coal/fcoal Firmness coefficient of rock/frock Coal-rock volume ratio

1.4

3.5 (Soft gangue) 0:1 1:1 1:3 3:1 1:0

5.1 (Hard gangue) 0:1 1:1 1:3 3:1 1:0

6.8 (Floor) 0:1 1:1 1:3 3:1 1:0

7.4 (Roof) 0:1 1:1 1:3 3:1 1:0

8.4 (Inclusion) Come across inclusion

3.5 (Soft gangue), 5.1 (Hard gangue), 6.8 (Floor), 7.4 (Roof) randomly 
mixed Cross fault

2.38

3.5 (Soft gangue) 0:1 1:1 1:3 3:1 1:0

5.1 (Hard gangue) 0:1 1:1 1:3 3:1 1:0

6.8 (Floor) 0:1 1:1 1:3 3:1 1:0

7.4 (Roof) 0:1 1:1 1:3 3:1 1:0

8.4 (Inclusion) Come across inclusion

3.5 (Soft gangue), 5.1 (Hard gangue), 6.8 (Floor), 7.4 (Roof) randomly 
mixed Cross fault

3.8

3.5 (Soft gangue) 0:1 1:1 1:3 3:1 1:0

5.1 (Hard gangue) 0:1 1:1 1:3 3:1 1:0

6.8 (Floor) 0:1 1:1 1:3 3:1 1:0

7.4 (Roof) 0:1 1:1 1:3 3:1 1:0

8.4 (Inclusion) Come across inclusion

3.5 (Soft gangue), 5.1 (Hard gangue), 6.8 (Floor), 7.4 (Roof) randomly 
mixed Cross fault
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where, x(δ)is the original signal at time δ; p(δ − t) is the analysis window function; m represents the length of 
the window function.

It can be seen from Fig. 12 that the difference between the coal and rock cutting states represented by STFT 
time–frequency image is significantly greater than that in time domain. At the same time, the time–frequency 
images contain richer variation features. Even if the firmness coefficient of coal is larger than that of rock, there 
are significant differences in the position of main frequency and the size of frequency distribution points in the 
time–frequency image. Under the working condition shown in Fig. 12a, the energy of the dominant frequency 
is mainly distributed at 10 Hz, 50 Hz, 210 Hz and 410 Hz; Under the working condition shown in Fig. 12b, the 
energy of the dominant frequency is distributed in the range of 0 ~ 80 Hz, 150 Hz, 320 Hz and 500 Hz respec-
tively; Under the working condition shown in Fig. 12c, the energy of the dominant frequency is distributed in 

Figure 9.   Three direction vibration signal.
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the range of 0 ~ 50 Hz and 960 Hz respectively, and its energy is 2.14 × 105; Under the working condition shown 
in Fig. 12d, the energy of the dominant frequency is distributed at 10 Hz, 70 Hz and 880 Hz respectively, and 
its energy is 3.57 × 105.This is mainly due to the differences in amplitude, period and other characteristics of the 
vibration signal obtained by the shearer spiral drum under different cutting states, and the STFT time–frequency 
image can highlight the feature differences. Therefore, through the change of STFT, we can make full use of the 
information of signal in time domain and frequency domain, and lay a foundation for the recognition perfor-
mance of the coal and rock cutting state recognition system.

Table 3.   Statistical value of vibration acceleration.

Vibration acceleration(mm/s2) X direction Y direction Z direction

Peak value

Spiral drum 6217.883 9962.288 8779.138

Rocker arm shell 5531.017 8692.579 4896.529

Square head 6701.245 10,889.506 8951.951

Valid values

Spiral drum 4397.371 7045.288 6208.726

Rocker arm shell 3021.819 6338.542 2262.304

Square head 4811.814 8235.927 6509.101

Maximum value

Spiral drum 11,310.057 42,751.179 32,405.143

Rocker arm shell 19,037.561 21,347.322 16,851.397

Square head 14,957.632 49,369.216 34,521.635

Minimum value

Spiral drum − 10,162.186 − 35,853.527 − 30,084.474

Rocker arm shell − 11,926.454 − 18,936.411 − 9692.112

Square head − 11,264.238 − 58,214.506 − 33,699.728

Figure 10.   The cutting process of the shearer.

Figure 11.   The vibration acceleration in the cutting resistance direction of the spiral drum.

Table 4.   Parameter setting of STFT transform.

Parameter name Parameter selection

Window type Kaiser window

Sample length/L 1025

Length of window function/Lt 256

Overlap of windows/Ln 248
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Characteristic recognition and analysis of vibration signal of the rocker arm shell.  In order to analyze the identi-
fication characteristics of the vibration signal of the rocker arm shell, corresponding to the four typical complex 
working conditions in Section “Characteristic recognition and analysis of vibration signal of the spiral drum”, the 
vibration acceleration of the rocker arm shell in the vertical direction during the cutting process of the shearer 
was extracted, as shown in Fig. 13.

According to Fig. 13, the information of the coal and rock cutting state under different working conditions 
will show unstable changes in varying degrees in the vibration acceleration of rocker arm shell. This difference 
becomes the basis for using the vibration signal of the rocker arm shell to characterize the cutting state of dif-
ferent coal and rock. However, the singleness of time domain analysis will lead to poor description of the coal 
and rock cutting state characteristics and reduce the accuracy of identification. Therefore, the STFT transform 
was also used to convert the time-domain signal of the rocker arm housing into a spectrum image to synthesize 
the energy characteristics of time–frequency domain and make up for the defects of time domain information, 
as shown in Fig. 14.

The time–frequency resolution of the vibration information of the rocker arm shell is well retained by STFT 
transformation. At the same time, the characteristic information of energy clusters is prominent. The variation 
and distribution of energy characteristics under different working conditions are obviously different. Therefore, 
in the process of building the recognition system, the time–frequency image can significantly improve the effec-
tiveness of using the vibration signal samples of the rocker arm shell.

Characteristic recognition and analysis of vibration signal of the square head.  Taking the four typical complex 
working conditions corresponding to Section “Characteristic recognition and analysis of vibration signal of the 
spiral drum” as an example, the vibration acceleration curve of the square head during shearer cutting is shown 
in Fig. 15.

Figure 12.   The time–frequency images of the spiral drum.

Figure 13.   The time–frequency images of the rocker arm shell.

Figure 14.   The time–frequency images of the rocker arm shell.
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As can be seen from Fig. 15, the vibration signal of the square head under different working conditions varies 
in time domain. However, due to the influence of vibration and shock, it belongs to unstable signal, and there 
is similarity between waveforms. The lack of prominent vibration characteristics makes the learning process of 
the coal and rock cutting state characteristics more difficult. Therefore, in order to enhance the effectiveness 
of feature information extraction, STFT transform was also used to convert the one-dimensional time domain 
signal of the square head into the two-dimensional time–frequency image with time and frequency resolution 
of 128, as shown in Fig. 16.

The dominant frequency in the time–frequency diagram under each working condition was marked in Fig. 16. 
It can be seen from Fig. 16 that there are obvious differences in the dominant frequency energy position, range 
size, characteristic group shape and other information in the square head vibration signal between different 
working conditions. Due to the participation of STFT transform, it plays the role of fully extracting energy fea-
tures, retains the energy features near the actual frequency of the signal under various working conditions, and 
obtains the time–frequency information with strong focusing. The image not only has good frequency resolution, 
but also has high discrimination of each frequency component point. This shows that the square head vibration 
signal is transformed by the method of STFT, which provides the original samples with high availability for the 
training of deep learning. Using the time–frequency image of the square head vibration signal to characterize 
the cutting state characteristics of coal and rock is very necessary to improve the accuracy of recognition system.

Vibration feature fusion of the coal and rock cutting based on MW
Image fusion.  The time–frequency spectrum images of spiral drum, rocker arm shell and square head under 
different coal and rock cutting conditions contain a lot of details. In order to make the time–frequency spectrum 
images under various working conditions more representative and strengthen the discrimination of the original 
samples in the database, the nonlinear characteristics of morphological technology and the multi-level charac-
teristics of wavelet transform decomposition were combined to implement the image fusion of morphological 
wavelet transform (MW) for the time–frequency spectrum images of the Vibration information of the three 
under the same working conditions. The specific framework of vibration information fusion is shown in Fig. 17.

Let the time–frequency images of vibration signals of the spiral drum, the rocker arm shell and the square 
head under different the coal and rock cutting conditions be M1

x, M2
x and M3

x respectively (where x is the 
serial number of the coal and rock cutting working conditions, x = 1,2,…,24), and decompose the image (where 
i = 1,2,3) n times:

where, Mϖ ∈ Xϖ ; Xϖ → Xϖ+1 is the analysis signal decomposition space of the information in the image; Xϖ → Yϖ+1 
is the analysis detail decomposition space of the information in the image; λϖ

↑ is the analysis signal operator of 
the information decomposition in the image; ϑϖ

↑ is the analysis detail operator of the information decomposition 

(2)
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Figure 15.   The time–frequency images of the square head.

Figure 16.   The time–frequency images of the square head.
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in the image; Mi
n is the analysis signal coefficient after image; Mi

x is decomposed n times; Ui
n is the analysis detail 

coefficient of the image after Mi
x decomposition n times.

Fusion rule of image Mi
x at low frequency:

where, αi
n(p,q)(i = 1,2,3) is the weighted coefficient of the image; Mn(p,q) is the low frequency coefficient of the 

fused image; M(p,q) is the position of image structure element.
The high-frequency components of image Mi

x in the horizontal, vertical and diagonal directions follow the 
pyramid contrast fusion rule. If the decomposition scale Y is within the range of the highest decomposition 
scale T, then:

where, a is the horizontal direction; b is the vertical direction; c is the diagonal direction; Ba
Y is the contrast ratio 

of the image in the horizontal direction; Bb
Y is the contrast ratio of the image in the vertical direction; Bc

Y is the 
contrast ratio of the image in the diagonal direction.
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Figure 17.   Fusion framework of vibration characteristics of the coal and rock cutting based on MW.
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where, Std is the standard deviation of the central area of the image pixel.
Finally, the time–frequency image of the vibration signal representing the cutting state of coal and rock was 

synthesized by using the fusion rules, which is expressed as:

where, (V,W) ∈ (p,q); λϖ
↓ is the analysis signal operator of the information synthesis in the image; ϑϖ

↓ is the 
analysis detail operator of the information synthesis in the image.

Based on MW image fusion model, the time–frequency spectrum images of spiral drum, rocker arm shell and 
square head under different coal and rock cutting conditions were fused and transformed. Due to the variety of 
working conditions set, the original image samples of the database are large. Therefore, Fig. 18 only shows fusion 
image samples corresponding to the 4 typical working conditions in Section “Construction of high-precision 3D 
simulation model for complex coal seam”. It can be seen from Fig. 18 that the MW time–frequency spectrum 
image is used for fusion, which better retains the feature information in the original image, and realizes the 
fusion of vibration information between different parts of the shearer cutting part that represents the same coal 
and rock cutting state. This will not only increase the amount of information of the original basic samples in the 
database, but also help to improve the recognition ability of the coal and rock cutting status.

Comparative analysis of experiments.  In order to verify the superiority of the fusion model of coal 
and rock cutting vibration characteristics, a group of all coal cutting working conditions with the firmness coef-
ficient of 2.38 were selected at random. The time–frequency spectrum images of the vibration information of the 
spiral drum, rocker arm shell and square head during the shearer cutting process were extracted, and the image 
features were fused using MW, HIS (Hue Intensity Saturation), PCA (Principal Component Analysis) and WT 
(Wavelet Transform) models respectively. In the process of fusion, four layers of decomposition were adopted, 
and finally feature fusion images with the size of 128 * 128 were obtained in different methods, as shown in 
Fig. 19.

It can be seen from the fusion image effect of Fig. 19 that the fusion effect of WT model is better than that of 
HIS and PCA models. The image after WT model fusion has improved its smoothness and clarity. However, due 
to the different sensitivity of WT model to bright and dim spots, the brightness effect of the image is relatively 
poor. At the same time, the high-frequency features in the time–frequency spectrum images of the spiral drum, 
rocker arm shell and square head are obviously lost. The image fused by MW model has moderate brightness and 
high fit with the original image. The image is clearer than the other three methods. At the same time, the domi-
nant frequency features in the time–frequency spectrum images of the spiral drum, rocker arm shell and square 
head are highly fused and retained. The image degradation is improved and the feature fusion effect is better.

In order to further carry out quantitative evaluation on the fusion model of coal and rock cutting vibration 
characteristics based on MW, the evaluation indicators of the four models were counted, and the comparison 
results are shown in Table 5.

According to the statistical results in Table 5, the SD value of the image fused by MW model is the largest. 
This shows that the discrete distribution degree of gray level of time–frequency spectrum image representing the 
coal and rock cutting state after MW change fusion is higher than that of other three fusion models. The fused 
image has the largest contrast and the richest feature information. The AG value of MW model is greater than 
that of other three fusion models. This shows that using MW fusion method, the subtle features in the source 
image achieve fusion transformation, which can increase the representativeness of the coal and rock cutting state. 
Compared with HIS and PCA models, the SNR value of WT model fusion image is significantly improved, but 
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Figure 18.   Time-spectrum fusion image of vibration information under different working conditions.
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its effect is not good compared with MW model, and the fusion effect of MW model is the best. It can be seen 
from the comparison of AE value that MW transform improves the ability of model fusion image information 
feature points, and the effectiveness of the fused image to represent the coal and rock cutting state is obviously 
stronger than HIS, PCA and WT models. It can be seen from the MI values of each model that the MI value of 
MW model is the largest. This shows that the fused image has a higher coincidence degree with the time–fre-
quency spectrum original image of the spiral drum, rocker arm shell and square head, and the ability to retain 
the feature information in the source image is the strongest. Based on the fusion ability evaluation indicators 
of the four models, the image fusion comprehensive performance of MW model is the best, which objectively 
verified the effectiveness of the MW based the coal and rock cutting vibration feature fusion model.

Extension of the coal and rock cutting state samples by improved DCGAN network
Design of improved DCGAN network.  During the training of coal and rock cutting state recognition 
network, if there are too few samples, it is easy to have overfitting phenomenon, resulting in the decline of rec-
ognition accuracy. Therefore, a large number of data samples must be obtained. The improved DCGAN model 
based on GAN (Generic Advantageous Networks) network was selected to generate high-quality time–frequency 
spectrum samples, enrich the original data set, improve the stability and robustness of the model, and ensure 
the quality of generated samples. The improved DCGAN model is composed of generator G and discriminator 
D, and its network structure is shown in Fig. 20. It can be seen from Fig. 20 that in the generator model of the 
improved DCGAN network, a 4-layer deep learning network with transposed convolution structure was used to 
connect its input layer and output layer to ensure that the characteristic graph completes the dimensional trans-

Figure 19.   Fused images under different methods.

Table 5.   Comparative analysis of evaluation indexes of four fusion models.

Evaluation indexes HIS PCA WT MW

Standard deviation 0.1521 0.1577 0.1942 0.2011

Articulation 3.8127 4.7622 5.3161 5.9785

Signal to noise ratio 1.2144 1.5136 5.2273 7.1484

Average error 24.1194 23.2712 15.3353 12.6026

Mutual information 1.1146 1.1383 1.1757 1.1902



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3489  | https://doi.org/10.1038/s41598-023-30617-9

www.nature.com/scientificreports/

formation while improving the stability of the system model training. Each layer of convolution structure in the 
generator model used convolution kernels and convolution steps of different sizes to complete the reverse convo-
lution of its characteristic image, so as to improve the resolution of synthetic samples in the coal and rock cutting 
state. At the same time, in order to enrich the semantic information of the coal and rock cutting state feature 
map, and made the synthetic sample more close to the real sample, the convolution was performed again after 
the reverse convolution learning for each convolution layer, and the upper sampling was completed. During the 
implementation of up-sampling, bilinear interpolation was used to improve the ability of the network to effec-
tively retain the edge information of the spectrum image in the coal and rock cutting state. In the discriminator 
model of the improved DCGAN network, five layers of network learning structure were set, one layer of fusion 
feature information structure was added to the traditional DCGAN network, and the other four layers were 
network learning layers with convolution structure. Like the generator, the convolution kernel and convolution 
step size of each layer of convolution structure of the discriminator are also different. The added fusion feature 
information structure layer is located behind the four-layer convolution structure. After the feature map in the 
third-layer convolution is maximally pooled, it is fused with the feature map in the fourth-layer convolution to 
uniformly normalize it into the feature map of the same size, which improves the ability of the discriminator to 
distinguish the true and false images, quickly carries out comparative identification, and indirectly promotes the 
ability of the generator to synthesize high-quality coal and rock cutting state samples. The detailed parameters of 
generator G and discriminator D, as shown in Table 6.

Training of improved DCGAN network.  Before generating synthesis samples, the model needs to be 
trained. After training, the generator model and discriminator model in the sample expansion DCGAN network 
of the coal and rock cutting state need to achieve the optimal output goal, and its goal is shown in formula (12):

where, logD(x) is the comparison and identification output of the discriminator to the real sample after the train-
ing process; log(1-D(G(z))) is the data synthesized by the generator after the training process.

In order to improve the robustness of the sample expansion model of the coal and rock cutting state and 
improve the ability of the generator to synthesize high-quality samples, a gradient penalty was added to the 
improved DCGAN network. The model with gradient penalty term can ensure the continuity of Lipschitz func-
tion constraints, effectively solve the problem of unbalanced weight distribution in the training process. While 
preserving the characteristic details of the vibration time–frequency samples in the real original, the goal of 
expanding the samples can be achieved. The mathematical model of gradient penalty is shown in formula (13):

where, a’ is the sampling point distributed in the synthetic data sample; ||∇a’ D(a’)|| is the gradient expression 
of the discriminator.

In order to enhance the stability of the system in the training process, the improved model also changed the 
contrastive discrimination criterion of the discriminator on the basis of the traditional DCGAN network training 
process. Wasserstein distance was used as the criterion to evaluate the sample type:
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Figure 20.   Improved DCGAN model.
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where, W(Pdata, Pg) is the Wasserstein distance distributed between the input real original data and the synthetic 
data; inf() is the infimum for solving the set data; Π(Pdata, Pg) is the scattered set of input real original data and 
synthetic data; λ is the possible unified and decentralized between the input real original data and synthetic data; 
a is the real original data; b is the synthesize data.

The generator model of the improved DCGAN network read the vibration time–frequency samples rep-
resenting the cutting state of coal and rock. At the same time, the generator model learns and trains the data 
distribution law of its samples through convolution structure, and then synthesizes new feature samples. In 
the training process, the discriminator model makes use of the characteristics of its own network to maximize 
the ability of comparison. The discriminator model uses this ability to identify the type of the time–frequency 
samples and give the judgment result, that is, synthetic feature samples or real feature samples. The generator 
and discriminator continuously conduct bilateral game alternating training, and finally achieve the purpose of 
expanding the time–frequency samples of high-quality vibration. The training process of the designed DCGAN 
network of improvement is shown in Fig. 21.

It can be seen from Fig. 21 that the training process of discriminator model D and generator model G can be 
regarded as a zero sum game. Let x = G(z), feedback the input data to the generator model, and the cost functions 
of both can be expressed as:

where, A(D) is the cost function of D; A(G) is the cost function of G; E() represents the mathematical expecta-
tion of solving data; Pdata is the original data input to improve DCGAN network; Pz is the random noise data of 
improved DCGAN network input.

Set up:

Then exists:

In order to realize the game relationship between D and G, it is necessary to find a solution set of V(ς(D),ς(G)). 
Finally, the requirement for obtaining D is the maximum, and the requirement for obtaining G is the minimum. 
Therefore, in the network training process, set the likelihood function and solve its maximum optimization value:
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Table 6.   Structural parameters of generator and discriminator models.

Generator
Enter channel 
dimension

Output channel 
dimension Input dimension Output dimension

Convolution kernel 
dimension Step

deconv1 512 384 4*4 8*8 3*3 2

conv-upsample1 384 128 8*8 22*22 3*3 3

deconv2 384 128 8*8 22*22 3*3 3

concact1 Feature connection 256 Feature connection 22*22 \ \

deconv3 256 48 22*22 43*43 5*5 2

conv-upsample2 256 48 22*22 43*43 5*5 2

concact2 Feature connection 96 Feature connection 43*43 \ \

deconv4 96 16 43*43 128*128 11*11 3

conv-upsample3 96 16 43*43 128*128 11*11 3

concact3 Feature connection 32 Feature connection 128*128 \ \

fc 32 3 128*128 128*128 1*1 1

Discriminator
Enter channel 
dimension

Output channel 
dimension Input dimension Output dimension

Convolution kernel 
dimension Step

conv1 3 64 128*128 43*43 7*7 3

conv2 64 128 43*43 22*22 5*5 2

conv3 128 256 22*22 8*8 3*3 3

conv4 256 512 8*8 4*4 3*3 2

maxpooling 256 256 8*8 4*4 2*2 2

maxpooling 256 256 8*8 4*4 2*2 2
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where, m represents the number of samples in Batch during training.
Let G be fixed and unchanging, and use the maximum optimization value solution algorithm of Eq. (19) to 

reorganize Eq. (17) into integral form, then the optimal solution model of D can be expressed as:

where, D* represents the optimal solution model of discriminator; Pg is the data synthesized by the generator. 
When the characteristics between the synthesized data Pg(x) and the original data Pdata(x) are approximated, the 
discriminator outputs approximately 1/2 of the data results.

If D*(x) is substituted into Eq. (19), there is:

The Jensen Shannon divergence probability distribution theorem31 is used to transform Eq. (23) to obtain:

where, when Pdata = Pg, V(G,D*) takes the minimum value, − log (4), and the generator model G* reaches the 
optimal state.
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Figure 21.   Overall flow diagram of coal and rock cutting state sample augmented DCGAN network training.
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Result analysis.  Generation of the time–frequency synthesized sample image in the coal and rock cutting 
state.  The improved DCGAN model was used to train the samples of the coal and rock cutting state types. 
Parameter settings are shown in Table 7.

After repeated experiments and tests, the output results show that when the number of iterations of the train-
ing process is set to 20,000, the improved DCGAN network model reaches the most ideal training state, and the 
change relationship between the number of iterations and the training loss is shown in Fig. 22.

It can be seen from Fig. 22 that the generator model changes steadily in the initial stage of the training process, 
and then the loss value shows an upward trend with the increase of the number of iteration rounds. When the 
number of training iterations reached 5867, 6634, 9008 and 11,811 in the process of rising change, there was a 
shock with large amplitude change. When the number of iterations is 14,549, the loss value gradually tends to a 
gentle state, and there is no large up and down change of oscillation amplitude thereafter, which indicates that 
the confrontation between the generator model and the discriminator model is over. The change trend of the loss 
value of the discriminator model is opposite to that of the generator model. The loss value shows a downward 
trend, and there is an obvious large-scale fluctuation in the process of downward change, which indicates that 
the discriminator model has not yet found the direction of the best solution. The model is still in the learning 
period, and there is still confrontation training between the generator and the discriminator. After 14,546 rounds 
of iterative training, the discriminator model approaches the direction of the optimal solution, and the loss 
value is stable without large amplitude oscillation. This shows that the similarity between the synthetic vibration 
time–frequency sample image and the real original vibration time–frequency image has reached a very close 
state, and the quality of the synthetic sample image is at the highest level.

We structured the time–frequency synthesized sample image of the coal and rock cutting state by improved 
DCGAN network. Due to article length limitation, only 9 working conditions were randomly extracted in Fig. 23 
for display.

It can be seen from the comparison between the synthetic image and the real image in Fig. 23 that the image 
synthesized by the improved DCGAN network highly simulates the characteristics of the real samples obtained 
in the experiment. The similarity between them is very high, but their details have significant differences. This 
shows that the designed model not only enriches the database of the coal and rock cutting status, but also achieves 
the goal of generating high-quality images that can represent different coal and rock cutting status.

Comparative analysis of different models.  In order to further verify the superiority of improving the perfor-
mance of DCGAN network, traditional GAN network and traditional DCGAN network were used to expand 
the spectrum image samples. During the experiment, the training parameters of the traditional GAN network 
and the traditional DCGAN network were consistent with the improved DCGAN network, and they were 
trained and learned respectively until they reach the convergence state. The samples synthesized by the three 
algorithms implement transparent visual display after dimension reduction, as shown in Fig. 24.

Table 7.   Improved parameter setting of DCGAN sample augmentation model.

Parameter Numerical value

Learning rate 0.002

Optimization strategy Adam

Batch size 128

Loss function Cross entropy

Number of pre-generated samples of each type 5000

Figure 22.   The change relationship between the number of iterations and the training loss.
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It can be seen from Fig. 24 that the samples synthesized by the traditional GAN network do not all learn the 
distribution of the real samples, and only a few samples fall in the area where the real samples are located. This is 
because in order to achieve the convergence effect quickly, the generator synthesizes new samples in the direc-
tion of cheating the discriminator samples, resulting in the poor diversity of synthesis samples. Compared with 
the traditional GAN network, the traditional DCGAN network has improved the diversity of sample synthesis 
effects, and the coverage of synthetic samples in the real sample area has been improved. However, some data 
still can not learn the distribution characteristics of real samples until the network reaches the convergence 

Figure 23.   Synthetic sample.
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state. The improved DCGAN network synthetic sample more accurately find the region where the real samples 
are distributed. The accuracy of distribution has been significantly improved. It improves the learning ability of 
the network. The improved DCGAN network tends to quickly synthesize samples with better diversity effects.

Design of the coal and rock cutting state identification classification model based 
on RFCNN network
In order to improve the identification accuracy of the coal and rock cutting status, it is necessary to use a iden-
tification network with good feature extraction and classification identification effect to train the constructed 
vibration time–frequency spectrum image dataset. CNN network has significant advantages in image identifica-
tion. However, during the construction of the coal and rock cutting status identification network, the coal and 
rock cutting status data has a large amount of information and complex working conditions. Using traditional 
CNN network model to classify and identify them will lead to problems such as too long training period and 
slow identification and classification speed. Therefore, this paper combined the advantages of fast convergence of 
classifier in machine learning algorithm with CNN network. The classifier of CNN network model was optimized 
by using random forest classification decision. According to the characteristics of the time–frequency spectrum 
image of the vibration that represents the coal and rock cutting state, a identification model of the coal and rock 
cutting state was designed, which had rapid convergence, high identification accuracy and short classification 
identification period. In order to facilitate the description of the network in this paper, the network model of the 
coal and rock cutting status identification was marked as the RFCNN network model.

Structure design of RFCNN network model.  The designed RFCNN network model consists of two 
main structures, namely, the feature extraction layer of CNN network and the identification and classification 
layer of Random Forest classifier. The specific RFCNN network structure model is shown in Fig. 25.

It can be seen from Fig. 25 that the RFCNN network model, based on the advantages of CNN network feature 
extraction, uses two-layer convolution, two-layer maximum pooling and full connection structure to achieve 
the extraction of vibration time–frequency spectrum sample image features when coal and rock cutting state. 
The network finally inputs the result feature map obtained from the CNN network feature extraction layer to 
the Random Forest identification classification layer, and the classifier gives the result of coal and rock cutting 
state identification. The specific identification and classification process of Random Forest identification and 
classification layer is shown in Fig. 26.

It can be seen from Fig. 26 that n training subspaces can be formed in the process of n times of random sam-
pling with releasability in the feature map set Q. The C4.5 algorithm32 was used to generate the corresponding 
decision tree from n training subspaces. The decision tree will be formed into a random forest for classification 
and identification of test sets. For the input test set in the random forest, each decision tree will give a clas-
sification label, and finally count the classification results of all decision trees for voting, and obtain the final 
identification results of the RFCNN network model on the coal and rock cutting state according to the law of the 
majority. In the process of setting the parameters of the Random Forest classifier model, the maximum number 
of feature maps allowed for each decision tree in the construction process is 7, and the maximum number of 
decision trees is 500.

Selection of training parameters.  In the training process of RFCNN network model, learning rate and 
batch size are important super parameters of the network33,34. Better learning rate and batch size values can pro-
mote the network to obtain better performance. Batch size refers to the number of parameters used for training 
in the single input network model35,36, and the learning rate can be expressed by Eq. (25)37,38:
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Figure 24.   Comparison of image distribution of synthetic time–frequency samples under different network 
models.
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where, αc is the initial learning rate; β is the attenuation coefficient; ilr is the number of iterative training in the 
current state; Slr is the time interval of iterative update. Since the initial learning rate in the gradient descent 
method can usually be set to 0.01, the main parameter affecting the learning rate is the attenuation coefficient. 
The process of solving the optimal learning rate was transformed into seeking the optimal attenuation coefficient.

Based on the optimization criteria of particle swarm optimization algorithm, the optimal values of learning 
rate and batch size in the RFCNN network model were solved. The process is shown in Fig. 27.

Because the RFCNN network model belongs to a complex nonlinear network, the RFCNN network model 
acts as a fitness function, which was solved by particle swarm optimization algorithm. First, set the population 
size of particles to 200, and set the value range of attenuation coefficient and batch size training parameters to 
the change range of flight speed during particle flight. The set attenuation coefficient and batch size value range 
are shown in Table 8.

Then, the coal and rock cutting state samples were normalized, and the parameters of the RFCNN network 
model were initialized. The fitness value of each particle was calculated by RFCNN fitness function, and its 
optimal position in flight space was recorded. The RFCNN model was used to continuously update the position 
of a single particle and its own flight speed, obtained the optimal solution of the particle population under the 
current number of iterations through the optimal solution of each independent particle, and continue to iterate 
until the optimal solution was output after the maximum number of iterations. The quality of the output optimal 
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Figure 25.   RFCNN network structure model.
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solution was judged by the fitness. The accuracy of the final training of the RFCNN network model and the root 
mean square error of the identification classification were taken as the evaluation criteria for the optimal solu-
tion. The solution result of attenuation coefficient is shown in Table 9.

It can be seen from Table 9 that the corresponding Acc and RMSE vary widely under different attenuation 
coefficients. The result data in Table 9 shows that the evaluation criteria fluctuate with the change of attenuation 
coefficient, as shown in Fig. 28. It can be seen from Fig. 28 that when the attenuation coefficient is at the 13th 
level, Acc is the maximum and RMSE is the minimum. Therefore, when the attenuation coefficient is 0.9, both 
the accuracy rate and the root mean square error evaluation criteria are optimal. Finally, the optimal value of the 
attenuation coefficient of the RFCNN network model trained by the vibration time–frequency spectrum samples 
in the coal and rock cutting state is determined to be 0.9.

After the optimal value of the attenuation coefficient of the RFCNN network model was determined, the same 
particle swarm optimization algorithm was used to find the optimal value of the batch size. Set the initial learning 
rate of the RFCNN network model to 0.01, the number of iterations to 5000, and the attenuation coefficient to 
the optimal value of 0.9. The experimental results of solving the batch size are shown in Table 10.

It can be seen from Table 10 that, compared with the experimental results of attenuation coefficient, the 
change of batch size results in a relatively narrow range of ACC and RMSE. The result data in Table 10 shows 
the fluctuation of the evaluation criteria with the change of batch size, as shown in Fig. 29. It can be seen from 
Fig. 29 that when the batch size is at the third level, the evaluation effect of the evaluation criteria reaches the 
best state, that is, the accuracy is the highest, and the root mean square error is the lowest. Finally, the optimal 
value of the batch size of the RFCNN network model trained by the vibration time–frequency spectrum samples 
in the coal and rock cutting state is determined to be 25.

Comparative verification and analysis of models.  Comparative analysis of different recognition net‑
work models.  The commonly used support vector machine (SVM) model, CNN model and Alexnet model 
were selected to design a comparative experiment with RFCNN network model. The setting parameters of each 
network model were consistent. The number of input samples for each type of working condition was set to 256, 
with 5000 iterations. The results were extracted after the test, as shown in Fig. 30. It can be seen from Fig. 30 
that with the increase of the number of iterations, the recognition accuracy of the four different network models 
increases accordingly. When the number of iterations reaches a certain value, the recognition accuracy increases 
slowly and the network tends to converge. Through comparison, it can be seen that RFCNN network has the 
fastest convergence speed and the highest recognition accuracy.

Start
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RFCNN model is selected as the fitness function for solution

Data comes from the coal and rock cutting state samples
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Figure 27.   Particle swarm optimization process for solving the optimal training parameters of RFCNN network 
model.

Table 8.   Value range of attenuation coefficient and batch size.

Attenuation coefficient

0.5 0.53 0.55 0.6 0.63 0.65 0.7 0.73 0.75 0.8 0.83 0.85 0.9 0.93 0.95

Batch size

20 23 25 27 30 32 35 37 40



23

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3489  | https://doi.org/10.1038/s41598-023-30617-9

www.nature.com/scientificreports/

In order to further verify the generalization ability and stability of RFCNN network, each model was tested 
repeatedly for 5 times, and the test results are shown in Table 11. It can be seen from Table 11 that the average 
recognition accuracy of RFCNN network model is the highest, reaching 91.011%, which is 25.805%, 12.958 and 
9.326% higher than that of SVM, CNN and AlexNe respectively. Meanwhile, the standard deviation of RFCNN 
network model is 25.781, 21.925 and 19.337% lower than that of SVM, CNN and AlexNe respectively. This shows 
that RFCNN network model improves the network performance of the coal and rock cutting state recognition, 
ameliorates the stability of model training, and makes the network recognition system have better generalization 
performance. In addition, the variance and average deviation of the recognition accuracy of RFCNN network 
model are the smallest. It can be seen that RFCNN network model has significant advantages in fitting perfor-
mance compared with the other three network models.

Table 9.   Solution of attenuation coefficient and experimental results.

Sample type Attenuation coefficient Acc RMSE

The vibration time–frequency spectrum samples of the coal and rock cutting state

0.5 0.7957 0.0694

0.53 0.8016 0.0727

0.55 0.8481 0.0662

0.6 0.7941 0.0651

0.63 0.8233 0.0691

0.65 0.7812 0.0715

0.7 0.8069 0.0681

0.73 0.8293 0.0656

0.75 0.8127 0.0678

0.8 0.8525 0.0693

0.83 0.8319 0.0592

0.85 0.8892 0.0644

0.9 0.9014 0.0539

0.93 0.8764 0.0574

0.95 0.8611 0.0564
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Figure 28.   Fluctuation of Acc and RMSE with different attenuation coefficients.

Table 10.   Experimental results of batch size solution.

Sample type Batch size Acc RMSE

The vibration time–frequency spectrum samples of the coal and rock cutting state

20 0.8922 0.0595

23 0.8734 0.0556

25 0.9177 0.0524

27 0.8963 0.0587

30 0.8749 0.0605

32 0.8912 0.0591

35 0.8671 0.0613

37 0.8828 0.0657

40 0.8591 0.0630
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Comparative analysis of the number of synthetic samples on the recognition effect of Rfcnn network model.  In 
order to verify the influence of using the improved DCGAN model to expand samples on the training and learn-
ing of RFCNN model, different numbers of synthetic samples were generated respectively. The original samples 
and synthetic samples were mixed as the training set and test set of RFCNN network. After repeated tests for 5 
times, the indicators to measure the recognition accuracy were calculated, and the results are shown in Table 12. 
It can be seen from Table 12 that when the number of synthetic samples added is 0, the average recognition rate 
of RFCNN network is 88.641%. When the number of synthetic samples added is 5000, the average recognition 
rate reaches 98.344%, which is 10.946% higher than that of the first group of models. The variance and aver-
age deviation of the recognition accuracy are the smallest, but when the number of synthetic samples exceeds 
5000, the average recognition rate changes little. It shows that the improved DCGAN network can improve the 
recognition ability of the coal and rock cutting state of RFCNN network. For the DCGAN-RFCNN network 
designed in this paper, when the number of synthetic samples reaches 5000, the recognition effect is the best. At 
the same time, with the increase of the number of synthetic samples, the standard deviation of the recognition 
rate of the model first decreases and then increases. When the number of synthetic samples is 5000, although the 
average recognition rate is only 0.859% higher than that of the model with the number of synthetic samples of 
4000, the standard deviation of the recognition rate is reduced by 85.729%. It shows that the effective expansion 
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Figure 29.   Fluctuation of Acc and RMSE with different batch size.

Figure 30.   Recognition accuracy and loss function of model.

Table 11.   Performance comparison of different recognition network models.

Network model name
Average value of recognition 
accuracy/%

Standard deviation of recognition 
accuracy Variance of recognition accuracy

Average deviation of recognition 
accuracy

RFCNN 91.011% 1.022 × 10−3 1.114 × 10−6 0.0419

AlexNet 83.247% 1.267 × 10−3 1.646 × 10−6 0.0891

CNN 80.571% 1.309 × 10−3 1.712 × 10−6 0.1531

SVM 72.343% 1.377 × 10−3 2.057 × 10−6 0.2032
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of data not only improves the accuracy of the coal and rock cutting state recognition network, but also improves 
its generalization ability.

Experimental verification
In order to verify the superiority of the network model in the identification of the coal and rock cutting sta-
tus, experimental research was carried out in the Liaoning Provincial Key Laboratory of Large-Scale Mining 
Equipment39,40. Based on the original mining equipment in the laboratory, the existing experimental platform 
for the coal and rock cutting by shearers was reconstructed, which is mainly composed of four parts: the coal 
and rock cutting system, signal data acquisition and processing system, control power system and real-time 
monitoring system, as shown in Fig. 31.

The artificial simulated coal wall is based on the gangue containing coal and rock in 4602 working face of 
Yangcun Mine of Yanzhou mining area. According to the similarity ratio, the prototype numerical results corre-
sponding to the experimental coal wall are calculated, as shown in Table 13. By comparing the numerical results 
of the similar model and the prototype, the errors of the prototype bonding parameters and the results of the 
similar model after back extrapolation are within the allowable range41–43, both less than 3.5%. This verifies the 
correctness of the deduction of the similarity criterion of the bonding parameters, that is, the method of making 
the coal wall based on the similarity theory is feasible, and the specific process of making it is shown in Fig. 32.

The signal data acquisition and processing system mainly includes vibration acceleration sensor, signal test 
analyzer and data storage computer. The vibration acceleration sensor used in the experiment adopts DH311E 
three-directions piezoelectric vibration acceleration sensor, as shown in Fig. 33. The model of signal test analyzer 
is DH5922D, as shown in Fig. 34. After the vibration acceleration sensor was processed by the signal test analyzer, 
the data information can be transmitted to the data storage computer through Ethernet communication. At the 
same time, DHDAS software platform was installed inside the data storage computer to analyze and process the 
data signals transmitted by the signal test analyzer simply and conveniently.

The control power system mainly realizes the automatic control of the shearer’s cutting mechanism, traveling 
mechanism and coal wall clamping mechanism, including the regulation of the shearer’s traction speed and drum 
rotation speed, the adjustment of the drum height, the reciprocating of the traveling mechanism, the expansion 
and contraction of the hydraulic cylinder used to clamp the coal wall, and the start and stop of the equipment. 
The design distribution of some hardware structures of the control power system is shown in Fig. 35.

The real-time monitoring system is mainly composed of coal machine operation monitoring interface and 
manual monitoring console, as shown in Fig. 36. The coal machine operation monitoring interface is used to 
monitor the working process of the shearer cutting coal and rock experimental platform. Its operation status 
and parameter changes of controls can be displayed in real time, so that it can be adjusted and handled in time 
in case of emergency, and the safety and reliability of the experimental system can be improved. The manual 
monitoring console consists of a start button, a manual adjustment handle, and a graphical monitoring interface 
developed based on LabVIEW language. The experimenter can adjust the position and posture of the shearer 
before the experiment, observe the operation data of the shearer during the experiment, and control the quick 
retraction of the drum after the experiment through the manual monitoring platform.

In this experiment, the coal wall was processed in layers and sections, and six kinds of the coal rock cut-
ting states were set to verify the coal rock cutting state identification system. As shown in Table 14, the cutting 
experiments were carried out under different working conditions by adjusting the position of the spiral drum. 
The different structure of the cutting part of the shearer results in different vibration modes, different natural 
frequencies and different vibration signals. However, the simulation and experimental research based on virtual 
prototype are consistent with the actual working conditions, and no matter what structural parameters have no 
effect on the research results. Therefore, in order to maintain the high consistency between the experimental 
system and the virtual simulation system, DH311E three-directions piezoelectric vibration acceleration sensor 
was installed at the rear end of the spiral drum of the shearer (vibration sensor 1), the rocker arm shell (vibration 
sensor 2) and the connection between the drum and the shell (vibration sensor 3). The vibration signals of dif-
ferent parts of the shearer under different cutting conditions were collected through the Signal Data Acquisition 
and Processing System. The field test working state of this experiment is shown in Fig. 37. Moved the positions of 
their respective drivers at the rear end of the spiral drum of the shearer, the rocker arm shell and the connection 

Table 12.   Statistics of various indicators of recognition accuracy of RFCNN network model under different 
number of synthetic samples.

Experimental grouping
Number of synthetic 
samples

Average value of 
recognition accuracy/%

Standard deviation of 
recognition accuracy

Variance of recognition 
accuracy

Average deviation of 
recognition accuracy

1 0 90.641 1.226 × 10−3 1.357 × 10−6 6.736 × 10−2

2 1000 93.262 3.258 × 10−4 1.205 × 10−7 3.284 × 10−3

3 2000 94.447 2.042 × 10−4 5.329 × 10−8 2.538 × 10−4

4 3000 96.193 1.577 × 10−4 1.969 × 10−8 2.303 × 10−4

5 4000 97.506 1.201 × 10−4 1.374 × 10−8 1.627 × 10−4

6 5000 98.344 1.714 × 10−5 2.883 × 10−10 1.115 × 10−5

7 6000 98.307 1.722 × 10−5 2.917 × 10−10 1.132 × 10−5

8 7000 98.295 1.718 × 10−5 2.904 × 10−10 1.127 × 10−5
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between the drum and the shell relative to the original position in Fig. 37, as shown in Fig. 38. Under the con-
dition of working condition 1 in Table 14, the vibration acceleration measured by the original position sensor 
and the vibration acceleration of the after moving sensor were extracted for comparison and analysis, and the 
results are shown in Table 15. From the statistical results in Table 15, it can be seen that the vibration accelera-
tion measured by the sensor after moving the position is similar to that measured by the sensor at its original 
position. This shows that changing the positions of sensors at the rear end of spiral drum, rocker arm shell and 
the connection between drum and shell has no influence on the research results.

Roof compress cylinder

Experimental gantry

Clamping cylinder

Pumping station

Pushing hydraulic cylinder

Slideway

Sliding platform

Rocker arm

Lifting cylinder

Drum

Coal wall

Shearer Cutting Coal and Rock System

Power Control System

Signal Data Acquisition and

Processing System

Real-time Monitoring System

The connection between the drum and the shell

Figure 31.   Experimental platform for shearer cutting coal and rock.

Table 13.   Comparison and verification of prototype and artificial coal wall model parameters.

Parameters Prototype Artificial coal wall Similar reverse result Error

Normal stiffness of coal ~ coal kn/
(

N ·m−3
)

1.1098E + 08 5.5566E + 07 1.0853E + 08 2.21%

Normal stiffness of coal ~ rock kn/
(

N ·m−3
)

1.4158E + 08 7.2277E + 07 1.4116E + 08 0.30%

Normal stiffness of roal ~ rock kn/
(

N ·m−3
)

1.9548E + 08 9.9224E + 07 1.9380E + 08 0.86%

Tangential stiffness of coal ~ coal ks/
(

N ·m−3
)

8.5104E + 07 4.3052E + 07 8.4097E + 07 1.18%

Tangential stiffness of coal ~ roal ks/
(

N ·m−3
)

1.0857E + 08 5.4668E + 07 1.0678E + 08 1.65%

Tangential stiffness of roal ~ roal ks/
(

N ·m−3
)

1.4989E + 08 7.6096E + 07 1.4863E + 08 0.84%

Normal stress of coal ~ coal σ/pa 8.0017E + 06 4.0458E + 06 7.9022E + 06 1.24%

Normal stress of coal ~ roal σ/pa 1.6356E + 07 8.0872E + 06 1.5795E + 07 3.43%

Normal stress of roal ~ roal σ/pa 2.5375E + 07 1.2867E + 07 2.5131E + 07 0.96%

Tangential stress of coal ~ coal τ/pa 2.2232E + 06 1.1215E + 06 2.1905E + 06 1.47%

Tangential stress of coal ~ roal τ/pa 7.0743E + 06 3.5924E + 06 7.0161E + 06 0.82%

Tangential stress of roal ~ roal τ/pa 1.2539E + 07 6.2426E + 06 1.2193E + 07 2.76%

Figure 32.   Artificial simulation of coal wall making process.
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After the experiment, the vibration signals of spiral drum, rocker arm shell and the connection between 
drum and shell collected by DH311E three-directions piezoelectric vibration acceleration sensor were drawn as 
one-dimensional time domain diagram by DH5922D signal test analyzer. Among them, the vibration signals of 
the coal and rock cutting state under each different working conditions were divided into 28 groups of sample 
data information with a duration of 5S. The one dimensional time domain data samples were transformed into 
the two-dimensional time–frequency images according to the STFT data information conversion method con-
structed in this paper. Then, the designed MW coal and rock cutting vibration feature fusion rules were used to 
fuse the feature information of the two-dimensional vibration time–frequency images of the spiral drum, the 

Signal input line

BNC adapter

(a)DH311E three-directions piezoelectric vibration

acceleration sensor Sensor wiring mode(b)

Figure 33.   DH311E three-directions piezoelectric vibration acceleration sensor.

Power Supply
Synchronous clock

interface

DC power access terminal

Grounding terminal

Signal input interfaceExternal trigger function port

Figure 34.   DH5922D signal test analyzer.

Figure 35.   Design and distribution of some hardware structures of control power system.
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rocker arm shell and the connection between the drum and the rocker arm shell. The fused original samples 
used the improved DCGAN network model to generate synthetic samples, with 5000 iterations. A part of experi-
mental samples are shown in the Figs. 39, 40, 41 and 42. Finally, the “big data” includes 5000 images under each 
working condition. After the training of the improved DCGAN network model was completed, based on the 
migration learning, the obtained synthetic samples were mixed with the original samples, the training set and 
test set were divided by 4:1, and then input into the RFCNN network to identify the cutting state of coal and 
rock. The results are shown in Table 16.

It can be seen from Table 16 that the recognition accuracy of 6 different coal and rock cutting conditions in 
the experimental design is more than 95%. Taking working condition 3 as an example, the total number of test 
samples is 1009, the number of samples correctly identified by the model is 992, and 17 data samples are mis-
judged. This is because the texture feature of the background domain of the synthetic image causes slight inter-
ference to the discrimination results, but this interference accounts for only 1.68% relative to the total samples. 

Figure 36.   Real time monitoring system.

Table 14.   Experimental conditions.

Working condition Type of working condition

1 All coal, fcoal = 2.38

2 All coal, fcoal = 3.8

3 Coal:rock = 3:1, fcoal = 2.38, frock = 3.5

4 Coal:rock = 3:1, fcoal = 2.38, frock = 5.1

5 Coal:rock = 1:1, fcoal = 2.38, frock = 6.8

6 Coal:rock = 1:1, fcoal = 2.38, frock = 7.4

Vibration sensor 1

Vibration sensor 2

Vibration sensor 3

 

Figure 37.   Field test working state.
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Based on the recognition results of the above six different working conditions, the recognition accuracy of the 
coal and rock cutting state is 98.64%, which has high recognition accuracy and can accurately mapping the coal 
and rock cutting state. The experimental results verify that using the key technology of the coal and rock cutting 
state identification constructed in this paper to process the data information can effectively realize the accurate 
identification of the coal and rock cutting state.

Conclusion
Under different coal and rock occurrence conditions, the variation difference of vibration information among 
the spiral drum, rocker arm shell and square head of the shearer is fully preserved in the time–frequency image. 
There are obvious differences in the location, range and shape of dominant frequency energy between different 
working conditions.

In the time–frequency image fusion model of MW coal and rock cutting state, the features in the time–fre-
quency image of the spiral drum, the rocker arm shell and the square head vibration information are highly 
fused and retained. The fused image is used as the basic original data sample of the coal and rock cutting state 
recognition system, which effectively improves the accuracy of the characteristic sample to represent the coal 
and rock cutting state and reduces the dependence on a single position sensor.

The results of the extended data set based on the improved DCGAN network show that: There is a high 
similarity between the samples synthesized by the generator and the original samples, but there are differences 
between small feature points, which enriches the data set. With the increase of the number of synthetic samples, 
the recognition rate of the coal and rock cutting state recognition system increases to 98.344%, and then changes 
slightly. The standard deviation of recognition rate is reduced to 1.714 × 10−5, the change is no longer obvious. 
When the number of synthetic samples is 5000, the recognition effect reaches the best state. By mixing synthetic 
samples into the data set, the robustness and generalization ability of the coal and rock cutting state recognition 
model based on deep learning are effectively improved.

Combining the advantages of CNN convolution neural network and Random Forest recognition classifier, 
the RFCNN coal and rock cutting state recognition network model was designed. The experimental results show 
that: In the face of complex working conditions such as soft rock-hard coal, more gangue layers and different 
hardness values of coal and rock, the recognition ability of the coal and rock cutting state of RFCNN network 
is greatly improved compared with that of ordinary network. Through the laboratory field experiment test, the 
effective identification of the coal and rock cutting state is realized, and the feasibility of the network is verified.

Figure 38.   Sensor position after moving.

Table 15.   Comparison and analysis of sensors at different positions.

The vibration acceleration of original position sensor 
/ mm/s2

The vibration acceleration of the after moving sensor 
/ mm/s2 Differ /%

At the rear end of the spiral drum of the shearer 5281.319 5176.949 1.976

The rocker arm shell 2683.499 2746.684 2.354

The connection between the drum and the shell 7725.102 7807.186 1.063
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Figure 39.   The vibration acceleration in the cutting resistance direction.

Figure 40.   The time–frequency images.

Figure 41.   Fused two-dimensional vibration time-spectrum image.
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