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Decoding behavior from global 
cerebrovascular activity using 
neural networks
Béatrice Berthon  1,2*, Antoine Bergel  1,2, Marta Matei 1 & Mickaël Tanter  1

Functional Ultrasound (fUS) provides spatial and temporal frames of the vascular activity in the 
brain with high resolution and sensitivity in behaving animals. The large amount of resulting data 
is underused at present due to the lack of appropriate tools to visualize and interpret such signals. 
Here we show that neural networks can be trained to leverage the richness of information available 
in fUS datasets to reliably determine behavior, even from a single fUS 2D image after appropriate 
training. We illustrate the potential of this method with two examples: determining if a rat is 
moving or static and decoding the animal’s sleep/wake state in a neutral environment. We further 
demonstrate that our method can be transferred to new recordings, possibly in other animals, without 
additional training, thereby paving the way for real-time decoding of brain activity based on fUS data. 
Finally, the learned weights of the network in the latent space were analyzed to extract the relative 
importance of input data to classify behavior, making this a powerful tool for neuroscientific research.

Making sense of neural activity is one of the overarching goals of modern neuroscience. This holds true both at 
the fundamental level to understand how information is encoded and exchanged between brain areas but also at 
the application level for the development of brain-computer interfaces. Starting in the 1950’s, a body of seminal 
studies have deciphered the encoding of information in primary sensory cortical areas to reveal their functional 
organization, such as orientation maps observed in the cat visual cortex1, the whisker-to-barrel pathway in the 
somatosensory cortex2 or the tonotopy in the auditory cortex3. Later studies have shown that other brain areas 
display peculiar firing patterns that encode high-level—sometimes even abstract—representations of the exter-
nal world, for instance place cells in the hippocampus4, head direction cells in the postsubiculum5 or ‘face cells’ 
in the human inferotemporal cortex6. This has progressively led to the idea that behavior can be decoded from 
neuronal activity, in particular in the dorsal hippocampus where the firing from a limited group of neurons can 
be used to accurately decode a rat’s location7. Similarly, the fact that neurons in the postsubiculum or in the 
antero-dorsal nucleus exhibit attractor dynamics makes decoding of head direction signal relatively simple with 
a limited number of units8.

In all of these cases however, behavior is decoded from electrophysiological signals in highly specialized 
brain regions, not from the brain’s global activity. This effectively limits the range of behaviors that can be 
decoded because it restricts the recording of neural activity to a given modality or brain region. As the amount 
of informative data provided by recording technologies continuously increases—high-density electrophysiology 
can today record from ~ 1000 recording sites from a single electrode at once9, calcium imaging records the activ-
ity of hundreds, even thousands, of neurons over multiple planes10,11 and high-resolution fMRI can acquire 3D 
volumes with a high temporal frame rate12—it is critical to address if (and how) a variety of complex behaviors 
can be decoded from global brain patterns. In this framework, functional ultrasound (fUS) imaging relies on 
continuous ultrasensitive Doppler imaging to map the cerebrovascular changes with time in the whole brain. As 
such, it provides rich spatial and temporal information (100 µm, 200 ms) on blood flow13.

Nevertheless, it is unclear whether accurate decoding can be achieved from global vascular signals that are 
intrinsically slower and less spatially selective than electrophysiological recordings14. Unlike optical imaging/
fMRI setups, the portability/low constraints of fUS does not impede spontaneous behavior such as walking, 
running, eating, grooming and sleeping, which largely extends the diversity of possible behaviors and associ-
ated brain states observed in a single recording session. In particular, high-quality images can now be acquired 
continuously for several hours in freely-moving animals concurrently with electrophysiology and behavior15–18. 
This suggests that decoding techniques may perform well on fUS data, where the high temporal content of elec-
trophysiological recordings is replaced with the high spatial diversity of fUS signals. Interestingly, fUS signals 
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in the posterior parietal cortex of monkeys can be used to decode movement intentions during single trials in 
a reach task19. This clearly demonstrates that vascular activity in this very region conveys meaningful informa-
tion so that subsequent behavior can be accurately decoded. In this paper, we asked whether global signals 
encompassing distant brain structures (and even vectors of spatially-averaged activity) could be used to decode 
behavior in a wide range of contexts.

The richness of information (hundreds of gigabytes of data per recording session) contained in fUS frames is 
largely underused at present: in practice, spatial information is often averaged over anatomical regions of interests 
(ROI) and temporal data (thus individual events) is generally averaged to derive hemodynamic response function. 
This is due, in particular, to the difficulty in interpreting and analyzing such large volumes of data. To address 
this problem, we turned to machine learning, and more specifically to Artificial Neural Networks (ANNs), a 
type of logical architecture which processes an input signal via a series of linear and non-linear mathematical 
operations, aimed at mimicking the analytical processes in the brain20. With their highly powerful data process-
ing capabilities, simple ANNs can be trained in a supervised manner to extract relevant information within 
large and intricate datasets and perform classification tasks that would be too complex for the human eye. We 
therefore hypothesized that such tools, once trained appropriately could then extract enough information from 
a single cerebral blood volume (CBV) temporal frame to identify unambiguously the corresponding behavior.

Results
In order to investigate whether ANNs could indeed decode behavior from CBV maps, we focused on one of the 
simplest ANN architectures: fully connected neural networks (FCNNs). In our first design, the network takes as 
input all the individual pixel values of fUS images acquired from a two-dimensional recording plane (cf. details 
in methods section, Tables 1 and 2). This results in a single network per recording with a typical input layer size 
of 10,000 neurons (corresponding to the number of pixels inside the 2D fUS frame, downsampled by a factor of 
2. Such downsampling maintained high decoding accuracies while reducing computational load (Supplementary 
Fig. S1). We performed this approach on recordings from the same coronal section in 3 different rats (Antero-
posterior axis: bregma = − 4.0 mm) during a simple locomotion task where animals were running back and forth 
for water reward on a 2.2-m long linear track (cf. “Methods”). Such a section was chosen because it allowed 
the simultaneous monitoring of the retrosplenial cortex, dorsal hippocampus, dorsal and ventral thalamus and 
hypothalamus, structures that are involved in different aspects of spatial learning. The actual position and speed 
of the animal on the track were used to classify frames into two categories corresponding to a moving (run-
ning) or a static state. We found that on a given acquisition, the network was able to classify on average 98% (± 
1%) of the test frames into the right category (cf. Figs. 1a, 2a and Supplementary Table S1), indicating that the 
pixel amplitude information in a single fUS image is sufficient to determine the underlying locomotion state. 
We trained the FCNN using both raw ∆CBV and relative (n∆CBV) CBV profiles –obtained after pixel-wise 
normalization—and assessed performance the two cases. Relative CBV profiles are obtained by acquiring the 
first 3 min of quiet wake or any stable condition (before or during the recording) and subtracting and dividing 
the mean of this distribution for each pixel, to express it as a ∆F/F variable (commonly used in imaging studies 
where absolute values of the signal strongly differ across pixels, cf. methods section). Performance was best when 
using the relative CBV profile (n∆CBV) than with the raw fUS images (∆CBV), because this image normaliza-
tion process facilitates the separability of the dataset. K-fold cross-validation (k = 5) showed that these results 
were largely robust across training instances within 2% of the accuracy value (cf. Supplementary Table S1). An 
example of this decoding is shown on Fig. 2b).

We further increased the level of complexity of the classification and evaluated our approach in a more 
challenging context, aiming to distinguish between 4 different sleep/wake states, namely quiet wake (QW), 
active wake (AW), non-REM sleep (NREMS) and REM sleep (REMS) (cf. Fig. 2c). Previous work have shown 
that vascular activity during REMS strongly differs from other states, but NREMS and QW show very similar 
profiles17. fUS images were obtained for 6 animals over the same coronal section (AP axis bregma = − 4.0 mm) 
during long recordings where animals spontaneously alternate between periods of sleep and wake. The data were 
labelled via traditional sleep scoring derived from accelerometer/Local Field Potential (LFP)/Electromyographic 
(EMG) recordings (cf. methods section). We found that on a given acquisition, the same network architecture 
was able to classify more than 87 ± 4% of fUS frames into the right brain state, when using the whole fUS image 
(pixel-based approach). Precision (proportion of labels detected by the network which are correct) and Recall 
(proportion of true labels detected by the network) measurements for each state showed that REMS was the 
easiest state to distinguish, followed by NREMS and AW, while lower Recall and Precision values (although still 
above 80%) were obtained for QW, which was expected (cf. Supplementary Table S2).

To extend the capabilities of our methodology, we registered the Paxinos atlas21 onto fUS images to locate 
anatomical regions of interests (ROIs) and extract mean values of the CBV for each temporal frame within these 
anatomical ROIs. This results in generating an input vector for each frame which size is the number of ROIs 
within the corresponding recording plane and we trained a second network architecture using these vectors as 
inputs (Fig. 1b). With such architecture (cf. details in methods section, Tables 1 and 2), decoding of the locomo-
tion state on 2D fUS images and atlas registration was achieved with an average accuracy of 93 ± 1% (Fig. 1c) 
for n∆CBV inputs. For the identification of sleep/wake states, this ROI-based approach was able to accurately 
classify more than 75 ± 1% of fUS frames into one of the 4 states for n∆CBV data.

The ROI-based approach described above allows for the application of a previously trained network to “novel” 
recordings, in particular in a different animal, and therefore makes real-time decoding of behavior possible, since 
all preprocessing steps as well as the network classification time are almost instantaneous (1 ms), though we do 
not demonstrate it here. Using this approach, we evaluated if information learnt by the network on one animal 
could be applied blindly to n∆CBV patterns acquired on a previously unseen animal (cf. Fig. 1c). We found that 
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our decoding method was transferable with little loss of performance to a different animal as it was capable of 
accurately decoding the locomotion state of a previously unseen animal with an accuracy of 78 ± 8%, losing only 
14% accuracy to the transfer to a new recording. For the identification of sleep/wake states, REMS, NREMS, AW 
and QW were treated independently, as we evaluated the ability to identify each state among other sleep/wake 
states. We found that our method could identify REMS, AW and NREMS on a previously unseen animal with 
74 ± 4%, 72 ± 2% and 79 ± 2% accuracy respectively. Lower accuracy was reached for QW. This was obtained for 
5 recordings for which anatomical coordinates of the reference and unseen recording could vary by as much 
as 0.7 mm, but contained the same anatomical structures, which likely explains the drop in accuracy observed.

To understand how the neural networks could perform so well, we looked into the weights learnt to separate 
the different states. The fact that the hidden layer comprised just three neurons allowed for a visualization of the 
input data in the latent space in 3D and asses how the neural network algorithm is able to provide maximal separa-
tion between states. Figure 3A shows that by plotting each classified fUS frame in this hidden-layer (latent) space 
(using hidden neurons’ activation as x, y and z coordinates), the data appears in the form of clusters of various 
shapes corresponding to the different sleep/wake states. Some clusters, like the one corresponding to AW, appear 
more compact, which indicates a high similarity of fUS frames in this state. Conversely, this 3D topology could 
highlight the potential presence of sub-states within one given cluster. It can also be noted that some clusters, 
like AW and REMS, are more distant than others in this space, meaning a lesser degree of similarity and a higher 
separability of the associated cerebrovascular activity patterns. This representation can be applied to a sequential 
visualization of the animal’s natural consecutive sleep/wake states in space (cf. Supplementary video S1).

Figure 1.   State classification pipeline scenarios. (a) In a first scenario, neural networks can be trained to 
identify from pixels values in fUS images (2500 pixels, CBV and n∆CBV) the associated behavioral states 
(distinction between 2 locomotion states: moving and static or 4 sleep/wake states: REM sleep (REMS), 
non-REM sleep (NREMS), Active Wake (AW) and Quiet Wake (QW)). The classification accuracy was above 
85% for fUS images that were not normalized by a common fUS baseline (CBV) and 80% for normalized 
data (n∆CBV). (b) In a second scenario, the same decoding tasks can be performed using a much reduced 
information content corresponding to anatomical ROI mean values (50–80 values), obtained through expert 
atlas registration, with an average accuracy dropping by 13% at most for n∆CBV frames, and up to 28% for 
CBV frames. (c) In a third scenario, the second approach allowed for the classification of unseen fUS frames on 
any new recording (including a new animal) using the trained model providing sufficient similarity on the test 
and training recording sections. The corresponding bar graphs shows average accuracy values reported here as 
the percentage of frames adequately classified, on average across the different instances of model/animal pairs, 
with corresponding error bars (SD) in each case. The classification accuracy remained high even though it 
dropped compared to intra-animal accuracy: 78% for movement decoding and above 72% for sleep/wake state 
decoding (except for QW identification) as shown on the bar graph. Results of the permutation test evaluating 
the significance of the prediction are indicated in each case as ** (all p-values p < 0.05) or * (more than half of 
p-values p < 0.05).
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Interestingly, classification errors (indicated as red dots on Fig. 3A) occur specifically at cluster boundaries 
nearest other clusters. More specific analysis found that in the case of sleep/wake states identification, 65% of 
the errors occur within 47 s of a transition between states. (Supplementary Fig. S3b). This confirms that the 
network makes most of its errors at transitions between states, which in the case of sleep are not sharp, and thus 
intrinsically difficult to define22. The classification errors observed could arise from the similarity between the 
spatial patterns exhibited in different states, making it difficult for the network to classify, but could also be due 
to incorrect labelling which is more prone to occur at transitions. This held true for locomotion states (moving vs 
static) where 76% of errors were located within 1.5 s of a transition (Supplementary Fig. S3a). The larger temporal 
span of classification errors obtained in the sleep/wake task (see above) compared to this task can be explained 
by numerous factors including more blurred transitions as opposed to sharp transition for the locomotion states, 
increased errors due to multiple states, incorrect sleep scoring on microstates like micro-arousals or micro-REMS 
episodes. We then investigated if the network’s errors could inform us on a given state change. In our architecture, 
the network’s last layer provides probability values for the different possible output categories, before choosing 
the one with the highest probability as a final output. We defined the uncertainty of the network, as the difference 
in network output value between the predicted class (highest probability) and the second most probable class 
and found that the uncertainty was particularly high at transitions. Panel (b) of Fig. 3 shows that the prediction 
uncertainty increases by about 60% within 1–2 s of a transition between movement and static states. In addi-
tion, we found that 80% of the cases for which the network uncertainty rose by 60% or more happened within 
2 s of a state change. Thus, despite the late response of fUS signals due to the delayed hemodynamic response 
function, a 60% rise in uncertainty could be used to anticipate changes between motion and immobility with an 
accuracy of 80%. For sleep/wake state identification, a 60% rise in uncertainty values happened within 41 s of 
a state change for 76% of state changes (cf. Supplementary Fig. S3b). A 60% rise in uncertainty of the network’s 
prediction could therefore be used as a metric to predict changes between sleep/wake states in real-time with a 
76% accuracy in this case. Uncertainty profiles for transitions towards a wake state, and for the transition from 
AW to NREMS show a clear uncertainty peak after the transition as determined by traditional sleep scoring, 
which indicates transitional periods during which cerebrovascular patterns are rearranging. Interestingly these 
time delays (namely 1.5–2 s) correspond to the ones of neurovascular coupling traditionally observed with 
fUS, confirming that sharp transitions between well-defined electrophysiological profiles (like from NREMS to 
REMS) are mirrored in cerebrovascular patterns with a time constant compatible with physiological processes.

Figure 2.   Examples of decoding within a given acquisition. ROI-based networks allowed for decoding 
the animal’s brain state within one recording with high performance, as shown by the temporal profiles on 
(a) (moving vs static) and (b) (sleep/wake states). Panel (a) shows the animal’s speed (top profile) and the 
corresponding classification labels (true state in green on middle profile). The dashed black lines on the middle 
profile corresponding to the networks’ prediction show excellent agreement with the true state. The bottom 
profile shows the networks prediction in terms of state (shaded areas are “true” states), uncertainty (black) and 
errors (red dots), mostly located at state transitions. Excellent agreement between the true and predicted state is 
also visible for the sleep/wake state decoding on panel b, except at state transitions.
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We finally investigated whether the weights learnt by the network could inform on which pixels or anatomical 
regions were more important than others to classify states. This was done using the Holdback Input Randomiza-
tion method23, which consists in evaluating the drop in accuracy when removing a given input (in our example, a 
region or pixel value) from the input to the network. This can then be displayed using an appropriate anatomical 
atlas as a spatial map specific to any of the network’s output node, corresponding to a given behavior (‘moving’ 
for instance). In the case of ROI-based networks, this technique provided a ranking of the different input ROIS 
with respect to their importance to the classification task, whereas 2D-importance maps were provided in the case 
of pixel-wise networks. Figure 4 shows the results obtained for classification between static and moving states, 
where the ROI found most important to the classification was the Dentate Gyrus in the dorsal hippocampus, 
which is critical for the processing of spatial information24. Regions present independently on both hemispheres 
were grouped for the ROI-based analysis only, but a symmetry is nevertheless visible on the corresponding maps 
obtained from the pixel-wise analysis.

For sleep/wake state identification, the same approach and corresponding spatial maps were obtained for 
9 coronal planes throughout the brain (Fig. 5 and Supplementary Fig. S2). The corresponding pixel-based and 
ROI-based networks reached training accuracies of 96% and 77% respectively on average across all coronal 
planes. Individual analysis highlighted a number of ROIs most important for the identification of each sleep/wake 
state. For REMS, these were the superior colliculus, which has been shown to play a role in wakefulness induc-
tion and is known to be involved in the visual processing of dream content26, the striatum and medial septum. 
These regions, as well as the retrosplenial cortex and the azygos anterior cerebral artery (azac), were also clearly 
highlighted for REMS on pixel-based maps, which are strongly activated during REMS27. For AW, regions clearly 
highlighted by both ROI-based and pixel-wise analysis were the Dentate Gyrus, which was found to be heavily 
involved in voluntary running28, and to a lesser extent the Limbic Cortex, Subiculum and residual Hippocampus 
and the Visual and Motor Cortex. The striatum was most evident for NREMS, and although differences were 
smaller, the dorsal PAG, superior colliculus and piriform cortex were also highlighted for QW. Interestingly, a 
ROI found to be relatively important to the classification can appear highly heterogeneous on the pixel-wise 
importance maps, potentially indicating a heterogeneous activity within that region, but also highlighting the 
complementarity of the two approaches (cf. Fig. 5).

Figure 3.   Visualization of the decoding error and uncertainty in time and space. (A) The architecture of our 
networks with a hidden-layer of dimension 3 allows for a visualization of the network’s activation in the latent 
space in 3D, here in the case of sleep/wake state identification based on pixel values. fUS frames labelled with 
the same sleep/wake state are grouped together in this state, and errors (red circles) are located at boundaries 
between the 4 different clusters, suggesting that they occur mainly at state transitions. This is confirmed on (B), 
showing consistently higher prediction uncertainty values and error rates near state transitions for the binary 
locomotion and for most of the sleep/wake transitions in the state decoding tasks (n represents the number of 
such transitions available in the data). Uncertainty of the network rises from 1 to 2 s to a state transition, which 
is consistent with the delays of neurovascular coupling. For NREMS/AW and NREMS/QW the uncertainty and 
error rate peak after the actual transition and remain high several seconds afterwards, which may be attributed 
to the “progressive” nature of these transitions.
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Discussion
A simple fully connected neural network architecture has shown that CBV patterns measured with fUS images 
contain enough information, despite the smaller temporal resolution of vascular signals and temporal delays 
due to neurovascular coupling, to perform high performance decoding of brain activity for a range of behavioral 
tasks, even on unseen animals. In this work, care was taken to minimize potential information leakage bias due 
to the slow decorrelation of the fUS signals (mutual information between temporally adjacent frames is not zero, 
which might positively bias the evaluation of our networks accuracy). The accuracies reported for classification 
within acquisitions were therefore evaluated only for test frames which were not directly adjacent to the train-
ing frames. Quantifying information leakage would yield complex analysis, but the decorrelation times of fUS 
signals have been estimated indirectly to correspond to about 1 s as a rough average17,18, which corresponds to 
a 2–3 frames distance in the sleep/wake case and 4–5 frames in the case of locomotion decoding. In the case of 
locomotion, removing these frames from the analysis would have resulted in too few frames for an informative 
accuracy measure (cf. Supplementary Fig. S5). However, for the sleep/wake case, supplementary analysis shows 
that the global performance does not decrease by more than 10% when removing more adjacent frames, except 
in the specific case of Sleep/Wake identification on region-based data without normalization (cf. Supplementary 
Fig. S4), which highlights again the importance of the normalization step. These drops in accuracy remain much 
below the variability of the accuracy across acquisitions (small effect size), and do not increase when choosing for 
testing only frames even further away temporally from the training set. Besides, the high performance obtained 
when decoding a previously unseen animal confirms that the fUS data content is specific and rich enough to 
identify a single behavioral state, even when considering only mean activations within ROIs. This methodol-
ogy can be applied in theory to fUS data recorded for any setup, for the identification of any task-specific brain 
state as long as an accurate prior data labelling (and atlas registration in the ROI-based approach) is possible, 
although the network architecture and implementation details may change. In this study, results were limited to 
a small number of 3 to 6 animals and 9 imaging planes, and it remains to be seen how this methodology scales 
up to larger datasets and applies to different areas and planar views of the brain. It can already be noted that 
high accuracy was obtained for 9 different coronal planes in the case of sleep/wake state identification. Given 
the results achieved so far, we hypothesize here that a large set of recordings spanning the entire brain could 
allow for a readily-trained set of networks able to decode in real-time the sleep/wake or locomotion state for 
any given coronal fUS image (since network prediction and preprocessing steps are quasi-instantaneous). This 
ability of the network to classify naïvely on unseen recordings is extremely powerful and can be applied in a wide 
range of contexts such as brain-computer interfaces and manipulation of brain activity based on fUS signals. 
This has a range of potential applications, from real-time classification of the animal’s sleep/wake state during 
an experiment, to a posteriori decoding of the animal’s activity. At present, precise real-time decoding requires 
the acquisition of a baseline fUS recording so as to normalize the subsequent CBV frames accordingly to obtain 
n∆CBV frames. This can be done in 3 min at the beginning of any recording during a stable condition. A shorter 
period such as 1 min could also be used as long as mean and standard-deviation can be accurately evaluated 
from the sampling period. However, the accuracy for region-based training on CBV values remains much above 
25% for sleep/wake states (which would indicate performance at chance level), indicating that the network can 
already learn to separate the different states without normalizing to a baseline. The sole use of CBV data may 
therefore be possible in the future to directly perform accurate real-time sleep scoring.

Figure 4.   Importance to the classification of different anatomical ROIs for the detection of the locomotion state 
(animal static or moving). The network’s learnt weights allowed for the visualization of spatial maps of relative 
region importance to the classification. Values provided on the graphs, corresponding to the relative importance 
of ROIs in ROI-based classification, as provided by the Holdback Input Randomization method, are averaged 
across the three animals with data points shown in different black markers for each animal. The 2D-maps 
displaying the local relative importance at bregma = − 4.0 mm show, on all of the three recordings considered 
(three different animals), high importance of the dentate gyrus (DG) for identifying the moving state, and a high 
importance of the central region of the ventral thalamic nucleus region and posterior amygdala (PA) region for 
the static state, confirming the ROI-based analysis.
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Careful registration to an anatomical atlas is crucial for reliable data labelling when decoding across animals. 
This constitutes the main limitation of our methodology and is likely to have limited the results achieved so far. 
As an example, decoding from one animal to the other based on all pixel values is only possible if both acquisi-
tions are perfectly registered, and if inter-individual variability is small, leading to pixels at the same location in 
the images representing the same spatial location within the brain. Because our current methodology could not 
ascertain a registration accuracy within 1–2 pixels, we chose to focus on region-based analysis instead, which 
does not require the same level of precision. Yet, ever increasing registration computing capabilities29 and better 

Figure 5.   Importance to the classification of different anatomical ROIs for sleep/wake states across the brain. 
Neural networks were trained pixel-wise and ROI-wise on 9 different coronal planes spanning the brain between 
bregma -6.5 mm and bregma 2.5 mm. Relative importance of anatomical regions calculated across those 9 
planes are presented here for each sleep/wake state. Corresponding pixel-wise importance maps confirm the 
ROI-wise findings, and bring additional local information. For example, the contribution for REMS of the 
azygos anterior cerebral artery (azac), which does not correspond to a single ROI in our method is only visible 
on the pixel-wise maps. In the case of AW, the dentate gyrus (DG) and whole Hippocampus (whole Hpc) to a 
lesser extent are clearly visible on the pixel-wise map. For NREMS, the caudate putamen (CPu), which stands 
out as the most important ROI is highlighted on the pixel-wise map, in particular its central area. The map for 
QW shows highly heterogeneous importance within regions of the Periaqueductal gray (PAG), somatosensory 
cortex (SCx) and superior colliculus (SC). This is in line with the largely different importance calculated for 
the ROIs of the PAG (dorsal and ventral) and of the Colliculus. The region of the piriform cortex also appears 
highlighted on the pixel-wise map.
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performing and fully automatized registration algorithms30 will hopefully make this atlas registration readily 
usable, automatic and increasingly accurate. In general terms, the networks presented here were chosen for 
their simplicity, so as to avoid any overfitting to the data, but also an easy access to the network’s learnt informa-
tion. The classification performance can be optimized in a number of ways, including larger datasets with more 
accurate data labelling (especially for sleep scoring) and registration, as well as higher level optimizing of the 
network hyperparameters.

The imaging of freely moving rodents, as performed here, permits many applications studying specific routine 
tasks including (but not limited to) locomotion, and the associated n∆CBV change patterns. By analogy with 
place cells or head-direction cells, the ability of n∆CBV frames to reliably assess motion as demonstrated here, 
questions the potential existence of vascular place patterns associated to locomotion, and possibly also to spatial 
position. Our approach may prove extremely useful in exploring the existence of such maps.

Finally, the study of the network’s uncertainty, or the projection of a given frame in the latent space of the 
network may provide a metric for the prediction of state transitions, and possibly new criteria for the definition 
of such transitions. This could be particularly adapted to applications such as sleep/wake state identification or 
decision-based behavior, where neurological transition between states are known not be instantaneous (and are 
not always sharply defined like in “intermediate” sleep) and can often precede actual motor action by a signifi-
cant delay31. We reported results based on the assumption that the data labels represent the “true” state of the 
animal. However, it may be that the CBV patterns are capable of informing more precise or more accurate data 
labelling, and that cases identified as classification errors actually represent labelling errors or additional sub-
states undetected by traditional sleep scoring for example. This is reinforced by the fact that 96% of classification 
errors for sleep/wake states were located in groups of 3 or more consecutive errors, as visible on Fig. 2A). Yet, 
the network had no information about the temporal sequence of those frames, but chose to group them based 
on their spatial CBV pattern.

In addition to the temporal information reconstructed by the networks, the importance of the different 
anatomical regions for each classification task provides information on the cerebral CBV and n∆CBV pat-
terns specific to a given behavior. In the case of a binary classification (static/moving task decision), we cannot 
unequivocally associate a region to a brain state. Our method simply tells us what pixels/regions are of interest to 
the network to perform well. However this is not the case in non-binary classifications. Although such maps do 
not directly represent the relative activity of the different regions during a task, they provide large-scale vascular 
‘importance maps’ associated with a specific behavior, something which is hard to achieve with actual recording 
techniques. In this study, our main findings were in line with previously published material. Thorough validation 
will be required to compare patterns produced by our method to actual physiological measurements of brain 
activity. However, our method can readily highlight a large number of new regions of interest for subsequent 
investigation using electrophysiological recordings and/or optogenetic manipulation. The possibility of acquir-
ing fUS data on freely moving animals will allow for extensive evaluation of this potential in the future. Besides, 
our machine learning-based approach is not limited to studies on rodents and can be applied to the imaging of 
any species imaged with fUS, including humans.

Methods
Functional ultrasound data.  Animal model.  All methods are in compliance with the European Com-
munities Council Directive of 2010. All experiments received ethical approval by the French government and 
ethical committee for the Paris Centre and South region. All methods in this study are reported according to 
ARRIVE guidelines.

This analysis was based on fUS recordings obtained in different studies15,17,18, for which 12 adult Sprague 
Dawley rats aged 10–12 weeks underwent surgical craniotomy under anesthesia induced with 2% isoflurane and 
maintained by ketamine/xylazine (80/10 mg/kg), to expose the brain from bregma + 6.0 to bregma − 8.0 mm, with 
a maximal width of 14 mm. There was no control group nor blinding, randomization or exclusion in this case 
as it was designed as a behavioral study. Specifically designed electrodes made of bundles of insulated tungsten 
wires were implanted stereotaxically into the brain tissue and lowered in the dorsal hippocampus at stereotaxic 
coordinates AP =  − 4.0 mm, ML =  ± 2.5 mm and DV =  − 1.5 mm to − 4.5 mm relative to the Bregma. These were 
used to record Local Field Potentials (LFP) via a 32-channel amplifier with high input impedance and a gain of 
1000, DC-cut at 1 Hz, and digitized at 20 kHz (Blackrock microsystems). In this study, the outcome measures 
were the imaging and electrophysiology measurements. No euthanasia was used in this study.

fUS acquisition.  Ultrasound images of the brain vasculature were obtained for all animals via ultrafast Power 
Doppler based on plane wave transmissions. A 15-MHz probe designed for animal studies was fixed to the 
animal’s skull and driven by a fully programmable GPU-based ultrafast ultrasound scanner (Inserm Accelerator 
in Technological Research for Biomedical Ultrasound, Paris France). Images were acquired continuously at a 
pulse repetition frequency of 500 Hz, with a final sampling rate of 1–2.5 Hz depending on the recording. A total 
of 8 plane waves were acquired for angles with the probe equally spaced between − 7° and 7°, and coherently 
compounded32 to form high quality images, at a frame rate of 500 Hz. More information about the animal sur-
gery, LFP recordings and fUS acquisitions is available in17. A 3D-volume was also obtained by acquiring Doppler 
images for 9 coronal planes across a rat brain from bregma − 7.0 mm to bregma 3.0 mm.

Experiment design.  For sleep scoring experiments, the animal was placed awake in a rectangular or round box 
and was imaged freely moving around during a period of time comprising sleeping and awake states at a sam-
pling frequency of 1 Hz. For running experiments the animal was positioned onto a 0.2 m by 2.35 m corridor 
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40–60 min and was imaged during free movement along this corridor, during a period comprising running and 
static periods at a sampling frequency of 2.5 Hz.

Image analysis.  To discriminate blood signals from tissue clutter, the ultrafast compound Doppler frame stack 
was filtered via Singular Value Decomposition33, removing the  N = 60 first components. The Cerebral Blood 
Volume (CBV) frames obtained were further normalized by a baseline image corresponding to the average 
of the first 3 min of the acquisition, leading to n∆CBV frames. For each pixel, the mean value of the baseline 
distribution is subtracted and divided to obtain a ∆F/F (activity expressed as a percent of change relative to the 
baseline). ROIs were extracted from the Paxinos Atlas21 and carefully overlayed onto the fUS images using sali-
ent anatomical and vascular structures (cortex edges, sine veins, Willis polygon when visible). This led to 71 and 
82 ROIs used for locomotion and sleep/wake state decoding respectively (cf. Fig. 1).

In order to apply a model trained on one acquisition to a different acquisition, only ROIs present on all 
acquisitions were kept within the locomotion and the sleep/wake datasets. ROIs smaller than 20 pixels on the 
original image were included in the closest anatomical ROI in terms of location and function. This led to 26 and 
22 ROIs for the decoding of movement and sleep/wake state respectively.

For the identification of the sleep/wake state on several coronal planes of the same rat, the regions were 
grouped into 53 symmetric anatomical regions to keep a coherence between the planes. These regions as well as 
the corresponding acronyms and Paxinos regions included are given in Fig. S4 of the supplementary materials.

Neural networks.  Data labelling.  For movement decoding, the position of the animal along the corridor 
was obtained via histogram thresholding of video frames acquired during the experiment and synchronized 
with the fUS frames. Only one coordinate was used as the range of positions along the axis perpendicular to the 
corridor was very small compared to the corridor length. For movement decoding, the animal’s speed along the 
corridor was estimated as the difference in position between two consecutive frames. In the training process, 
the frames for which the speed was smaller than 0.1 m/s were then labelled as static, the frames for which the 
speed was larger than 0.1 m/s were labelled as moving. Other frames were discarded for the training to keep both 
classes distinct, leading to 1% of frames rejected from the analysis on average across acquisitions.

For sleep/wake state decoding, each fUS frame was associated with a single categorical label corresponding 
to one of 4 different states. The sleep scoring procedure was based on traditional methods34 using neck electro-
myogram, animal movement and LFP to discriminate between active wake (AW), quiet wake (QW), NREM sleep 
(NREMS) and REM sleep (REMS). Sleep and wake were discriminated by applying a threshold on EMG activity. 
A three-dimensional (3D) miniature accelerometer placed on the head of the animal was used to discriminate 
between quiet wake (QW) and active wake (AW). Quiet wake was detected when the EMG was high and the 
animal stood still with its head close to the ground. Active wake was detected accelerometer activity exceeded a 
threshold, i.e. when the animal was either moving, walking, running or standing and whisking in the air. When 
the EMG dropped below a threshold (variable across recordings, set during offline processing) for more than 
10 s, we labeled the sub-sequent period sleep. NREMS sleep is characterized by a large amplitude of irregular 
activity (white noise distribution between 1 and 50 Hz on the time–frequency spectrogram, high ripple activity, 
and low theta/delta ratio), whereas REMS is characterized by increased theta/delta ratio, minimal EMG, and 
decreased ripple power. A last check was the brief awakening following REMS episodes.

FCNN architecture.  Three-layer fully connected neural networks written in custom Matlab code were used 
throughout this study. They comprised a variable number of input neurons (depending on scenarios described 
below), 3 neurons in the hidden layer and a number of output neurons corresponding to the number of categories 
to classify the data into. This number of hidden layer neurons was chosen as the best compromise between reduced 
layer complexity/absence of overfitting and accuracy, in addition to providing 3D space representation capabilities. 
All hidden layer neurons were used with ReLu activation and softmax activation was used in the output layer.

Two approaches were used for each classification experiment.

•	 Pixel-based approach: the network takes as an input all the pixels in the grayscale image. In this case, the fUS 
images were downsampled by a factor of 2 using a max-pooling algorithm with kernel size 2 × 2 and a stride 
of 2 in both vertical and horizontal directions, so as to reduce the dependency of the network on local noise. 
This value was chosen to maximize the training set accuracy, as shown on Supplementary Fig. S1. A ROI 
comprising only brain pixels was manually drawn on one frame for each animal and used to mask out fUS 
information outside the brain, though this information can be relevant (Willis circle). The corresponding 
pixels were set to the minimum fUS value across the whole acquisition.

•	 ROI-based approach: the network takes as an input the mean fUS values in a number of predefined ROIs 
copied on all frames, representing known brain structures as described above.

For each acquisition (i.e. continuous imaging of one animal at a given probe position), a dataset comprising 
the same number of frames for each output category (i.e. for each state) was built for both ROI- and pixel-based 
classifications.

Additional analysis was carried out to determine the importance of information leakage from training to 
testing frames. For this purpose, the accuracy of the prediction was tested for each fold and each animal on a 
dataset comprising all frames not used in training or validation. Histograms of the average accuracy across folds/
animals relative to the distance of the considered frames to the closest training frame were then obtained and 
are shown in the supplementary materials (Supplementary Fig. S4).
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All fUS frames were normalized by the maximum and range of values in the image, to span the interval 
[− 1,1].

FCNN training.  The networks were then trained on a random selection of 70% of the balanced dataset gener-
ated as described above, with the remaining frames used to build separate validation and testing datasets of the 
same size. This led to training datasets of 454–1822 frames and 785–870 frames for Sleep/Wake and locomotion 
state identification respectively, and testing datasets of 151–607 frames and 262–290 frames respectively. These 
values are reported in Supplementary Table S4.

All networks were trained using minibatch stochastic gradient descent, for a maximum of 10,000 epochs. 
The cost function used was

where m is the number of samples, hϑ(xi) is the network output for the input sample xi, yi is the true label cor-
responding to sample xi, λ is the regularization parameter, n the number of layers and ϑj the matrix of network 
weights corresponding to layer j.

The training was stopped earlier if the network reached an accuracy higher than 98% on the validation data-
set for at least 50 epochs. The learning rate α was gradually decreased using the formula: α =

α

1+ep , with ep the 
number of the current epoch. No regularization was used (lambda = 0).

The initial value of the learning rate as well as the minibatch size were fine-tuned using cross-validation and 
the validation datasets, resulting in different optimal values according to the classification problems, as detailed 
below.

Accuracies were evaluated using k-fold cross-validation with a k value of 5, and stratified folds generated using 
the cvpartition function in Matlab from the statistics and machine learning toolbox. The absence of overfitting 
was ensured by visually checking that the network cost decreased throughout the training for both training and 
validation datasets. The significance of each prediction was evaluated using the permutation test, in the case of 
intra-animal decoding as well as inter-animal decoding. For each acquisition/model pair the accuracy of the 
prediction was compared to distribution of accuracies obtained for 1000 label permutations of the test data. The 
corresponding p-value was returned, with a significance level set at 0.05.

FCNN evaluation.  The overall accuracy of each FCNN was calculated as the percentage of the testing set cases 
for which the network predicted the accurate label. The FCNN performance was further evaluated by calculating 
the precision P and recall R values for each sleep/wake state following the formula:
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Table 1.   FCNN architecture parameters, used both for sleep/wake and locomotion problems. 
*The number of input pixels is divided by 4 because of the downsampling.

Pixel-based ROI-based

Downsampling rate 2 N/A

Masking Yes N/A

Input feature nb Nb pixels/4* Nb regions

Feature normalization In range [− 1, 1]

Balanced dataset Yes

Table 2.   FCNN training parameters used for each classification problem.

Sleep/wake Movement

Hidden layers 1

Hidden layer neurons 3

Output neurons 4 2

Output activation Softmax

Max epochs 10,000 (+ early stopping, cf. text)

Optimization Minibatch stochastic gradient descent

Minibatch size 8 6

Initial learning rate 0.05 5

Learning rate decay α =
α

1+ep

Regularization None
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where TP is the number of frames of that sleep/wake state accurately classified as such, PredPos is the number of 
frames classified by the algorithm as belonging to that sleep/wake state, and Pos is the number of frames actually 
belonging to that sleep/wake state.

The uncertainty in the classification (cf. Fig. 3) is calculated as 1 − (the difference between the probability 
output by the network for the class predicted, and the second highest probability output). It is used to illustrate 
the difficulty which the network has to classify a given frame. Note that this probability is given by the network 
output, i.e. before selecting as prediction the category with the highest probability.

When evaluating the decoding accuracy on a previously unseen animal, one region-based network was 
trained for each animal available. The same regions were used as inputs for all animals, making it possible to 
apply the weights learnt by one network to a different animal. The accuracy (as defined above) of the network 
generated for each animal was evaluated when applying it to each of the other animals. The accuracy reported is 
the average of accuracies obtained for each network applied to a different animal, i.e. 30 instances for 6 different 
animals available. This average accuracy is compared to the average accuracy obtained intra-animal, i.e. when 
evaluating the network trained on one animal on previously unseen frames of the same acquisition. This amounts 
to 6 instances for 6 animals available. The difference is named “accuracy lost” on Fig. 3.

FCNN importance maps.  In order to understand the rules learnt by the networks, we further applied a visuali-
zation technique based on the Holdback Input Randomization method23 which provides a quantification of the 
importance of each pixel to the classification. This is done by fixing the network’s learned weights and running 
the network on a test given dataset with the input corresponding to a given pixel or ROI replaced by random 
values between -1 and 1. The method then evaluates the accuracy lost by the network when information about 
this particular input was suppressed, i.e. the importance of this input to the classification. This could be applied 
to both pixel-based (downsampled with a 2 × 2 kernel) and ROI-classifications, and the importance to classifica-
tion was evaluated specifically for each category as the drop in the probability of each state output by the network 
in this specific category when this input was suppressed.

Importance maps for pixel-based classification were generated by reshaping the importance of the different 
inputs to match the original image dimensions. For region-based classification, this was done by assigning each 
importance value to a mask of the corresponding region in 2D.
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