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Mohand homotopy transform 
scheme for the numerical solution 
of fractional Kundu–Eckhaus 
and coupled fractional Massive 
Thirring equations
Xiankang Luo 1 & Muhammad Nadeem 2*

In this paper, Mohand homotopy transform scheme is introduced to obtain the numerical solution of 
fractional Kundu–Eckhaus and coupled fractional Massive Thirring equations. The massive Thirring 
model consists of a system of two nonlinear complex differential equations, and it plays a dynamic 
role in quantum field theory. We combine Mohand transform with homotopy perturbation scheme 
and show the results in the form of easy convergence. The accuracy of the scheme is considerably 
increased by deriving numerical results in the form of a quick converge series. Some graphical plot 
distributions are presented to show that the present approach is very simple and straightforward.

Fractional calculus (FC) has grown importance in recent years and is now widely used in a variety of disciplines, 
such as ecology, physics, astronomy, and economics. After the concepts of FC to a variety of various features, 
scientists are starting to realise that the fractional framework may be compatible with a wide range of phenom-
ena in common applied sciences. Fractional differential equations are used in the development of mathematical 
models for a variety of physical processes such as, in physics, dynamical systems, power systems, and applied 
science1,2. Kundu and Eckhaus3,4 introduced the fractional Kundu–Eckhaus equation such as,

This equation appears in quantum field theory and and other dispersion fields. It is also a combination of Lax 
couples, higher conserved portion, particular soliton solution and rogue wave solution. The development of a 
scientific design that supports ultra-short light pulses in a glass fibre is crucial. The development of a scientific 
design that supports ultra-short light pulses in a glass fibre is crucial. The fractional Massive Thirring problem

was autonomously introduced 1958 by Thirring. It is a nonlinear coupled fractional differential equation which 
appears in the quantum field theory5. The Kundu equation and the derivative Schrodinger equation’s explicit 
particular single solutions were obtained using the algebraic curve approach6. Yi and Liu7 used the bifurcation 
scheme to extend the traveling wave solutions for the Kundu equation. Recently, some authors8,9 have investi-
gated the numerous characteristics of this equation, its generalisations, and its connections to other nonlinear 
equations. Various exact travelling wave solutions for the Kundu equation with fifth-order nonlinear term are 
obtained in10. It is categorised as a variant of several well-known integrable equations, including the nonlinear 
Schrodinger equation and several other nonlinear equations, via a gauge transformation.

Many researchers have studied the analytical solution of differential problems through various approaches 
such as, gauge transformation11, Lie symmetry method12, Bernoulli subequation method13, Residual power 
series method14, Runge-Kutta method15, B ̈acklund transformation16, Spectral collocation method17, Natural 
transform18, Sine-Gordon expansion approach19 and Darboux transformation20 and rogue wave solutions21. 
Anjum and Ain22 used He’s fractional derivative for the time fractional Camassa-Holm equation. Gepreel and 

(1)iDα
ϕψ(ρ,ϕ)+ ψρρ + 2ψ(| ψ |2)ρ + ψ | ψ |4= 0, 0 < α ≤ 1

(2)
i(Dα

ϕψ + ψρ)+ φ + ψ | φ |2= 0,

i(Dα
ϕφ + φρ)+ ψ + φ | ψ |2= 0,
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Mohamed23 implemented homotopy analysis scheme for the approximate solution of nonlinear space-time frac-
tional derivatives Klein-Gordon equation. Many scientists developed a variety of semi-analytical and numerical 
techniques to investigate fractional derivatives and fractional differential equations. He24 developed a scheme 
known as HPS that does not depend upon a small parameter to estimate the approximate solution of a nonlinear 
model. Later, Nadeem and Li25 combined HPS with Laplace transform to find the approximate solution of non-
linear vibration systems and nonlinear wave equations. It is clear that HPS is a potent technique and successful 
for nonlinear problems26. Although it can be difficult to find analytical solutions for the majority of issues, semi-
analytical approaches can still be used to address these issues.

In this study, we present a method based on the formulation of the Mohand transform with HPS to investigate 
the approximation of the solutions of the fractional Massive Thirring and coupled fractional Kundu–Eckhaus 
equations. The resulting series provide us the results relatively quickly, and we see that the computational series 
only reaches the precise solution after a limited number of iterations. We design this study such as: In “Basic 
idea of HPS” section, a brief idea of HPS for a nonlinear problem has been explained. Some basic definitions of 
Mohand transform and the development of Mohand transform with HPS are defined in “Concept of Mohand 
transform”  and “Development of Mohand transform with HPS” sections respectively. Two numerical applications 
are provided to check the authenticity of our proposed scheme and also show it with some graphical illustrations 
in “Numerical application” section. Conclusion is discussed in the last “Conclusion” section.

Basic idea of HPS
Consider the following nonlinear problem to present the concept of HPS25,

with boundary conditions

where T1 is particular operators, T2 is a boundary operator, h(q) is a known function, and Ŵ is the boundary of 
the domain � . We can divide operator T1 into into two parts, S1 and S2 with considering linear and nonlinear 
operators respectively. Thus, Eq. (3) may also be stated as

Let us develop a homotopy ρ(q, p) : �× [0, 1] → R which satisfies

or

where p ∈ [0, 1] , is termed as homotopy parameter, and ψ0 is an initial guess of Eq. (4) that complies with the 
boundary conditions. Since the definition of HPS states that p is estimated as a small parameter, so, we may 
consider the solution of Eq. (3) in terms of a power series of p such as,

Choosing p = 1 , the estimated solution of Eq. (7) is acquired as,

The nonlinear terms are evaluated as

where polynomials Hn(ψ) are presented such as

Since the series depends on the nonlinear operator S. Therefore, the results obtained in Eq. (7) are convergent.

Concept of Mohand transform
In this section, we go over several basic Mohand transform properties and ideas that are essential for formulat-
ing this strategy.

Definition 3.1  Mohand transform for a function ψ(ϕ) is defined as27

(3)T1(ψ)− h(q) = 0, q ∈ �,

(4)T2

(

ψ ,
∂ψ

∂S

)

= 0, ψ ∈ Ŵ,

(5)S1(ψ)+ S2(ψ)− h(q) = 0.

H(ψ , p) = (1− p)[S1(ψ)− S1(ψ0)] + p[S1(ψ)− S2(ψ)− h(q)],

(6)H(ψ , p) = S1(ψ)− S1(ψ0)+ pS1(ψ0)+ p[S2(ψ)− h(q)] = 0,

(7)ψ = ψ0 + pψ1 + p2ψ2 + · · · .

ψ = lim
p→1

ψ = ψ0 + ψ1 + ψ2 + ψ3 + · · · .

(8)S2ψ(ρ,ϕ) =

∞
∑

n=0

pnHn(ψ).

Hn(ψ0 + ψ1 + · · · + ψn) =
1

n!

∂n

∂pn

(

S2

(

∞
∑

i=0

piψi

)

)

p=0

. n = 0, 1, 2, . . .
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Conversely, if R(r) is the MT of ψ(ϕ) , then ψ(ϕ) is called the inverse of R(r) i.e.,

here M−1 is known as inverse MT.

Definition 3.2  Mohand transform of fractional derivative is expressed as28

Definition 3.3  Some properties of MT are defined as, 

(a)	� M{ψ ′(ϕ)} = rR(r)− r2R(0).
(b)	� M{ψ ′′(ϕ)} = r2R(r)− r3R(0)− r2R′(0).
(c)	� M{ψn(ϕ)} = rnR(r)− rn+1R(0)− rnR′(0)− · · · − rnRn−1(0).

Development of Mohand transform with HPS
This segment explains the development of the Mohand transform with HPS to obtain the approximate solution 
of fractional Kundu–Eckhaus and coupled fractional Massive Thirring equations. We consider the differential 
equation such as

where Dα
ϕ =

∂α

∂ϕα
 express the fractional order α of ψ(ϕ) . Employing MT on Eq. (9)

When we use the MT definition, we get

on solving, we obtain

Using Eq. (10), it yields

Applying inverse MT, we get the recurrence relation of ψ(ρ,ϕ) such as

 where

Let us assume the approximate solution of Eq. (9) as follows

and

M{ψ(ϕ)} = R(r) = r2
∫ ϕ

0

ψ(ϕ)e−rϕdt, k1 ≤ r ≤ k2.

M−1{R(r)} = ψ(ϕ),

M{ψα(ϕ)} = rαR(r)−

n−1
∑

k=0

ψk(0)

rk − (α + 1)
, 0 < α ≤ n

(9)Dα
ϕψ(ρ,ϕ)+ S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ) = g(ρ,ϕ),

(10)ψ(ρ, 0) = w(ρ),

(11)M
[

Dα
ϕψ(ρ,ϕ)+ S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ)

]

= M
[

g(ρ,ϕ)
]

.

rα
[

R(r)− rψ(0)

]

= −M
[

S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ)

]

+M
[

g(ρ,ϕ)
]

,

R(r) = rψ(0)−
1

rα
M
[

S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ)− g(ρ,ϕ)
]

.

R(r) = rw(ρ)−
1

rα
M
[

S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ)− g(ρ,ϕ)
]

,

(12)ψ(ρ,ϕ) = G(ρ,ϕ)−M−1

[

1

rα
M
[

S1ψ(ρ,ϕ)+ S2ψ(ρ,ϕ)

]

]

,

G(ρ,ϕ) = M−1

[

rw(ρ)−
1

rα
M
{

g(ρ,ϕ)
}

]

.

(13)ψ(ρ,ϕ) =

∞
∑

n=0

pnun(ρ,ϕ),

(14)S2ψ(ρ,ϕ) =

∞
∑

n=0

pnHnψ(ρ,ϕ),
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where p ∈ [0, 1] , is embedding parameter whereas ψ0(ρ,ϕ) is an initial guess of Eq. (9). We can use the following 
formula to get the polynomials

Combining the Eqs. (13) and (14), (12) can be written as

When we analyze the related parts of p, we obtain

Therefore, we can combine Eq. (15) such as

If p = 1 , then Eq. (16) yields

We propose this approach in light of upcoming mathematical applications.

Numerical application
In this section, we apply the formulation of a new strategy to the numerical applications and demonstrate that 
this strategy is very convenient and suitable. Results are obtained in the form of a series. Graphical findings 
demonstrate that the approximate solution converges to the exact solution within a small number of iterations.

Example 1.  We may rewrite the Eq. (1) such as

with the following initial conditions

we may rewrite Eq. (17) as follow

where | ψ |2= ψψ̄ and ψ̄ is the conjugate of ψ.
Taking Mohand transform on both sides of Eq. (19), we get

Using the properties of the transformation on Eq. (20), we get

On solving, we get

Taking inverse Mohamd transform, we get

Hn(ψ0 + ψ1 + · · · + ψn) =
1

n!

∂n

∂pn

(

S2

(

∞
∑

i=0

piψi

)

)

p=0

. n = 0, 1, 2, . . .

∞
∑

n=0

pnψn(ρ,ϕ) = G(ρ,ϕ)− pM−1

[

1

rα
M

{

S1

(

∞
∑

n=0

pnψn(ρ,ϕ)

)

+

∞
∑

n=0

pnHnψn(ρ,ϕ)

}]

.

(15)

p0 : ψ0(ρ,ϕ) = G(ρ,ϕ),

p1 : ψ1(ρ,ϕ) = −M−1

[

1

rα
M

{

S1ψ0(ρ,ϕ)+H0

}]

,

p2 : ψ2(ρ,ϕ) = −M−1

[

1

rα
M

{

S1ψ1(ρ,ϕ)+H1

}]

,

p3 : ψ3(ρ,ϕ) = −M−1

[

1

rα
M

{

S1ψ2(ρ,ϕ)+H2

}]

,

.

.

.

(16)ψ(ρ,ϕ) = ψ0(ρ,ϕ)+ p1ψ1(ρ,ϕ)+ p2ψ2(ρ,ϕ)++p3ψ3(ρ,ϕ)+ · · · .

ψ(ρ,ϕ) = lim
N→∞

N
∑

n=0

ψn(ρ,ϕ).

(17)
∂αψ

∂ϕα
= iψρρ + i2ψ(| ψ |2)ρ + iψ | ψ |4,

(18)ψ(ρ, 0) = a eiρ

(19)
∂αψ

∂ϕα
= iψρρ + 2i(ψψρψ̄ + ψ2ψ̄ρ)+ iψ3ψ̄2

(20)M
[∂αψ

∂ϕα

]

= M
[

iψρρ + 2i(ψψρψ̄ + ψ2ψ̄ρ)+ iψ3ψ̄2
]

.

rαM[ψ(ρ,ϕ)] − rα+1ψ(ρ, 0) = M
[

iψρρ + 2i(ψψρψ̄ + ψ2ψ̄ρ)+ iψ3ψ̄2
]

,

M[ψ(ρ,ϕ)] = rψ(ρ, 0)+
1

rα
M
[

iψρρ + 2i(ψψρψ̄ + ψ2ψ̄ρ)+ iψ3ψ̄2
]

.
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 Equating the identical powers of p of Eq. (21), we get, we get

hence, the derived results are obtained as follows,

on continuing this process, we can achieve the following series,

which can be in closed form of29,30 at α = 1

We divide Fig. 1 into two parts (a) the real part of the surface solution and (b) the imaginary part of the 
surface solution at −5 ≤ ρ ≤ 5 and 0 ≤ ϕ ≤ 5 with α = 1 . Figure 2 provided in (a) Real part of plot distribution 
(b) Imaginary part of plot distribution for α = 0.25, 0.5, 0.75, 1 at ϕ = 1.

Example 2.  We may rewrite the Eq. (2) such as

with the following initial conditions

Let Eq. (24) yields

(21)ψ(ρ,ϕ) = ψ(ρ, 0)+M−1

[

1

rα
M
{

iψρρ + 2i(ψψρψ̄ + ψ2ψ̄ρ)+ iψ3ψ̄2
}

]

.

ψ0 = ψ(ρ, 0) = eρ ,

ψ1 = M−1

[

1

rα
M

{

iψ0ρρ + 2i(ψ0ψ0ρψ̄0 + ψ2
0 ψ̄0ρ)+ iψ3

0 ψ̄
2
0

}]

,

ψ2 = M−1

[

1

rα
M

{

iψ1ρρ + 2i(ψ0ψ0ρψ̄1 + ψ0ψ1ρψ̄0 + ψ1ψ0ρψ̄0 + ψ2
0 ψ̄1ρ + 2ψ0ψ1ψ̄0ρ)+ i(2ψ̄0ψ̄1ψ

3
0 + 3ψ2

0ψ1ψ̄
2
0 )

}]

,

ψ3 = M−1

[

1

rα
M

{

iψ2ρρ + 2i
(

ψ0ψ0ρψ̄2 + ψ0ψ1ρψ̄1 + ψ0ψ2ρψ̄0 + ψ1ψ0ρψ̄1 + ψ1ψ1ρψ̄0 + ψ2ψ0ρψ̄0

+ ψ2
0 ψ̄2ρ + 2ψ0ψ1ψ̄1ρ + ψ2

1 ψ̄0ρ)+ i(ψ̄2
1ψ

3
0 + 2ψ̄0ψ̄2ψ

3
0 + 6ψ2

0ψ1ψ̄0ψ̄1 + 3ψ0ψ
2
1 ψ̄

2
0 + 3ψ2

0ψ2ψ̄
2
0

)

}]

,

.

.

.,

ψ0 = aeiρ

ψ1 = iaeiρ
(

a4 − 1

)[ ϕα

Ŵ(1+ α)

]

ψ2 = −aeiρ
(

a4 − 1

)2[ ϕ2α

Ŵ(1+ 2α)

]

ψ3 = aeiρ
(

i + 4a2 − ia4
)(

a4 − 1

)2[ ϕ3α

Ŵ(1+ 3α)

]

(22)

ψ(ρ,ϕ) = ψ0 + ψ1 + ψ2 + ψ3 + · · · ,

ψ(ρ,ϕ) = aeiρ + iaeiρ
(

a4 − 1

)[ ϕα

Ŵ(1+ α)

]

−
aeiρ

2

(

a4 − 1

)2[ ϕ2α

Ŵ(1+ 2α)

]

+
aeiρ

6

(

i + 4a2 − ia4
)(

a4 − 1

)2

[ ϕ3α

Ŵ(1+ 3α)

]

+ · · ·

(23)
ψ(ρ,ϕ) =

eiρ

[

1+

(

1

a4
− 1

)

e4iϕ
]

1
4

(24)

(∂αψ

∂ϕα
+

∂ψ

∂ρ

)

− iφ − iψ | φ |2= 0

(∂αφ

∂ϕα
+

∂φ

∂ρ

)

− iψ − iφ | ψ |2= 0

(25)
ψ(ρ, 0) = a eiρ

φ(ρ, 0) = b eiρ

(26)

∂αψ

∂ϕα
= −

∂ψ

∂ρ
+ iφ + iψφφ̄,

∂αφ

∂ϕα
= −

∂φ

∂ρ
+ iψ + iφψψ̄ ,
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where | ψ |2= ψψ̄ , | φ |2= φφ̄ with ψ̄ and φ̄ are the conjugate of ψ and φ respectively. Taking Mohand transform 
on both sides of Eq. (26), we get

Using the properties of the transformation on Eq. (27), we get

On solving, we get

Taking inverse Mohand transform, we obtain

(27)
M
[∂αψ

∂ϕα

]

= M
[∂ψ

∂ρ
− iφ − iψφφ̄

]

,

M
[∂αφ

∂ϕα

]

= M
[∂φ

∂ρ
− iψ − iφψψ̄

]

rαM[ψ(ρ,ϕ)] − rα+1ψ(ρ, 0) = M
[∂ψ

∂ρ
− iφ − iψφφ̄

]

,

rαM[φ(ρ,ϕ)] − rα+1φ(ρ, 0) = M
[∂φ

∂ρ
− iψ − iφψψ̄

]

,

M[ψ(ρ,ϕ)] = rψ(ρ, 0)+
1

rα
M
[∂ψ

∂ρ
− iφ − iψφφ̄

]

,

M[φ(ρ,ϕ)] = rφ(ρ, 0)+
1

rα
M
[∂φ

∂ρ
− iψ − iφψψ̄

]

,

Figure 1.   Surfaces solution of Eq. (10) when α = 1.

Figure 2.   Plot distribution for different value of α at ϕ = 1.
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Equating the identical powers of p from system of Eq. (28), we get

 at p = 1 , we get

at p = 2 , we get

hence, the derived results are obtained as follows,

at p = 1 , we get

at p = 2 , we get

on continuing this process, we can achieve the following series

By solving the above equations, and using the approximate solution

(28)
ψ(ρ,ϕ) = ψ(ρ, 0)+M−1

[

1

rα
M
{∂ψ

∂ρ
− iφ − iψφφ̄

}

]

,

φ(ρ,ϕ) = φ(ρ, 0)+M−1

[

1

rα
M
{∂φ

∂ρ
− iψ − iφψψ̄

}

]

,

ψ(ρ, 0) = a eiρ ,

φ(ρ, 0) = b eiρ ,

ψ1 = M−1

[

1

rα
M

{

iψ0ρρ + 2i(ψ0ψ0ρψ̄0 + ψ2
0 ψ̄0ρ)+ iψ3

0 ψ̄
2
0

}]

,

φ1 = M−1

[

1

rα
M

{

iψ0ρρ + 2i(ψ0ψ0ρψ̄0 + ψ2
0 ψ̄0ρ)+ iψ3

0 ψ̄
2
0

}]

,

ψ2 = M−1

[

1

rα
M

{

iψ1ρρ + 2i(ψ0ψ0ρψ̄1 + ψ0ψ1ρψ̄0 + ψ1ψ0ρψ̄0 + ψ2
0 ψ̄1ρ + 2ψ0ψ1ψ̄0ρ)

+ i(2ψ̄0ψ̄1ψ
3
0 + 3ψ2

0ψ1ψ̄
2
0 )

}]

,

φ2 = M−1

[

1

rα
M

{

iψ1ρρ + 2i(ψ0ψ0ρψ̄1 + ψ0ψ1ρψ̄0 + ψ1ψ0ρψ̄0 + ψ2
0 ψ̄1ρ + 2ψ0ψ1ψ̄0ρ)

+ i(2ψ̄0ψ̄1ψ
3
0 + 3ψ2

0ψ1ψ̄
2
0 )

}]

, ,

.

.

..

ψ(ρ, 0) = a eiρ

φ(ρ, 0) = b eiρ ,

ψ1(ρ,ϕ) = i eiρ [b− a+ b2a]
[ ϕα

Ŵ(1+ α)

]

φ1(ρ,ϕ) = i eiρ [a− b+ a2b]
[ ϕα

Ŵ(1+ α)

]

,

ψ2(ρ,ϕ) = i2 eiρ [b3 + 2a+ b4a+ 2b2a(−2+ a2)+ b(−2+ 3a2)]
[ ϕ2α

Ŵ(1+ 2α)

]

φ2(ρ,ϕ) = i2 eiρ [a3 + 2b+ a4b+ 2a2b(−2+ b2)+ a(−2+ 3b2)]
[ ϕ2α

Ŵ(1+ 2α)

]

(29)

ψ(ρ,ϕ) = ψ0 + ψ1 + ψ2 + ψ3 + · · · ,

φ(ρ,ϕ) = φ0 + φ1 + φ2 + φ3 + · · · ,

ψ(ρ,ϕ) = a eiρ + i eiρ [b− a+ b2a]
[ ϕα

Ŵ(1+ α)

]

+ i2eiρ [b3 + 2a+ b4a+ 2b2a(−2+ a2)+ b(−2+ 3a2)]

[ ϕ2α

Ŵ(1+ 2α)

]

+ · · ·

φ(ρ,ϕ) = b eiρ + i eiρ [a− b+ a2b]
[ ϕα

Ŵ(1+ α)

]

+ i2eiρ [a3 + 2b+ a4b+ 2a2b(−2+ b2)+ a(−2+ 3b2)]

[ ϕ2α

Ŵ(1+ 2α)

]

+ · · ·
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Figure 3 has been divided into two parts: (a) Real part of ψ and φ (b) Imaginary part of ψ and φ at −2 ≤ ρ ≤ 2 
and 0 ≤ ϕ ≤ 2 with α = 1 and Fig. 4 provided in (a) Real part of plot distribution for ψ and φ (b) Imaginary part 
of plot distribution for ψ and φ for α = 0.25, 0.5, 0.75, 1 at ϕ = 1.

Conclusion
In the current paper, we have successfully applied a new strategy where Mohand transform is combined with 
homotopy perturbation scheme to obtain the approximate solution of the fractional Kundu–Eckhaus and cou-
pled fractional Massive Thirring equations. This approach is capable to handle the fractional problems without 
involving any small assumption or perturbation study. The results reveal that this strategy has a high accuracy 
rate and handles quickly without any discretization. We use Mathematica 11 to sketch the plot distribution. 
Our results show that this approach has an excellent performance in finding the analytical solution of fractional 
Kundu–Eckhaus and coupled fractional Massive Thirring equations. In the future, we believe that this strategy 
is suitable and feasible for other fractional differential problems arising in science and engineering.

(30)

ψ(ρ,ϕ) =

N
∑

i=0

ψi(ρ, b)
( 1

n

)i
,

φ(ρ,ϕ) =

N
∑

i=0

φi(ρ, b)
( 1

n

)i
,

Figure 3.   Surfaces solution of Eq. (29) when α = 1.

Figure 4.   Plot distribution for different value of α at ϕ = 1.
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