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Mohand homotopy transform
scheme for the numerical solution
of fractional Kundu-Eckhaus

and coupled fractional Massive
Thirring equations

Xiankang Luo*! & Muhammad Nadeem?**

In this paper, Mohand homotopy transform scheme is introduced to obtain the numerical solution of
fractional Kundu-Eckhaus and coupled fractional Massive Thirring equations. The massive Thirring
model consists of a system of two nonlinear complex differential equations, and it plays a dynamic
role in quantum field theory. We combine Mohand transform with homotopy perturbation scheme
and show the results in the form of easy convergence. The accuracy of the scheme is considerably
increased by deriving numerical results in the form of a quick converge series. Some graphical plot
distributions are presented to show that the present approach is very simple and straightforward.

Fractional calculus (FC) has grown importance in recent years and is now widely used in a variety of disciplines,
such as ecology, physics, astronomy, and economics. After the concepts of FC to a variety of various features,
scientists are starting to realise that the fractional framework may be compatible with a wide range of phenom-
ena in common applied sciences. Fractional differential equations are used in the development of mathematical
models for a variety of physical processes such as, in physics, dynamical systems, power systems, and applied
science'?. Kundu and Eckhaus®* introduced the fractional Kundu-Eckhaus equation such as,

DY (0, @) + Voo +20 (1Y D)+ | ¥ [*=0, 0<a=x1 (1)

This equation appears in quantum field theory and and other dispersion fields. It is also a combination of Lax
couples, higher conserved portion, particular soliton solution and rogue wave solution. The development of a
scientific design that supports ultra-short light pulses in a glass fibre is crucial. The development of a scientific
design that supports ultra-short light pulses in a glass fibre is crucial. The fractional Massive Thirring problem

DYy +¥p)+d+v 16 1°=0,

JU 2 2)
iDyp+dp)+v+¢|v¥[°=0,

was autonomously introduced 1958 by Thirring. It is a nonlinear coupled fractional differential equation which
appears in the quantum field theory’. The Kundu equation and the derivative Schrodinger equation’s explicit
particular single solutions were obtained using the algebraic curve approach®. Yi and Liu” used the bifurcation
scheme to extend the traveling wave solutions for the Kundu equation. Recently, some authors®® have investi-
gated the numerous characteristics of this equation, its generalisations, and its connections to other nonlinear
equations. Various exact travelling wave solutions for the Kundu equation with fifth-order nonlinear term are
obtained in'. It is categorised as a variant of several well-known integrable equations, including the nonlinear
Schrodinger equation and several other nonlinear equations, via a gauge transformation.

Many researchers have studied the analytical solution of differential problems through various approaches
such as, gauge transformation'!, Lie symmetry method'?, Bernoulli subequation method'?, Residual power
series method', Runge-Kutta method", Bicklund transformation'é, Spectral collocation method!’, Natural
transform'®, Sine-Gordon expansion approach' and Darboux transformation® and rogue wave solutions?'.
Anjum and Ain* used He’s fractional derivative for the time fractional Camassa-Holm equation. Gepreel and
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Mohamed* implemented homotopy analysis scheme for the approximate solution of nonlinear space-time frac-
tional derivatives Klein-Gordon equation. Many scientists developed a variety of semi-analytical and numerical
techniques to investigate fractional derivatives and fractional differential equations. He** developed a scheme
known as HPS that does not depend upon a small parameter to estimate the approximate solution of a nonlinear
model. Later, Nadeem and Li*® combined HPS with Laplace transform to find the approximate solution of non-
linear vibration systems and nonlinear wave equations. It is clear that HPS is a potent technique and successful
for nonlinear problems®®. Although it can be difficult to find analytical solutions for the majority of issues, semi-
analytical approaches can still be used to address these issues.

In this study, we present a method based on the formulation of the Mohand transform with HPS to investigate
the approximation of the solutions of the fractional Massive Thirring and coupled fractional Kundu-Eckhaus
equations. The resulting series provide us the results relatively quickly, and we see that the computational series
only reaches the precise solution after a limited number of iterations. We design this study such as: In “Basic
idea of HPS” section, a brief idea of HPS for a nonlinear problem has been explained. Some basic definitions of
Mohand transform and the development of Mohand transform with HPS are defined in “Concept of Mohand
transform” and “Development of Mohand transform with HPS” sections respectively. Two numerical applications
are provided to check the authenticity of our proposed scheme and also show it with some graphical illustrations
in “Numerical application” section. Conclusion is discussed in the last “Conclusion” section.

Basic idea of HPS

Consider the following nonlinear problem to present the concept of HPS,

Ti(y) —h(q) =0, g€, 3)
with boundary conditions
0
By, ) =0, vern @

where T is particular operators, T, is a boundary operator, h(q) is a known function, and I is the boundary of
the domain 2. We can divide operator T; into into two parts, S; and S, with considering linear and nonlinear
operators respectively. Thus, Eq. (3) may also be stated as

S1(¥) + S2(¥) — h(g) = 0. (5)
Let us develop a homotopy p (g, p) : € x [0, 1] — R which satisfies
H@r,p) = (1 = p)Si(¥) — S1(@o)] + plS1(¥) — S2(¥) — h(@)],
or
HW,p) = Si(¥) — Si(¥o) + pSi1(Yo) + plS2 () — h(g)] =0, (6)

where p € [0, 1], is termed as homotopy parameter, and v is an initial guess of Eq. (4) that complies with the
boundary conditions. Since the definition of HPS states that p is estimated as a small parameter, so, we may
consider the solution of Eq. (3) in terms of a power series of p such as,

v=votpyitpvat. (7)
Choosing p = 1, the estimated solution of Eq. (7) is acquired as,
1//=}}ig11¢=1//o+¢1+1/12+¢3+--~.

The nonlinear terms are evaluated as

S0 (0, 9) = Y P Ha(). (8)

n=0

where polynomials H, (i) are presented such as

Hoo+ 01+t ) =~ 0 (sz(Zp"w,»D =012,
p=0

!
n! op" P

Since the series depends on the nonlinear operator S. Therefore, the results obtained in Eq. (7) are convergent.

Concept of Mohand transform
In this section, we go over several basic Mohand transform properties and ideas that are essential for formulat-
ing this strategy.

Definition 3.1 Mohand transform for a function v (¢) is defined as®’

Scientific Reports |

(2023) 13:3995 | https://doi.org/10.1038/s41598-023-31230-6 nature portfolio



www.nature.com/scientificreports/

M{y(p)} = R(r) =1* /Ow V(pe dtky <1 < k.

Conversely, if R(r) is the MT of ¥/ (¢), then ¥ (¢) is called the inverse of R(r) i.e.,
M~ YR} = ¥ (p),

here M~!is known as inverse MT.

Definition 3.2 Mohand transform of fractional derivative is expressed as*®

n—1 k
@ o ¥H(0)
M{y" ()} = r"R(r) — , O<a<n
kz:;rk—(a-i-l)

Definition 3.3 Some properties of MT are defined as,
(@)  M{y'(9)} = rR(r) — r’R(0).
(b)  M{y"(¢)} = r*R(r) — r’R(0) — r*R'(0).

(©  M{y" (@)} = r"R(r) = ™IRO = r"R'(0) = -+ = F"R"1(0).

Development of Mohand transform with HPS

This segment explains the development of the Mohand transform with HPS to obtain the approximate solution
of fractional Kundu-Eckhaus and coupled fractional Massive Thirring equations. We consider the differential
equation such as

Dy (p, @) + S1¥ (0, 9) + 29 (0, 9) = g(p, ¢)s 9)

Y (p,0) = w(p), (10)

d
where Dy = Fyr express the fractional order « of ¥ (¢). Employing MT on Eq. (9)
%

M[DEw (p,0) + S19(0,0) + S0 (0,9)| = M[g(p, )], an

When we use the MT definition, we get
(RO = @] = =M [S1v(0.9) + 21 (0.9)| + Mg (0. 0],

on solving, we obtain

RO =y (©) = M[$1(0,0) + 23 (0,0) ~ 50, 9)].
Using Eq. (10), it yields

R0) = (o) = - M[S10 (0, 9) + S0 (0, 0) — 20,0,
Applying inverse MT, we get the recurrence relation of ¥ (p, ¢) such as

V(o 9) = Glp.g) = M~ {%M[slw,«)) - 321//(P>§0)H> (12)
where
G(p,p) =M"! {rW(p) - %M{g(p, w)}} 4

Let us assume the approximate solution of Eq. (9) as follows

V(0 0) = > p"un(p, ), (13)
n=0
and
SV (0, 9) =Y P Hat (0, 9), (14)
n=0
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where p € [0, 1], is embedding parameter whereas ¥/ (p, ¢) is an initial guess of Eq. (9). We can use the following
formula to get the polynomials

Hy(Yo+ 1+ -+ ¥u) = Lo (SZ<ZPiWi>> .. n=0,1,2,...
p=0

-
n! op" P

Combining the Egs. (13) and (14), (12) can be written as

> "0, 9) = Glp, @) — pM ! L%M{sl O RXNEDS p”Hnwn(p,wH .

n=0 n=0 n=0

When we analyze the related parts of p, we obtain
P’ ¥olp.9) = G(p, ),

M1
phiv(e ) =-M"! rjM{SH/fo(Pdﬂ) +Ho}

1
PPV g) = —-M"! TTXM{SI‘//I(PWO) +H1}

—
—
w1

=~

M1
P ys(e9) = —M"! ;M{Sﬂ/fz(p,qv) + Hz}

Therefore, we can combine Eq. (15) such as

V(0. 9) = Yo(0,9) + P ¥1(0,9) + P*V2(p, 9) + +0 V30 0) + -+ . (16)
If p = 1, then Eq. (16) yields

N
V(p.g) = lim_ z_jo V(o).

We propose this approach in light of upcoming mathematical applications.

Numerical application

In this section, we apply the formulation of a new strategy to the numerical applications and demonstrate that
this strategy is very convenient and suitable. Results are obtained in the form of a series. Graphical findings
demonstrate that the approximate solution converges to the exact solution within a small number of iterations.

Example 1. We may rewrite the Eq. (1) such as
0%y .

Ggu = W H VAV D +iv 1y 1 (17)
with the following initial conditions
¥ (p,0) =ae” (18)
we may rewrite Eq. (17) as follow
I’y : P 27 1372
g Wpp + 2100 o +¥7p) + iy (19)

where| ¥ |>= ¥ ¥ and ¥ is the conjugate of .
Taking Mohand transform on both sides of Eq. (19), we get
aa
M [ v
oY

| = My + 2000 + 92, + 0797 (20)
Using the properties of the transformation on Eq. (20), we get
FMI (0 @] = 1T (0,0 = M1 + 20000 + ¥20,) + i),
On solving, we get
MUY ()] = 10, 0) + M [y + 2000+ 920,) + 10702,

Taking inverse Mohamd transform, we get
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1| 1 . . - - 37
V(ps9) =¥ (p,0) + M {;M{zm + 20V, Y+ YY) + nﬁwz}} (21)
Equating the identical powers of p of Eq. (21), we get, we get
Yo =1 (p,0) =¢’,
Yi=M" {}M{ iWopp + 2i(WoVop Yo + Vg Wop) + f¢g¢g}],

1 _ _ _ _ _ o _
vy = M {Ta M{ii//w + 2i(Yovop V1 + Yoo Wo + V1o o + WiV, + 20vihop) + iV v + 31/«%%1#3)}}
1 - - - _ _ _
Y3 =M" [VTXM{W/W + 21'(1//01//0/;#/2 + YooVt + Yoo + Y1vop ¥t + Y1vip Yo + Y2¥op Yo
+ U8 T2p + 200ty + UiTop) + TS + 2000208 + UG Y Tov + 3w EiE + 3uunii ) H

o

hence, the derived results are obtained as follows,

Yo = ae'”
Y1 = iae (a* ~ 1) [ﬁ]
‘ 20
V2 = —ae” (04 - 1>2 [ﬁ]
s = e (i 40 —ia') (o' <1 [ﬁ]

on continuing this process, we can achieve the following series,

Vo) =vo+y1+v2+vz+---, ‘ ‘
W = ae? iae (a 1) [ 2] O (1) [ 2 (i i) (o 1)
3a

[ﬁkp..

(22)
which can be in closed form of?**® ata = 1

e'f

Vo, 9) = T
i (-]

We divide Fig. 1 into two parts (a) the real part of the surface solution and (b) the imaginary part of the
surface solution at —5 < p < 5and 0 < ¢ < 5with o = 1. Figure 2 provided in (a) Real part of plot distribution
(b) Imaginary part of plot distribution for « = 0.25,0.5,0.75, lat ¢ = L

Example 2.  We may rewrite the Eq. (2) such as

U BN
(Gge +5,) "6 161=0

0 de\ o
(awa+%)—zw—z¢|w|—o

with the following initial conditions

¥ (p,0) =ae”
¢ (p,0) = be”
Let Eq. (24) yields

TV _ s ig v ived,
dp* ap
¢ o
dpe B ap

(26)
+ iy + gy,
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U (p, @) U (p, @)

(a) Real part of surface solution (b) Imaginary part of surface solution

Figure 1. Surfaces solution of Eq. (10) whena = 1.

¥ o, 9) ¥ o, ¢)

p p

300 300f
200 200
100 100

¢
~100 -100
—200f -200
-300 -300
(a) Real part of plot distribution (b) Imaginary part of plot distribution

Figure 2. Plot distribution for different value of z atp = 1.

where| ¥ |>= ¥ ,| ¢ |*= ¢¢ with and ¢ are the conjugate of { and ¢ respectively. Taking Mohand transform

on both sides of Eq. (26), we get

u[Z2] (2 i~ wod],
u[52] - (28 o003

Using the properties of the transformation on Eq. (27), we get

9 _
MU o)) = 0,0 = M2~ i6 /6],

P -
M) = 1 (0,00 = M52 i = i)

On solving, we get

1 a -
M (o)) = 0,0+ M [TV —ig — iyp],
r ap
Lo e
Mig (o, )] = 6 (0,0) + M| 22 — iy — iy,
r ap

Taking inverse Mohand transform, we obtain

(27)

Scientific Reports | (2023) 13:3995 | https://doi.org/10.1038/s41598-023-31230-6 nature portfolio



www.nature.com/scientificreports/

1 a -
V(o) = (p,0) + M~ [;M{—"’ —i¢ - i¢¢¢}},
r ap (28)

1 a -
(0, 0) = p(p,0) + M~ {—aM{a—d’ — iy - idﬂ/ﬂ/f}},
0

r

Equating the identical powers of p from system of Eq. (28), we get

V(p,0) = ae”,
¢ (p,0) =be”,
at p = 1, we get
Y =M" {%M{i%pp + 2i(Yovop o + Vo) + iwé%}}
1 _ - _
pr=M" {;M{iwopp + 2i(Yovop o + Vivoe) + ix/fSwéH,

at p = 2, we get
Yo=M"" [%M{i\/npp + 2i(YoWop ¥t + Voo Vo + Y1vop Vo + Yo Wi + 2%0¥1 Yop)
+iypodnvg + Swéwlxﬁé)”,
pr=M" [%M{ilﬁlpp + 2i(YoWop ¥t + Vo1 Vo + Y1vop Vo + VoW1 + 2%0¥1 Yop)

+iQUoy g + wéwﬁé)”,,

hence, the derived results are obtained as follows,

Y(p,0) =ae”
¢(p,0) =be”,
at p = 1, we get

o

Vi(p.p) =i e?[b— a+ bl [ﬁ]
b1(p,@) = iePla— b+ a’b] [ﬁ]
at p = 2, we get
. (pZa
Vo (p, ) = i2 e?[b® + 2a + b*a + 2b%a(=2 + a®) + b(=2 + 3a?)] [m]
2a
br(p, @) = 2 6P[a® +2b + a*b + 2a2b(=2 + b?) + a(—2 + 3b%)] [ﬁ}

on continuing this process, we can achieve the following series

v(o,p) =Yoo+ Y1 +v2+vs+---,
(o, 0) =do+d1+I2+P3+ -+,

Y(p,9) =ae? +iel[b—a+ bal [ﬁ] + 26 [b® + 2a + bta + 2b%a(=2 + a®) + b(=2 + 34?)]
2o
@
[F(l +2(x)} o
d(p,0) =be? +iePla—b+ a’b) [ﬁ} +i%e'P[a® + 2b + a*b + 2a*b(—2 + b?) + a(—2 + 3b%)]

2a

L4 } .
[F(l mpyed
(29)
By solving the above equations, and using the approximate solution
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Vo =3 o b ()
i=0

b0 =3 600 b ()
i=0

1
n

1
n

i
>

i
>

Figure 3 has been divided into two parts: (a) Real part of y and ¢ (b) Imaginary part of y andgpat—2 < p <2
and 0 < ¢ < 2witha = 1and Fig. 4 provided in (a) Real part of plot distribution for ¢ and ¢ (b) Imaginary part
of plot distribution for ¥ and ¢ for @ = 0.25,0.5,0.75, latgp = 1.

Conclusion

In the current paper, we have successfully applied a new strategy where Mohand transform is combined with
homotopy perturbation scheme to obtain the approximate solution of the fractional Kundu-Eckhaus and cou-
pled fractional Massive Thirring equations. This approach is capable to handle the fractional problems without
involving any small assumption or perturbation study. The results reveal that this strategy has a high accuracy
rate and handles quickly without any discretization. We use Mathematica 11 to sketch the plot distribution.
Our results show that this approach has an excellent performance in finding the analytical solution of fractional
Kundu-Eckhaus and coupled fractional Massive Thirring equations. In the future, we believe that this strategy
is suitable and feasible for other fractional differential problems arising in science and engineering.

U (p. @)

(a) Real part of ¢ and ¢

Figure 3. Surfaces solution of Eq. (29) when o = 1.

v (p, @)
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(a) Real part of plot distribution for ¢ and ¢
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2

(b) Imaginary part of ¥ and ¢

a=0.25
a=0.50

8000 a=0.75

F---- a=1

v(p, ¢)

(b) Imaginary part of plot distribution for y

and ¢

Figure 4. Plot distribution for different value of ¢ at ¢ = L.
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