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Rapid and effective preparation
of clonal bone marrow-derived
mesenchymal stem/stromal cell
sheets to reduce renal fibrosis

Sumako Kameishi?*?, Celia M. Dunn3, Masatoshi Oka%%*, Kyungsook Kim?2,
Yun-Kyoung Cho®, Sun U. Song®, David W. Grainger?* & Teruo Okano™-%6

Allogeneic “off-the-shelf” mesenchymal stem/stromal cell (MSC) therapy requires scalable, quality-
controlled cell manufacturing and distribution systems to provide clinical-grade products using
cryogenic cell banking. However, previous studies report impaired cell function associated with
administering freeze-thawed MSCs as single cell suspensions, potentially compromising reliable
therapeutic efficacy. Using long-term culture-adapted clinical-grade clonal human bone marrow
MSCs (cBMSCs) in this study, we engineered cBMSC sheets in 24 h to provide rapid preparation.

We then sought to determine the influence of cBMSC freeze-thawing on both in vitro production of
pro-regenerative factors and in vivo ability to reduce renal fibrosis in a rat model compared to freshly
harvested cBMSCs. Sheets from freeze-thawed cBMSCs sheets exhibited comparable in vitro protein
production and gene expression of pro-regenerative factors [e.g., hepatocyte growth factor (HGF),
vascular endothelial growth factor (VEGF), and interleukin 10 (IL-10)] to freshly harvested cBMSC
sheets. Additionally, freeze-thawed cBMSC sheets successfully suppressed renal fibrosis in vivo in an
established rat ischemia-reperfusion injury model. Despite previous studies reporting that freeze-
thawed MSCs exhibit impaired cell functions compared to fresh MSC single cell suspensions, cell
sheets engineered from freeze-thawed cBMSCs do not exhibit impaired cell functions, supporting
critical steps toward future clinical translation of cBMSC-based kidney disease treatment.

Mesenchymal stem/stromal cells (MSCs) have been applied in hundreds of clinical trials to date based on their
therapeutic secretome and paracrine potency. Many different cytokines and growth factors are implicated in
MSC-based cell therapies, including immunomodulatory factors (e.g., interleukin-10: IL-10, prostaglandin E2:
PGE-2)!-3, anti-fibrotic factors (e. g., hepatocyte growth factor: HGE, bone morphogenetic protein 7: BMP-7)*,
and angiogenic factors (e.g., vascular endothelial growth factor: VEGE, basic fibroblast growth factor: bFGF)”~.
Specifically, MSC’s reportedly high immunomodulatory capacity has motivated several ongoing clinical stud-
ies for immune-related diseases, such as graft-versus-host disease (GvHD), Crohn’s disease, and severe acute
pancreatitis'®!!, all of which lack effective conventional pharmaceutical treatment alternatives. Current MSC
administration strategies utilize conventional injection-based delivery of MSC single-cell suspensions, considered
advantageous for treating systemic diseases. However, for localized diseases, it is essential to employ local cell
transplantation methods to enhance cell engraftment and survival rates in the targeted site, thus increasing the
potential for sustained cell-based delivery of therapeutic factors'>">.

Cell sheet technology uses commercial thermo-responsive cell culture dishes (TRCDs) grafted with the
temperature-responsive polymer, poly(N-isopropylacrylamide), allowing scalable harvest of cultured cells as
a single, confluent sheet'* via non-enzymatic temperature-mediated detachment. By avoiding the use of enzy-
matic-mediated culture, cell sheets retain innate instructive ECM and cell-cell interactions!>'° that facilitate
direct cell sheet transplantation without use of sutures. Our group has recently reported characterization of cell
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sheets engineered from human clinical-grade MSCs and demonstrated that MSC sheet transplantation in vivo
prolongs cell retention at target tissue sites compared to single-cell injections'”'®. Furthermore, our group has
recently reported that MSC sheet formation enhances cytokine production compared to single-cell conditions
in vitro'®-?!. Preclinical applications of directly transplanted MSC sheets demonstrate pro-regenerative thera-
peutic efficacy across several disease models and various tissues?, such as the heart?, periodontal ligament***>,
bone?, skin?, and kidney'”. Interestingly, previous studies suggest that some transplanted GFP-labeled MSCs
may transdifferentiate into endothelial cells, pericytes, and other cell types to support neovascularization to
regenerate damage tissues?>2>*2%,

Despite the ongoing promise of MSC therapies, including MSC sheet therapy, major obstacles preclude
clinical translation of MSC therapy, including notable scientific, practical, and economic challenges. Allogeneic
“off-the-shelf” MSC strategies defined under scaled quality-controlled cell production methods now address
several current issues, with anticipated improvements in cost and potency per cell dose?**. Human MSC source
standardization, mass manufacturing under quality control, product distribution, and clinical dosing regimens
must be addressed®*. In this study, we employed long-term culture-adapted human clonal bone marrow stem
(stromal) cells (cBMSCs): MSC primary lines derived from a single human MSC and that exhibit stable cell
proliferative capability beyond passage 10 with high regenerative capacity and low immunogenicity’'**>. Human
c¢BMSC:s are clinically available through good manufacturing practice (GMP) production based on safety tests,
including in vivo toxicity, biodistribution analysis, tumorigenicity tests, and karyotyping. Therefore, cBMSCs
used in this study represent a new opportunity to produce a potent, sustainably cell-banked allogeneic product
with increased homogeneity for future clinical use.

Reliable, cost-effective clinical delivery of allogeneic MSC products to patients requires improvements in cell
storage, cell manufacture, and transplantation systems. Currently, freshly isolated MSCs, called "non-cryopre-
served MSCs" in this study, are employed in preclinical animal studies, while banked MSC products ("freeze-
thawed MSCs") are prepared and directly transfused in human clinical trials to reduce procedural complexity'?.
Discrepancies between MSC protocols for preclinical animal studies and human clinical settings contribute to
inconsistent clinical outcomes!'®*>?¢; therefore, quality control of freeze-thawed human MSCs is necessary to
validate off-the-shelf MSC products.

Previous studies reported that tri-lineage differentiation potency and MSC surface marker expression are
well-preserved after cryopreservation®”’. However, freeze-thaw cycles often compromise MSC viability*®*%*, In
addition, impaired immunomodulatory and blood regulatory properties are commonly reported in freeze-thawed
MSCs*?**%_ Given changes to MSC function caused by cryo-handling and freeze-thaw cycles®?, distinct chal-
lenges associated with freeze-thawed MSCs must be addressed before their direct utilization in human clinical
products.

Current MSC sheet production including cell expansion and cell sheet fabrication typically requires 2-3
weeks!?~?! before application. Therefore, to reduce production time and associated costs, MSC sheet clinical
translation would benefit from improved processes that utilize freeze-thawed MSCs from large-scale cell banks
to yield rapid cell sheet fabrication while maintaining therapeutic effects. In this study, cell sheets were developed
using GMP-grade cBMSCs*** certified by MSC criteria and currently investigated to treat GVHD in phase II
clinical trials in Korea*'. Cell sheets made from cBMSCs revived from cryo-banking, passaged twice and used
for cell sheets (i.e., "freshly harvested cBMSCs") were compared to cell sheets from cBMSCs immediately revived
from a working cell bank ("freeze-thawed cBMSCs") (Fig. 1). We compared cBMSC sheets from these two cell
sources at identical passage numbers for pro-regenerative cytokine production in vitro and therapeutic suppres-
sion of renal fibrosis in an in vivo rat ischemia-reperfusion injury (IRI) model'”*?, a potential clinical applica-
tion. This study seeks to fill the gap between MSC preclinical model work and human clinical performance as
an allogeneic cell therapy using freeze-thawed GMP-produced cBMSCs, ultimately required to improve MSC
therapeutic and clinical translational impact.

Results

Evaluation of freshly harvested and freeze-thawed ¢cBMSCs for cell viability and growth
invitro. Viability of freeze-thawed cBMSCs was determined immediately following thawing from cryogenic
banking and compared to freshly harvested cBMSCs revived from the same initial working cell bank but pas-
saged twice (see Fig. 1). Freeze-thawed cBMSCs exhibited 90.8% cell viability, significantly lower than freshly
harvested cBMSCs (99.1%, Fig. 2a). After 5 days of culture, both freshly harvested and freeze-thawed cBMSCs
exhibited similarly high cell viability and growth rates (Fig. 2b) and became ~ 70% confluent after identical seed-
ing conditions (Fig. 2¢), indicating that freeze-thawed cBMSCs rapidly recover from cryopreservation. Cell size
and morphology were comparable between the freeze-thawed and freshly harvested cBMSCs at both 2- and
5-day cultivation (Fig. 2c). These findings suggest that freeze-thawed cBMSCs adhere and proliferate equiva-
lently to previously culture-rescued cBMSCs despite exhibiting reduced cell viability immediately following
freeze-thawing.

Cell adherence and spreading ability in freshly harvested and freeze-thawed cBMSC cultures
in vitro. Rapid cell sheet fabrication depends on rapid cell adhesion and spreading to form a confluent mon-
olayer; therefore, cell adhesion and spreading properties of freeze-thawed cBMSCs are critically important to
their ability to be used for cell sheet fabrication. Initial cell adhesion and spreading was observed after seeding
freshly harvested and freeze-thawed cBMSCs onto cell cultureware and incubating for 15, 30, and 60 min. After
incubation, cell culture dishes were washed with PBS to remove non-adherent cells (i.e., floating cells), and
the remaining adherent cells were then observed. Interestingly, freeze-thawed cBMSCs exhibited increased cell
spreading versus freshly harvested cBMSCs after both 15- and 30-min incubations, as shown in Fig. 3a. Addi-
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Figure 1. Preparation of freshly harvested and freeze-thawed clonal BMSC sheets. Clonal BMSC sheet
preparation strategy using freshly harvested and freeze-thawed cells revived from each working cell bank. Cells
were seeded onto thermo-responsive cell culture dishes (TRCDs) and cultured for 24 h to harvest as cell sheets.
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tionally, the number of adherent cells was approximately double in the freeze-thawed cBMSCs experimental
group compared to freshly harvested cBMSCs after 15-min (Fig. 3b). Live cell time-lapse imaging further con-
firmed these trends, indicating that over time the freeze-thawed cBMSCs possessed higher intrinsic cell adhe-
sion and spreading capabilities (Supplemental Figure S2 and Videos). To investigate differences during initial
cell spreading processes, gene expression integrin p1, ITGBI1, the primary cell adhesion receptor, was evaluated
using qQRT-PCR. No significant differences in integrin B1 gene expression were observed between freshly har-
vested and freeze-thawed cBMSCs after 10- and 60-min incubations, as shown in Fig. 3c. These findings indicate
that freeze-thawed cBMSCs possess higher initial cell spreading and adhesion capability than freshly harvested
c¢BMSCs, regardless of ITGBI expression.

Adherent cell shape correlates to actin organization and focal adhesion formation during
maturation of cell adhesion in culture. Immunohistochemistry (IHC) staining of vinculin, a focal
adhesion marker, was performed using F-actin phalloidin (Fig. 4a—c), and cell morphology of adherent cells
at each culture time point was quantified using Image J, as shown in Fig. 4d,e**%. Freshly harvested cBMSCs
exhibited larger average adherent cell size and more elongated cell shape compared to freeze-thawed cBMSCs
at both 3- and 5-h time points (Fig. 4a,b). These differences faded by the 24-h time point (Fig. 4c). Additionally,
increased vinculin localization uniformity was observed at the cell edges, co-localizing with F-actin fibers, in the
freshly harvested cBMSCs compared to freeze-thawed cBMSCs at the 3-h time point (Fig. 4a, overlaid fluores-
cent images). These findings indicate that freshly harvested adherent cBMSCs develop more mature focal adhe-
sions and elongated cell morphologies consistent with stromal phenotypes compared to freeze-thawed cBMSCs
after seeding and culture.

Cell sheet fabrication and cytokine production in culture. Current cell sheet preparation for alloge-
neic cell therapy requires approximately 2-3 weeks'*-?! for cell expansion and maintenance when working from
an established working cell bank without donor cell isolation. One approach to reduce the barriers to cell sheet
applications is to simplify and shorten production steps to yield more cost-effective cell sheets fabricated for on-
demand, acute or ready emergency use. To address the need for shorter, more cost-effective cell sheet fabrication
methods, this study uses an extensive cell bank of long-term culture-adapted human cBMSCs to produce allo-
genic cell sheets within 24 h. Freshly harvested and freeze-thawed cBMSCs were used directly to prepare cBMSC
sheets in 24 h using a high initial seeding cell density of 4 x 10° and 1 x 10° cells/dish (Fig. 5a).

We expected differences in rapid and functional cell sheet formation based on differences observed in adher-
ent abilities of freshly harvested and freeze-thawed cBMSCs, specifically, increased cell sheet fabrication ability
based on observed enhanced adhesion rates of freeze-thawed cBMSCs (see Figs. 3, 4). After 24-h incubation,
cultured cells in each experimental group were successfully harvested from TRCDs as contiguous, contracted
cell sheets via temperature-mediated detachment. As shown in Fig. 5a, freshly harvested cBMSCs produced
a fragile cell sheet containing many defects/holes under the lower initial seeding density of 4 x 10° cells/dish.
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Figure 2. Cell viability and proliferation of freshly harvested and freeze-thawed human clonal BMSCs. (a) Cell
viability of freshly harvested (Fresh) clonal BMSCs following culture and freeze-thawed (Freeze) clonal BMSCs
following thawing from cell bank at passage 10, day 0. Data shown are mean + SD (n=4). Statistical significance:
Student’s ¢-test, *P<0.05. (b) Cell viability and doubling time of freshly harvested (Fresh) and freeze-thawed
(Freeze) clonal BMSCs at passage 10, day 5. Data shown are mean +SD (n=4). Statistical significance: Student’s
t-test, not significant (N.S.). (¢) Phase-contrast images of freshly harvested and freeze-thawed clonal BMSCs at
2-day and 5-day culture. Scale bars represent 200 pm.

In contrast, freeze-thawed cBMSCs reliably produced intact cell sheets under the same 4 x 10° (i.e., 0.4 M)
cells/dish initial seeding density (Fig. 5a). At the higher initial seeding density of 1 x 10° (1 M) cells/dish, both
freshly harvested and freeze-thawed cBMSCs produced intact cell sheets (Fig. 5a). Resulting diameters of fresh
and freeze-thawed harvested sheets (seeding: 1 M cells/35-mm dish) were 13.8 and 14.1 mm, respectively (n=3/
group, not statistically different). These results indicate that rapid (24 h) cell sheet formation is possible from
freeze-thawed banked cBMSCs at multiple seeding densities, distinct from freshly harvested cBMSCs. Taken
together, rapid adhesion of freeze-thawed cBMSCs may contribute to the enhanced ability to rapidly fabricate
cell sheets, which is advantageous for reducing the time and costs of cell sheet production.

MSCs secrete multiple pro-regenerative cytokines (i.e., HGE, VEGF), making them an attractive alternative
to single-molecule drugs in treating diseases such as renal fibrosis*~**. However, freeze-thawed MSCs have
been reported to exhibit impaired cytokine production, specifically those related to immunomodulatory effects
based on indoleamine 2,3-dioxygenase (IDO) expression®*%%. Therefore, in this study, we sought to compare
production of tissue-regenerative cytokines from freshly harvested and freeze-thawed cBMSC sheets at 1 x 10°
cells/dish seeding density. No differences in gene expression levels of HGF and IL-10 were observed between
freshly harvested and freeze-thawed cBMSC sheets (Fig. 5b). Expression of VEGF and FGF2 was significantly
higher, while FN was significantly lower in freeze-thawed cBMSC sheets, although these differences were slight
(Fig. 5b). Overall, the cytokine production in freeze-thawed cBMSC sheets is comparable to freshly harvested
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Figure 3. Cell spreading ability in freshly harvested and freeze-thawed human clonal BMSCs. (a) Phase
contrast images of freshly harvested and freeze-thawed clonal BMSCs at 15-, 30-, and 60-min incubation after
seeding in culture. Scale bars represent 200 um. (b) Adherent cell numbers of freshly harvested (orange) and
freeze-thawed (blue) clonal BMSCs are shown. Data shown are mean + SD (n=4). Statistical significance:
Student’s ¢-test, not significant (N.S.), **P<0.01. (c) Gene expression of ITGBI in freshly harvested (orange)
and freeze-thawed (blue) clonal BMSCs were shown. Data shown are mean +SD (n=4). Statistical significance:
Students ¢-test, not significant (N.S.).

c¢BMSC sheets, indicating no adverse effects of using freeze-thawed cBMSCs (Fig. 5b). We further evaluated the
actual protein production from harvested cell sheets by replating detached cell sheets onto insert wells, incu-
bating for 3 days, and collecting the media supernatant for ELISA assay. HGF concentration was significantly
higher in freshly harvested cBMSC sheets at 1 and 2 days, but no differences were seen at 3 days (Fig. 5¢). In
contrast, VEGF concentration was significantly higher (around 2-fold higher) in freeze-thawed cBMSC sheets
at each timepoint (Fig. 5¢). No differences in IL-10 concentration were observed. These findings suggest that
using freeze-thawed cBMSCs is a promising method to rapidly produce cell sheets with equivalent production
of therapeutically relevant pro-regenerative cytokines to freshly harvested cBMSC sheets. This strategy could
prove useful to suppress renal fibrosis, as shown in the rat IRI model previously'”*2.

Freeze-thawed cBMSC sheet transplantation in a rat ischemia—-reperfusion injury (IRI) model
to evaluate cell sheet therapeutic effects on acute renal fibrosis.  The efficacy of allogeneic freeze-
thawed ¢cBMSC sheets in preventing/treating renal fibrosis was determined previously by transplantation of
freshly harvested rat BMSC sheets'” and cBMSC sheets*? using a published acute renal fibrosis rat IRL In this
study, to evaluate therapeutic efficacy of freeze-thawed cBMSC sheets, freeze-thawed GFP-labeled rat cBMSC
sheets were fabricated by seeding cells onto TRCDs using the same established method as the human freeze-
thawed cBMSC sheets. Sheet GFP fluorescent signal was observed in Fig. 6a,b just prior to kidney transplanta-
tion. The average diameter of freeze-thawed rat cBMSC sheets is analogous to sheets prepared from human
BMSCs (approx. 1 cm, compare Figs. 5, 6), as shown in Fig. 6b. Freeze-thawed rat cBMSC sheets were trans-
planted directly to the renal capsule of the IRI kidney, as shown in Fig. 6b. Visualization of the cell sheet via GFP
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Figure 4. Actin organization and focal adhesion formation in freshly harvested and freeze-thawed human
clonal BMSCs. (a—c) Fluorescent images of freshly harvested and freeze-thawed clonal BMSCs at 3-, 5-,
24-h incubation after seeding respectively. Scale bars represent 50 pm. (d) Cell area measurements of freshly
harvested (orange) and freeze-thawed (blue) clonal BMSCs. Data shown are mean +SD (n=4). Statistical
significance: Student’s ¢-test, not significant (N.S.) *P<0.05. (e) Cell elongation measurements of freshly
harvested (orange) and freeze-thawed (blue) clonal BMSCs. Data shown are mean +SD (n=4). Statistical
significance: Students ¢-test, not significant (N.S.) *P<0.05.

signal confirmed that transplanted cell sheets covered the entirety of the dorsal side and stably adhered to the
kidney surface (Fig. 6b). On day 28 post-surgery, the kidneys were harvested for histological analysis. Disease
progression of renal fibrosis was determined by ECM deposition and assessed using periodic acid-Schiff (PAS)
and Masson’s trichrome (MT) staining (Fig. 6d). The rat IRI model without cell sheet transplantation (con-
trol, disease) group exhibited increased fibrotic area (indicated by the black arrowheads in Fig. 6d) compared
to the cell sheet transplantation group. To quantify fibrotic components in respective kidneys, we investigated
gene expression levels of fibronectin (FN1I), collagen type 1 (COLIA1, COLIA2), and collagen type 3 (COL3).
Importantly, expression levels of fibronectin (FNI) and collagen type 1 (COL1AI, COL1A2), common fibrotic
tissue makers, were lower in the freeze-thaw ¢cBMSC cell sheet transplantation group compared to IRI-only
group (no cell sheet transplantation) (Fig. 6e). Additionally, collagen type 3 (COL3), a renal fibrosis marker, was
significantly lower in the freeze—thaw cell sheet transplantation group compared to the IRI-only group (Fig. 6e).
These findings suggest that allogeneic freeze-thawed cBMSC sheet transplantation suppresses renal fibrosis in
the rat IRI model, demonstrating feasibility to address human fibrotic disease pathology, as indicated by reduced
fibrotic areas.

Discussion

Currently, there are many clinical trials investigating various uses of allogeneic MSCs to treat human disease
and in regenerative medicine. However, unreliable critical quality attributes, lack of potency standards, insuf-
ficient product validation, and costly cell manufacturing costs remain critical barriers to clinical advancement
of MSC-based cell therapies**™°. Progress with allogeneic MSC therapies requires improved, sustainable cell
banking systems and efficient, cost-effective production methods that reliably and consistently yield a validated,
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Figure 5. Cell sheet preparation using freshly harvested and freeze-thawed human clonal BMSC sheets as
prepared in 24 h and comparison of cytokine production. (a) Macroscopic images of freshly harvested and
freeze-thawed clonal BMSC sheets at the seeding densities of 4 x 10° and 1x 10° cells/dish. Scale bars represent
500 mm. (b) Gene expression levels of HGF, VEGF, FGF2, IL10, and FN1 in freshly harvested (fresh, orange)
and freeze-thawed (freeze, blue) clonal BMSC sheets. Data shown are mean +SD (n=4). Statistical significance:
Student’s ¢-test, not significant (N.S.) *P<0.05. (c) Measurements of released cytokine amounts from freshly
harvested (orange, n=5) and freeze-thawed (blue, n=4) clonal BMSC sheets. Data shown are mean+SD (n=4
or 5). Statistical significance: Student’s t-test, not significant (N.S.) **P<0.01.

potent cell therapy product. In this study, to reduce MSC sheet production time, we employed cryopreserved,
freeze-thawed cBMSCs to shorten key cell sheet production steps from several weeks to 24 h (Fig. 5), facilitating
urgent or emergency off-the-shelf use.

Freeze-thawed MSCs are the preferred cell preparation in clinical settings due to the convenience and acces-
sibility, contributing to clinical and economic benefits'**>*%*"52 However, clinical translation of freeze-thawed
MSCs remains stalled by inconsistent efficacy, attributed to inappropriate optimization and criteria in using
and validating properties of freeze-thawed cells'®*”>53, Evaluation of GvHD clinical trial outcomes, defined as
the loss of all symptoms or improvements against acute GYHD>, shows that patient benefits are doubled when
using freshly isolated, non-cryopreserved MSCs cultured up to four passages compared to clinical studies using
freeze-thawed MSCs*. Although general MSC phenotypic indicators, such as surface antigen expression and
tri-lineage differentiation potency, are well-preserved in freeze-thawed MSCs****, low cell viability and impaired
blood regulatory properties have been described following freeze-thaw cycles***2. MSC immunomodulatory
properties are also reported to be impaired after cryopreservation®***%* but can be rescued when exposed to
IFN-y for a 24-h culture®. Analogous IFN-y priming of human ¢cBMSCs to improve immunomodulatory factor
productions in cell sheets similar to those reported here has recently been reported™.

In contrast to previous studies evaluating cryogenically preserved MSCs!**>36°1:52 we have successfully engi-
neered cBMSC sheets from freeze-thawed cells in 24 h with in vitro cytokine production comparable to freshly
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Figure 6. Therapeutic effects of rat freeze-thawed GFP-labeled clonal BMSC sheets in rat IRI model. (a)
Macroscopic and fluorescent images of GFP-labeled rat freeze-thawed clonal BMSC sheets at 0-day harvest
prior to cell sheet in vivo transplantation. Scale bars represent 500 um. (b) Hematoxylin and eosin staining and
GFP immunohistochemistry staining of rat freeze-thawed clonal BMSC sheets. Scale bars represent 50 pm. (c)
Macroscopic and fluorescent images of cell sheet transplantation and attachment on rat kidney at 0-day cell
sheet in vivo transplantation. (d) Periodic acid-Schiff (PAS) and Masson’s trichrome staining. Black arrows
indicate thick basement membrane. White arrows indicate fibrotic component deposition. Scale bars represent
50 um. (e) Gene expression levels of fibrotic markers (Fnl, Col3, Col1A1, Coll1A2) in kidneys collected from
native (n=3), IRI (n=8), and IRI + freeze-thawed cBMSC sheet transplantation (n==8) groups. Statistical
significance: one-way ANOVA, Tukey’s multiple comparisons, not significant (N.S.) *P<0.05, and **P<0.01.
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harvested cBMSC sheets (Fig. 5). This finding is different from previous contrasting studies reporting impaired
functionality of freeze-thawed MSCs as single cells'®*>**152, Furthermore, freeze-thawed cBMSC sheets demon-
strate the therapeutic capacity to reduce renal fibrosis in a rat IRI kidney disease model (Fig. 6), similar to non-
cryopreserved MSC sheets, as previously reported'”#%. Thus, cell sheet technology may overcome the common
disadvantages of freeze-thawed single cell MSC formulations as used in previous studies!®*>?¢°132 Qur prior
reports of cell sheet technology demonstrate that the MSC sheet three-dimensional (3D) structure enhances
cytokine production compared to both single cells?® and 2D monolayer cultures before sheet detachment from
cell cultureware?'. Given supporting cell sheet data from these past studies, intrinsic three-dimensionality of
freeze-thawed cBMSC sheets is reasonably inferred to contribute to production of multiple therapeutic cytokines
(compare Figs. 5 and 6) and immunomodulatory factors® that drive forward their therapeutic utility in kidney
fibrosis models'”*2.

Additionally, we found that freeze-thawed cBMSCs, compared to freshly harvested cBMSCs, exhibit greater
initial cell adhesion and cell spreading ability after plating (t=15 min) (Fig. 3a,b, supplemental Figure S1).
Similarly, Pollock et al. showed that MSC cryopreservation in DMSO does not affect cell adhesion ability at 2 h
post-plating®. However, MSCs incubated for 1-h in DMSO before freezing, exhibited a significantly reduced cell
adhesion ability without affecting cell viability®®. We believe this heightened cell spreading ability correlates to
the observed improved rapid (24 h) cell sheet formation, enabling flexible cell sheet production from multiple
different seeding densities ranging from low (0.4 x 10° cells) to high (1 x 10° cells) seeding densities per 35-mm
TRCD dish (Fig. 5a). Cell adhesion molecule, ITGBI, expression was unchanged after freeze-thawing (Fig. 3¢).
Chinnadurai et al. showed that cell surface expression of adhesion molecules tetraspanin (CD63), integrin alpha
V (CD51), MHC class I (HLA-ABC), integrin beta 1(CD29), integrin alpha 4 (CD49d), integrin alpha IIb (CD41),
ICAM 1 (CD54), integrin beta 3 (CD61), and integrin alpha 5 (CD49e¢), do not differ between non-cryopreserved
and freeze-thawed MSCs*. Taken together, this study shows that freeze-thawed cBMSCs possess greater initial
cell adhesion ability compared to freshly harvested cBMSCs (Fig. 3a,b) while expression of cell adhesion molecule
ITGBLI is comparable (Fig. 3¢)**%.

Increased cell spreading rate of freeze-thawed cBMSC, shown in Fig. 3, may be related to actin fiber forma-
tion associated with cell adhesion. Pollock et al.**** and Chinnadurai et al.**** demonstrate reduced formation
of polymerized long-form actin stress fibers, F-actin, and elongated cells after freeze-thawing, also corroborated
by our data (Fig. 4a—c). Instead of long-form actin fibers, freeze-thawed cBMSCs possess short-form actin fibers
usually involved in early stages of cell adhesion (Fig. 4a-c), nascent adhesion, known as non-muscle myosin
II-independent adhesion during cell spreading®->’. Notably, previous studies showed that mature, long actin
fibers are implicated in focal adhesion contractile forces, reducing rates of cell spreading®-%2 Therefore, it is
reasonable to suggest that freeze-thawed cBMSCs exhibit enhanced cell spreading using short-form actin fibers,
without mature actin fibers, compared to freshly harvested cBMSCs, advantageous for rapid cell sheet produc-
tion. Additionally, due to lack of observed mature actin fibers in freeze-thawed cBMSCs, sizes of freeze-thawed
cBMSC sheets are slightly larger, attributed to impaired actin fiber formation and thus reducing cell sheet con-
tractile forces?"®* after cryopreservation without diminishing the sheet’s transplantability (Figs. 5a, 6¢). Despite
the observed lack of mature actin formation after freeze-thawing (Fig. 4)*>*, the actin reorganization pathway
is reported to be upregulated in freeze-thawed cells™, a likely reason for why they adequately recover from cryo-
induced stress and proliferate well after culture, as shown in Fig. 2b,c.

Variable MSC quality and biodistribution induced by freeze-thaw cycles reduces consistent and reliable cell
systemic administration, complicating treatment of localized diseases and likely contributing to inconsistent
and often insufficient therapeutic effects!'®0>36:3851.52 When MSCs are treated with cytochalasin D, a disruptor
of actin fiber formation similar to that observed in freeze-thawed MSCs (Fig. 4), MSC in vivo biodistribution
changes, instead engrafting largely in the lung and colon after systemic infusion and intraperitoneal injection,
respectively®®*®*8, Lack of actin fibers and unpredictable biodistribution of freeze-thawed MSCs may be respon-
sible for insufficient clinical outcomes after systemic administration of freeze-thawed cBMSCs'**. In contrast,
retention of topically transplanted cell sheets is reported in many preclinical models of disease®?. Cell sheets
directly adhere and stably engraft to, and are retained on, targeted tissue sites spontaneously without suturing'”'8.
Cell sheet transplantation, a local MSC delivery method without systemic administration challenges, may over-
come current issues associated with freeze-thawed cell suspensions to facilitate broader future clinical utility.

Conclusions

This study reports successful MSC sheet production using long-term culture-adapted human and rat cBMSCs in
both freshly harvested and freeze-thawed conditions. The high intrinsic cell spreading ability of freeze-thawed
cBMSCs relates to accelerated cell sheet formation without compromising in vitro cytokine production and thera-
peutic ability to suppress renal fibrosis formation in vivo. Most investigators have focused on the disadvantages
of freeze-thawed cells such as impaired immunomodulatory properties®>*® and biodistribution®****. In this
study, however, we show that cell sheet technology can overcome these limitations by fabricating cBMSC sheets
generated directly from cryo-banked passaged stocks. Based on our recent reports showing immunomodulatory
properties for cBMSC sheets™ and demonstrating therapeutic cBMSC sheet efficacy in the rodent IRI kidney
fibrosis model*?, we combined with the unique cBMSC sheet properties shown in this current study herein involv-
ing cryo-banked cell revival, expansion, rapid and reliable sheet formation and therapeutic cytokine production
all fit a consistent picture for feasible future off-the-shelf, consistent clinical applications. This study proposes the
strategic combination of clinical grade, long-term culture-adapted clonal BMSCs and cell sheet technology to
improve therapeutic properties and promote further clinical translation of freeze-thawed MSCs. These findings
represent an important first step for initiating use of rapidly fabricated cell sheets from freeze-thawed MSCs to
treat renal fibrosis and possibly other organ pathologies in the future.
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Materials and methods

Preparation of freshly harvested and freeze-thawed cBMSCs. Human clonal BMSC cell lines were
provided by SCM Lifescience (Republic of Korea) for this study as reported®'. Briefly, human bone marrow
aspirate was mixed with growth media [Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific,
11885076) supplemented with 20% Fetal Bovine Serum (FBS, Thermo Fisher Scientific, 16000044), 0.05% Myco-
Zap Prophylactic (Lonza, VZA-2023), 1% penicillin streptomycin (Thermo Fisher Scientific, 15140163)] and cul-
tured at 37 °C, 5% CO, in a culture incubator for isolation of single-cell derived clonal BMSC cell line using their
patented Subfractionation Culturing Method (SCM)*'. Isolated human ¢BMSCs (clonal cell line: A106 D127,
SCM Lifescience, Korea) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Scien-
tific, 11885076) supplemented with 10% Fetal Bovine Serum (FBS, Thermo Fisher Scientific, 16000044), 0.05%
MycoZap Prophylactic (Lonza, VZA-2023), 1% penicillin-streptomycin (Thermo Fisher Scientific, 15140163)
at 37 °C, 5% CO,. Expanded cBMSCs were then collected using 0.05% trypsin EDTA (Thermo Fisher Scientific,
25200114), centrifuged at 210xg for 5 min, and resuspended in STEM-CELLBANKER cryogenic media (Ams-
bio, 11890) to establish working cell banks. cBMSCs in cryogenic media were then put in a freezing container
(Corning, 432007) for 2 days at — 80 °C before being moved to a liquid nitrogen tank. Working cell banks were
produced at both passage 8 (P8) and 10 (P10) (Fig. 1). Total cell number, cell viability, and doubling times of cul-
tured cBMSCs were determined by trypan blue staining (MilliporeSigma, 72-57-1) and hemocytometers. MSC
phenotypic validation of P10 cBMSCs was performed by cryopreserved ¢cBMSCs at P8, culturing to P10 and
testing for tri-lineage differentiation potential (osteogenesis, adipogenesis, and chondrogenesis), and surface
antigen expression, CD73 + (BioLegend, 344014), CD90+ (BioLegend, 202507), CD105+ (BioLegend, 323208),
CD44+ (BioLegend, 338808), CD34— (BioLegend, 343521), CD31- (BioLegend, 303110), CD45— (BioLegend,
304021) using flow cytometry (BD, Canto) (Supplemental Figure S1).

Cell sheet preparation using freshly harvested and freeze-thawed cBMSC stocks. Freshly har-
vested cBMSC sheets were prepared by reviving cryopreserved cells from a P8 working cell bank in a 37 °C
water bath more than 20 min, collecting the cells in a pre-warmed cell culture medium, and centrifuging at
210xg for 5 min. P8 ¢cBMSCs were then seeded onto conventional cell culture flasks (CELLTREAT, 229351)
and passaged twice prior to seeding harvested cells at P10 onto 35-mm temperature-responsive culture dishes
(TRCDs, Thermo Fisher Scientific, 03150025) (Fig. 1). Freeze-thawed cBMSC sheets were prepared by reviving
cryopreserved cells from the P10 working cell bank and seeding them directly onto a 35-mm TRCD without
prior cultivation (Fig. 1). Both freshly harvested and freeze-thawed cBMSC sheets were prepared on TRCDs at
seeding densities of 4 x 10° and 1 x 10° cells/dish and cultured for 24 h at 37 °C, 5% CO, incubator in cell culture
medium comprising DMEM (Thermo Fisher Scientific, 11885076) supplemented with 10% FBS (Thermo Fisher
Scientific, 16000044), 0.05% MycoZap Prophylactic (Lonza, VZA-2023), 1% penicillin-streptomycin (Thermo
Fisher Scientific, 15140163), and 50 ug/ml of L-ascorbic acid phosphate magnesium salt n-hydrate (Fujifilm
Wako Pure Chemical, 013-19641).

c¢BMSC in vitro adhesion assay. To investigate cell adhesion abilities under culture, single cell prepara-
tions of each experimental cBMSC group (i.e., freshly harvested and freeze-thawed stocks) were seeded onto
35-mm tissue culture treated dishes (CELLTREAT, 229635) at a seeding density of 5x10* cells/dish. After
15-60 min, dishes were washed with PBS twice to remove any non-adherent cBMSCs and determine the num-
ber of adherent cells by counting the remaining adhered cells using phase contrast microscopy images (Zeiss,
AXIOVert.Al, 5 random positions in each sample, n=4). Additionally, adhesion rates of freshly harvested and
freeze-thawed cBMSCs after seeding were observed using time-lapse imaging (Olympus, IV-83: n=3) using a
stage-top incubator (Tokai Hit, INU) and counting the number of adherent cells on 35-mm tissue culture treated
dishes. Additionally, the gene expression of integrin 1 was examined at varying time points during cell adhe-
sion and spreading. cBMSC were seeded onto 100-mm diameter dishes at 5000 cells/cm? and incubated for 15,
30, and 60 min. After incubation, the dishes were washed with PBS twice, and total RNA was collected using
RNeasy mini kits (Qiagen, 74104). cDNA synthesis was performed with 1 pg of total RNA using a High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific, 4368814). Gene expression was examined by quan-
titative Real-Time PCR (qQRT-PCR) using TagMan" Gene Expression Assays (Thermo Fisher Scientific: ITGBI;
Hs01127536_m1), normalized to expression of the internal control gene, B2M, and compared between freshly
harvested and freeze-thawed cBMSC sheets.

Fluorescent microscopy analysis of cell actin fiber formation and focal adhesion molecule
localization. Freshly harvested and freeze-thawed cBMSCs were each seeded onto FBS-coated chamber
slides (CELLTREAT, 229164) at a seeding density of 2000 cells/cm? to observe single cells, and incubated for 3,
5,and 24 h to follow their adherent cell morphology and focal adhesion formation using phalloidin and the focal
adhesion marker, vinculin. At each time point, incubated cells were washed with PBS and fixed with 4% para-
formaldehyde (PFA) for 10 min. Samples were then incubated with 5% goat serum (Jackson Immunoresearch,
005-000-121) and 0.1% Triton X (Sigma-Aldrich, T8787) in PBS for 1 h at room temperature, followed by incu-
bation with primary antibody, anti-human vinculin (MilliporeSigma, V9131), for 2 h at room temperature. After
washing with PBS for 30 min, samples were incubated with secondary antibody, anti-mouse IgG Alexa Fluor
568 (Thermo Fisher Scientific, A-11004), and Alexa Fluor 488 phalloidin (Thermo Fisher Scientific, A12379) for
1 h at room temperature. Stained samples were mounted with ProLong™ Gold Antifade Mountant with DAPI
(Thermo Fisher Scientific, P36935). Images were taken by a fluorescent microscope (Zeiss, AXIOVert.Al: 5 ran-
dom positions in each sample, n=4), and fluorescent signal areas were quantified by Image J (National Institutes
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of Health). Feret’s diameters, a measure of the longest and shortest diameter of adherent cells, were measured by
image J to quantify cell shapes*>*. Error bars indicate standard deviations.

Cytokine production analysis. Total RNA from cBMSC sheets was collected, and cDNA synthesis was
performed as described above. Gene expressions were examined by qRT-PCR using TagMan’ Gene Expression
Assays (Thermo Fisher Scientific: B2M; Hs00187842_m1, HGF; Hs00379140_m1, VEGFA; Hs99999070_m1,
FGF2; Hs00266645_m1, IL10; Hs00961622_m1, FN1; Hs01549976_m1), normalized to the expression level of
the internal control gene, B2M, and compared between freshly harvested and freeze-thawed cBMSC sheets. In
addition, specific protein production was measured by evaluating protein concentrations in the media using
ELISA (R&D Systems; Human HGF Quantikine ELISA Kit; DHG00B, Human VEGF Quantikine ELISA Kit;
DVEO00, Human IL-10 Quantikine ELISA Kit; D1000B). To investigate cytokine release from fabricated cell
sheets detached freshly harvested and freeze-thawed cBMSC sheets were replated onto 6-well inserts and incu-
bated for 3-days in cell culture media with supernatant collection each day.

Freeze-thawed rat BMSC sheet transplantation in rodent kidney IRl model. Rat cBMSCs
derived from SDTg (CAG-EGFP) rats were provided by SCM Lifescience (Republic of Korea) and confirmed
for rat MSC phenotype by tri-lineage differentiation and surface maker expression of CD90+, CD29+, MHC
class II-, CD11-, and CD45- at P5. Rat freeze-thawed cBMSC sheets derived from SDTg (CAG-EGEFP) rats
were prepared following protocols identical to the human freeze-thawed cBMSC sheets described above. The rat
kidney fibrosis model study was conducted under approval of the Animal Care & Use Committee, IACUC, Uni-
versity of Utah (assigned ID: 19-03011). All experiments were conducted in accordance with relevant guidelines
and regulations. Study procedures were reported previously for the rat BMSC sheet transplantation model/,
except in this study, the renal capsule remained intact, and no right kidney nephrectomy occurred*?. Briefly,
Lewis rats (6-week-old, males, Charles River Laboratories) were acclimatized in facilities for one week and ran-
domly divided into three groups: (1) native tissue (n=3), (2) IRI procedure without freeze-thawed cBMSC sheet
transplantation (n=8) and (3) IRI with freeze-thawed cBMSC sheet transplantation (n=8), with no animal
exclusions. Under isoflurane anesthesia, the IRI model was performed by clamping the left renal pedicle for
60 min. Allogeneic rat cBMSC GFP-cell sheets were transplanted onto the intact left renal capsule; transplanted
cell sheets covered the kidney dorsal side and stably adhered to the entire kidney surface without suturing. At
4-weeks post-surgery, all kidneys were collected for histological analysis using periodic acid-Schiff (PAS) and
Masson’s trichrome (MT) staining to evaluate excess extracellular matrix deposition indicative of acute renal
fibrosis. Additionally, the renal parenchymas were collected from each rat for gene expression analysis to evalu-
ate fibrotic marker expression. Tissue homogenization by forceps mincing and syringing allowed total RNA
extraction using RNeasy Fibrous Tissue Mini Kits (Qiagen; 74704). cDNA synthesis was performed as described
above. Gene expression was examined by qRT-PCR using TagMan" Gene Expression Assays and normalized to
expression levels of the internal control gene, B2m, and compared between freshly harvested and freeze-thawed
c¢BMSC sheets. One surgical and non-surgical, blinded, operators performed analysis separately. All procedures
were performed in accordance with ARRIVE guidelines.

Statistical analysis. All statistical analysis for in vitro experiments was conducted with data sets of n=4
(Figs. 2, 3, 4, 5b) and n=4 or 5 (Fig. 5¢) using unpaired, two-tailed, Student’s ¢-test. Different statistical analysis
for in vivo experiments was conducted with data sets of native (n=3), IRI (n=38), IRI+ freeze-thawed cBMSC
sheet transplantation (n=_8) groups (Fig. 6e). Statistical analysis was conducted by one-way ANOVA, with Tuk-
ey’s multiple comparisons. Statistical significance was defined as **P <0.01, *P <0.05 and not significant (N.S.)
P >0.05 using GraphPad Prism (http://www.graphpad.com).

Data availability

Data sets generated in this study are available from the corresponding author upon reasonable request.
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