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Identification of protein—protein interactions (PPI) is among the critical problems in the domain of
bioinformatics. Previous studies have utilized different Al-based models for PPI classification with
advances in artificial intelligence (Al) techniques. The input to these models is the features extracted
from different sources of protein information, mainly sequence-derived features. In this work, we
present an Al-based PPl identification model utilizing a PPl network and protein sequences. The PPI
network is represented as a graph where each node is a protein pair, and an edge is defined between
two nodes if there exists a common protein between these nodes. Each node in a graph has a feature
vector. In this work, we have used the language model to extract feature vectors directly from protein
sequences. The feature vectors for protein in pairs are concatenated and used as a node feature vector
of a PPl network graph. Finally, we have used the Graph-BERT model to encode the PPI network
graph with sequence-based features and learn the hidden representation of the feature vector for
each node. The next step involves feeding the learned representations of nodes to the fully connected
layer, the output of which is fed into the softmax layer to classify the protein interactions. To assess
the efficacy of the proposed PPl model, we have performed experiments on several PPl datasets. The
experimental results demonstrate that the proposed approach surpasses the existing PPl works and
designed baselines in classifying PPI.

Proteins are essential to all living species as they are involved in every cellular process and function. All pro-
teins are made up of twenty standard amino acids (AAs), considered the building blocks of proteins, which are
arranged differently for different proteins. How these amino acids are arranged for each protein decides each
protein’s function. Mostly, proteins need a partner to work with, such as proteins, DNA, or RNA. The function-
ality of a protein in a cell is constrained if it exists alone, but when all the necessary proteins are present, they
cooperate to perform their functions. protein-protein interactions (PPI) happen when two or more proteins
have physical contact due to some biochemical events or communicate through a signaling process'. Through
these interactions, proteins control and assist various cellular functions, and biological processes, including cell
signaling, cellular transport, muscle contraction, catalytic activity, DNA transcription, and replication®*.

The thorough study of PPI has aided in modeling functional pathways to demonstrate the molecular mecha-
nisms of cellular processes and in discovering drug targets*. As PPI involves more heterogeneous processes, it is
necessary to identify and analyze the consequences of those interactions to gain a deeper understanding of their
significance in the cell. Collecting a good amount of PPIs data for various species has become more accessible
due to large-scale experimental PPIs detection technologies like yeast two-hybrid (Y2H) screens, tandem affinity
purification (TAP), mass spectrometric protein complex identification (MS-PCI), and other high-throughput
biological techniques. Despite significant efforts to uncover PPIs, there is still a considerable gap between PPIs
identified through experiments and PPIs found in nature. Experimentally identified PPIs cover only a small
percentage of PPI networks. The rationale is that the entire PPI network cannot be explored using these experi-
mental methods for PPI detection due to their costs and time requirements. Additionally, because the output is
affected by the experimental setting and device resolution, there is a high rate of false positives and negatives in
the PPI data obtained using these methods®. Therefore, high-throughput computational approaches are essential
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for identifying protein interactions. These computational-based techniques, when used in conjunction with
experimental methods, also enhance the quality and accuracy of PPI prediction®.

Intelligent computational approaches based on ML/DL are urgently needed to automate the identification
and analysis of the interactions between proteins. Many computational techniques have been introduced to
investigate PPI networks in organisms, using different protein information types, such as protein sequence,
structure, gene co-expression, gene ontology, etc. Sequence-based features are widely utilized to identify the
interactions between proteins among these sources of protein information due to their ease of availability’. The
sequence-based features can be categorized into two categories: manually crafted features and auto-engineered
features. The former method requires background biological knowledge to convert the symbolic representation
of protein sequences into real-number feature vectors, whereas the latter method does not need any background
knowledge. Most of the previous studies for PPI prediction have used manually crafted features as the initial fea-
ture vector, which are fed into the deep learning models to capture relevant features from the raw features. Some
researchers have recently devised techniques that provide fixed-length embeddings (per-protein and per-residue)
for variable-length protein sequences®. The idea is to view each amino acid protein sequence as a sentence and
each amino acid as a character or word. The language models from the NLP domain are borrowed and gener-
ate the embeddings for sequences with some modifications to handle the large length of amino acid sequences.

A recent trend has seen graph neural networks picking up pace and becoming an essential tool in graph-based
applications. For example, Huang et al.? have used graph convolution to identify the associations between miRNA
and drug resistance. The problem is constructed as a link prediction problem to predict their associations. Graph
neural network-based approaches have been proposed to address other problems, such as chemical stability
prediction’, protein interface prediction!!, protein interaction prediction'?, protein solubility prediction’®, and
to model the adverse effects of polypharmacy'. Yang et al.'* have proposed a model for PPI prediction utilizing
PPI network topology as a graph and the conjoint-triad (CT) method to get the node’s features. In a PPI network
graph, each node represents a protein, and an edge defines the relationship between protein pairs (interacting
or non-interacting). Authors have used a signed variational graph auto-encoder (S-VGAE), which employs
graph convolution layers, to learn the hidden or compact representations of nodes. The learned representation
of proteins in pairs is concatenated and fed into the neural network classifier to predict PPL

All the above-mentioned studies solving different biomedical problems have used graph convolutional net-
works (GCN)'®. The existing graph neural network variants, including graph convolutional networks, may suffer
from the problems of suspended animation'” and over-smoothing'® because of the overreliance on the graph
links. To address these issues, the Graph-BERT model" based on attention mechanisms?**?! has been proposed,
in which training is done by sampling nodes with their context, known as linkless subgraphs, from the input
graph. In this work, we present a framework that employs the Graph-BERT and SeqVec language model** to
predict PPI more effectively.

The contributions of our proposed work are listed below:

® We devise the PPI prediction problem as a node classification problem by building a graph where each node
represents a protein pair and an edge defines the relationship between two pairs if there is a common protein
between them.

®  We develop a framework utilizing the Graph-BERT model to learn the hidden representations of graph nodes
by focusing on linkless subgraphs instead of a complete input graph and SeqVec language model to generate
embedding for each node in a graph.

® We demonstrate that the proposed graph-based approach to predicting PPI is better than the existing graph-
based approach®.

Related works

So far, several computational approaches have been put forth to categorize the interactions between proteins.
Sarkar and Saha?® have reviewed the computational methods employing machine learning algorithms such as
SVM, naive bayes, decision tree, and random forest, along with the different sources of protein information that
are input to these algorithms. SVM is the most widely used machine learning algorithm to predict PPI among
these algorithms?*~?’. Later, some studies have shown that the random/rotation forest-based approaches perform
better than the popular SVM-based PPI methods?%.

With technological advances, researchers have started using deep learning algorithms to predict PPI and
achieved better results than conventional machine learning-based approaches. For example, Wang et al.*, and
Sun et al.*! have employed a stacked auto-encoder to learn the hidden or compact representation of input features,
which are derived from protein sequences. Patel et al.**, and Zhang et al.** have devised the protein interaction
prediction tool named as DeepInteract and EnsDNN, respectively, both employing the deep neural network
(DNN). In order to extract information from the protein sequence, Wang et al.** have proposed a sequence-
statistics-content (SSC) protein sequence encoding format. A 2D convolutional neural network is then used to
predict the PPI utilizing SSC. All the studies discussed above have used hand-engineered or manually crafted
features as inputs to the classifiers. The rapidly developing deep learning technique that enables automatic feature
engineering is having immense success in numerous fields. Some studies on PPI have also used auto-engineered
features. For instance, Li et al.*® have presented a framework utilizing a deep neural network, DNN-PPI, which
considers features learned from protein sequences automatically to predict PPI. In this framework, the sequences
of two interacting proteins are input to the two separate sequential layers of encoding, embedding, convolutional
neural networks (CNN), and long-short-term memory (LSTM). The two outputs from the LSTM layer are
then merged and fed into a dense layer to predict labels. Gonzalez-Lopez et al.* have suggested using an embed-
ding technique with a recurrent neural network-based architecture to predict interactions directly from protein
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Dataset # Positive samples | # Negative samples
Human 36,545 36,323

E. coli 5576 4031

Drosophila 19,712 14,900

C. elegan 2877 1670

Table 1. Statistics of PPIs datasets.

sequences. Chen et al.’” have proposed a deep learning-based framework, PIPR, composed of convolutional
layers with pooling followed by bi-directional residual gated recurrent units. These two components are stacked
alternatively to extract local and global features. The input to the PIPR model is the pre-trained embeddings of
protein sequences.

The deep learning algorithms can handle high-dimensional data and capture hidden associations in data with
multi-modal distributions. Recently some studies on PPI*** have utilized multiple sources of protein informa-
tion such as protein sequence, 3D structure, and gene ontology. They have developed deep multi-modal PPI
models to predict the protein interactions utilizing different combinations of the available protein information.
They have used the latest deep learning algorithms to extract relevant features from these modalities. A living
organism’s PPI data (interacting and non-interacting) can also be defined graphically as a PPI network, where
nodes represent proteins and interactions between them are represented by edges. A graph-based deep learning
model has been developed by Yang et al.'® to predict protein interactions from PPI network topology. The authors
have used a signed variational graph auto-encoder to learn low-dimensional features from graph structure. The
conjoint-triad (CT) method, which belongs to the manually crafted sequence-based method, has been utilized
to get a node’s feature vector.

Current work is also a step toward utilizing graph-based neural networks to predict the interaction between
the proteins. We formulate the PPI prediction as a node classification problem, where each node represents a
protein pair (interacting or non-interacting). We have used the Graph-BERT model'? to learn the hidden repre-
sentation of the node’s feature vector obtained by the language model SeqVec? directly from protein sequences.

Materials and methodology

This section deals with the datasets that are used to substantiate the proposed approach, followed by the formula-
tion of PPI prediction as a node classification problem. The proposed approach to predict protein interactions
comprises three modules: protein sequence embedding; learning hidden representations of graph nodes using
a graph transformer model; and PPI classification using learned representations. This section discusses each
module in detail.

Datasets. The Pan’s human PPI dataset (http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm)*’containing
both positive and negative samples, has been used as a benchmark dataset to validate our proposed approach.
The HPRD (https://www.hprd.org/) dataset serves as the source for the interacting pairs. The non-interacting
dataset is comprised of non-interacting pairs from the negatome database*! as well as pairings of proteins from
different subcellular localizations. The Swiss-Prot database has information related to the proteins’ subcellular
localization. In this dataset, protein sequences with less than 50 amino acids and those with unknown amino
acids were excluded. The self-interacting protein pairs were also discarded from this PPI dataset.

We have also used the datasets of other species, such as E. coli, Drosophila, and C. elegan, provided by Guo
et al.*2 to evaluate the efficacy of the suggested approach. To create non-redundant PPI subsets of these species,
the CD-HIT program® has been used. A protein is discarded if its sequence identity is high (> 40%) or if it has
fewer than 50 amino acids. The characteristics of these datasets are tabulated in Table 1.

Problem definition. Given the PPI database and protein sequences, we build the graph Gp; = (V,E),
where V' = {P}3, P13, P23...} is the set of protein pairs (interacting and non-interacting) or nodes, and E is the set
of edges defined between two nodes if there is a common protein between them. The set of initial feature vectors
generated from protein sequences for all nodes v € V in a graph Gy,; built from the PPI network is represented
by X. The objective is to predict the labels for all nodes (protein pairs) in a graph using the learned low-dimen-
sional representations of nodes, which are passed through the fully connected (FC) layer followed by an output
layer (sofmax), expressed by Eq. (1):

Y = softmax(FC(Graph — BERT (X, E))) (1)

Protein sequence embedding. A protein’s amino acid sequence representation can be thought of as a
language. The concept is to view each protein sequence as a sentence, with each amino acid acting as a word or
character in the referred sentence. In order to model protein sequences, one can leverage the language model
developed for NLP tasks. In this work, protein sequences are encoded into useful feature vectors using the
SeqVec?? embedding technique. The SeqVec is context-dependent and is an adaptation of the bidirectional lan-
guage model ELMO (Embeddings from language models)*. The configuration of the model is similar to that of
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Figure 1. Illustration of the proposed approach.

the ELMO architecture with a few adjustments. Some of the changes made to the model include having a lesser
number of tokens and making sure there are more unrolling steps to handle a longer protein sequence length.
The number of tokens was reduced to 28. These are the following: 20 tokens for standard amino acids, 3 for
ambiguous or unknown amino acids, 2 for uncommon amino acids, 2 for marking the beginning and ending of
the sequence, and 1 for masking.

The SeqVec embedder consists of one character convolution (charCNN) layer*® followed by two bi-directional
LSTM layers. Without taking into account the information from nearby words, the charCNN layer, which is
the first layer, maps each amino acid of a protein sequence to a fixed-length (1024) latent space. The output of
the charCNN layer serves as the input to the following layer, which is the first bi-LSTM layer. By concatenating
512 from the forward pass and 512 from the backward pass, each bi-LSTM layer has a dimension of 1024. A
protein sequence of any length can be input to the ELMO-based SeqVec model, which is trained on UniRef50,
and two types of embeddings are produced: per-residue (word-level) and per-protein (sentence-level). A protein
sequence is first padded with <START> and <END> tokens to denote the beginning and end of the input before
being passed to the first layer (charCNN) of the embedder. The pre-trained embedder creates an embedding
of size (3, L, 1024) for an L length protein sequence by concatenating the outputs of three layers: one charCNN
and two bi-LSTMs. Each amino acid in the protein sequence is associated with a 1024-dimensional embedding
in each layer. The sum of the embeddings of the three layers yields the per-residue embedding. We obtain the
per-protein embedding of size 1024 by averaging the per-residue embeddings across the L length of the sequence.
As they generate uniform-length feature vectors for various-length protein sequences, we have used per-protein
embeddings as feature vectors for nodes in the PPI network graph.

PPl graph construction and classification. We have formulated the prediction of protein-protein
interactions using the PPI network and sequence-based features as a node classification problem. First, we built
the PPI network graph, where each node or vertex is a protein pair, and an edge is defined between two nodes if
there is a common protein between them, as depicted in Figure 1. In this work, we have used the SeqVec language
model to get a feature vector of size 2048 for each node, i.e., protein pairs. To learn low-dimensional features
from a graph and then classify the PPI, we have used the Graph-BERT model. The prime advantage of this model
is that it addresses both the suspended animation problem and the over-smoothing problem of other graph
neural networks, such as GCN. The reason is that Graph-BERT does not rely on graph links for representation
learning; instead, the model focuses on sampled linkless subgraphs. A suspended animation problem'” refers to
a situation where the GCN model stops responding to training data and becomes unlearnable when the depth
of the GCN model reaches a certain limit, known as the suspended animation limit. The GCN model is a variant
of Laplacian smoothing that combines the features of a vertex with those of its close neighbors. The main reason
GCNs s are so effective is the smoothing process, which makes the features of vertices in the same cluster similar
and significantly simplifies the classification task. The output features, however, may be over-smoothed'® if a
GCN is deep with multiple convolutional layers, making it difficult to distinguish between vertices from various
clusters. The working steps of the Graph-BERT-based approach are as follows:
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® The input to the Graph-BERT model is the PPI network graph with node features.

® Graph-BERT is trained using linkless subgraph batches sampled from the input graph rather than the entire
graph, Gp;. So, the next step is to perform the batching of linkless subgraphs. To control sample-related
randomness, the Graph-BERT model uses the top-k intimacy sampling strategy for samﬁ)lin the subgraphs
from the input graph. This sampling method is based on the graph intimacy matrix S € RIVI*IV], where entry
S(i, j) calculates the degree of intimacy between nodes, v; and v;. The intimacy score S is based on the PageR-
ank algorithm defined as: S =« - (I — (1 — @)AD~!)~. Here, « € [0, 1], AD™! is the column-normalized
adjacency matrix with A as the adjacency matrix and D as the diagonal matrix of A. The intimacy matrix S
defines the learning context for any target node v € V by covering both local neighbors of v and the nodes
far away.

e The next step is to prepare the input node vector embeddings, which cover four parts: 1. Raw feature vector
embedding is expressed as e* = Embed(x) € R%X1 converts the raw feature vector (x) of each node v in
subgraph g; into a shared feature space with dj, as dimension. Here, Embed represents the fully connected
layer for numerical input attributes. 2. Weisfeiler-Lehman (WL) absolute role embedding is expressed as:
e’ = Position_Embed(WL(v)). Here, WL(v) € N is the WL code for each node v based on the node’s struc-
tural roles in the graph data and is invariant for different sampled subgraphs as it is pre-computed using the
entire graph. The term Position_Embed is borrowed from Vaswani et al.?° to preserve positional information.
3. Intimacy-based relative positional embedding is expressed as: e/ = Position_Embed(P(v)) € Rx1 The
term P(v) is a positional index of node v and is different for different sampled subgraphs for the identical
node, v. By default, the P(v) is 0, and the nodes closer to v have a small positional index. 4. Hop-based relative
distance embedding is expressed as: e = Position_Embed(H(v,v')) € R%*!, The term H(v, V') represents
the relative distance of node v in subgraph g; in hops to v/ in the original input graph. The embedding e“ is
considered as the balance between the WL absolute role embedding and intimacy-based relative positional
embedding.

e The initial feature vector for node v in subgraph g; is calculated as:

K = aggregate(e, ¢, e, e?) ()

Here, the aggregate function is defined as the vector summation. This feature vector for all nodes in a sub-
graph g; is organized into a matrix, (H°), fed to the graph transformer-based encoder. This encoder updates
the nodes’ feature vector recursively with several layers (D layers). The output of the Iy, layer is defined as :

QK"

H' = softmax (===

fimax(~ =

where Q = HI_IWIQ; K = HI_IWIQ; V= Hl_IWC. Here, Wé, WII<, and Wf/ are the weight matrices for

query, key, and value, respectively. The term G_R(H'~", X;) denotes the graph residual term introduced by

Zhang et al."”. It enables each layer of the model to be fed with the nodes’ initial features (X;) or intermediate

representations (H'~!) to maintain the effective representations for the inputs. This term is added to overcome
the suspended animation problem. X; represents the raw features for all nodes in the subgraph, g;.

o The next step is the representation fusion, defined as z; = Fusion(HP). The function Fusion is the average of
representations of all nodes in the subgraph, g;. z; is the final representation for the target node, v;.

e The final step is to predict the label for each node in the graph. For that purpose, a functional component is

attached to the Graph-BERT transformer module. The input to that component is the learned representation,

(zi). The functional component is defined as y; = softmax(FC(z;)).

)V +G_RH", X)) 3)

Experimental setup. In this work, we have used the Graph-BERT (https://github.com/jwzhanggy/Graph-
Bert) model, which is trained on our PPI datasets using GeForce GTX 1080 as the computing infrastructure.
The deep learning libraries we need to run the code are pytorch (https://anaconda.org/pytorch/pytorch), sklearn
(https://anaconda.org/anaconda/scikit-learn), transformers (https://anaconda.org/conda-forge/transformers),
and networkx (https://anaconda.org/anaconda/networkx). Based on the literature', the values of the param-
eters are chosen as attention head number: 2, hidden layer number: D=2, hidden dropout rate: 0.5, attention
dropout rate: 0.3, subgraph size: k=7, learning rate: 0.001. During model training, the binary cross-entropy loss is
minimized with the help of Adam optimizer*®. The maximum number of epochs is chosen as 200 with an early
stopping method to reduce overfitting. The proposed architecture is trained using a standard 80:20 train-test
split training approach. The predictive capability of the proposed model is measured in terms of the parameters
including accuracy, sensitivity, specificity, precision, F-score, and MCC. We have also reported the average 5-fold
cross-validation results with standard deviation (Std. dev) values for all PPI datasets.

Results and analysis
Here, we analyze the results obtained by our method, which is followed by a comparison with previous studies
and some designed baselines.

Results on benchmark PPl dataset. The proposed graph-based approach is different from the existing
graph-based method' in three aspects: (1) Graph construction; (2) Node features; and (3) A graph-based neu-
ral network for learning low-dimensional features. The approach suggested by Yang et al.'® constructs a graph
where each node represents a protein, whereas in our case, each node represents a protein pair. We have used a
language model (auto-engineered) to generate the initial feature vector for each node, whereas previous work
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Model Accuracy | Sensitivity | Specificity | Precision | F-score | MCC
Modified S-VGAE 97.90 98.90 93.82 98.09 98.50 93.56
Proposed approach (ProtBert) 96.18 97.12 95.24 95.28 96.19 92.37
Proposed approach (SeqVec) 99.10 97.92 100 100 98.94 98.19

Table 2. Test set results on a benchmark human PPI dataset of baselines and the proposed approach.

Datasets Accuracy | Sensitivity | Specificity | Precision | F-score | MCC
C. elegan 99.44 99.83 98.78 99.30 99.56 98.80
Drosophila 99.98 99.96 100 100 99.98 99.96
E. coli 99.74 99.62 99.82 99.75 99.68 99.46

Table 3. Test set results on other PPI datasets of the proposed approach.

has used the conjoint-triad method (manually crafted). Last, we have used a transformer-based graph model
designed to address the problems of existing graph neural networks, whereas the previous work has used graph
convolutional neural networks, which may suffer from the problems of over-smoothing and suspended anima-
tion.

The test set results of the proposed approach are tabulated in Table 2 for the benchmark human PPI dataset
in terms of several evaluation metrics. We have designed some baselines to validate the correctness and effective-
ness of our approach. In baseline-1, also known as Modified S-VGAE, we have used the same model proposed
by Yang et al.”® [S-VGAE (https://github.com/fangyangbit/S-VGAE)] but changed the feature vector of nodes
with our features, i.e., obtained by the SeqVec method. Yang et al. have used the conjoint-triad (CT) method
to get each node’s feature vector. Results are reported in Table 2 (Modified S-VGAE). The designed baseline’s
accuracy, sensitivity, specificity, and precision are 97.90%, 98.90%, 93.82%, and 98.09%, respectively. To make
fair comparisons, we downloaded the code provided by Yang et al. and carried out experiments on the human
PPI dataset with different node feature vectors (Conjoint-triad-based and SeqVec language model-based). With
the CT-based feature vector and S-VGAE model, we achieve an accuracy of 97.07% (less than that reported by
Yang et al. in their paper), whereas an accuracy of 97.90% is achieved with language model-based features and
the S-VGAE model. As it is evident, the performance of the S-VGAE using language model-based node features
performs better than the CT-based features. The accuracy (99.10%) that we get by our method shows that the
SeqVec language model-based features and Graph-BERT together yield better results than the earlier graph-based
work?® to predict PPI. We have designed another baseline-2, which is similar to our proposed approach. The only
difference is that we have generated embeddings for protein sequences in baseline-2 using the ProtBert* language
model. This language model is trained on the BFD-100 dataset and has employed the BERT model?! to generate
the embeddings for protein sequences. The designed baselin€’s accuracy, sensitivity, specificity, F-score, and MCC
are 96.18%, 97.12%, 95.24%, 96.19%, and 92.37%, respectively, reported in Table 2 (Proposed Approach (Prot-
Bert)). As evident, the Graph-BERT-based PPI model utilizing the SeqVec language model embeddings performs
better than those using the ProtBert language model embeddings to categorize the protein-protein interactions.

Results on other PPl datasets. We have also validated the proposed approach’s effectiveness on other
PPI datasets, such as C. elegan, Drosophila, and E. coli. The test results on these datasets are presented in Table 3.
The accuracy and F-score of C. elegan, Drosophila, and E. coli PPI datasets are {99.44%, 99.98%, 99.74%}, and
{99.56%, 99.98%, 99.68%}, respectively. We have also presented the average of 5-fold cross-validation results
of the suggested method in Table 4 to check if the proposed approach is able to generalize a pattern in results
or not. The standard deviation values are presented inside parentheses. On training the proposed approach on
the combined dataset (C. elegan, Drosophila, and E. coli), we achieved a test accuracy of 94.79%, a specificity of
94.77%, and a sensitivity of 94.81%. All the results mentioned here are statistically significant. The Welch’s ¢-test*
at 5% significance level has been conducted, which gives the p value. We get p values < 0.05, which implies that
the improvement in results is statistically significant.

Datasets Accuracy Sensitivity | Specificity | Precision F-score MCC

Human 99.02 (0.13) 99.15(0.95) | 98.57 (1.19) | 98.94(0.88) | 99.04 (0.10) 98.00 (0.28)

C. elegan 9951 (0.05) | 99.20(0.59) |99.51(0.6) |99.72(0.33) |99.46(0.13) | 98.96(0.11)

Drosophila 99.99 (0.007) | 99.99 (0.01 100 (0.00) 100 (0.00) | 99.99 (0.007) | 99.99 (0.01)

)
)
)
)

E. coli 99.78 (0.09) 99.63 (0.12) | 99.89 (0.10) |99.85(0.14) | 99.74 (0.11) 99.55 (0.19)

Table 4. Average 5-fold cross-validation results with standard deviation values inside brackets on all PPI
datasets of the proposed approach.
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Model Accuracy | Sensitivity | Specificity | Precision | F-score | MCC
Sun et al.*! 96.82 - - - - -

Lietal® 98.36 97.68 - 98.89 98.23 96.72
Jha and Saha’® 97.20 98.07 95.04 97.99 98.03 93.16
Yang et al.'® 97.07 98.19 93.46 97.98 98.09 91.88
Jha and Saha® 97.52 98.20 95.92 98.26 98.23 94.07
Jha et al."? 98.13 98.84 96.18 98.62 98.73 95.20
Proposed approach | 99.10 97.92 100 100 98.94 98.19

Table 5. Performance comparisons of our approach with earlier approaches for Human dataset. Best values
are highlighted in bold.

Comparison with existing techniques. To date, a lot of studies have been conducted to predict PPI
employing artificial intelligence-based approaches. Following the state-of-the-art methods, we have divided the
whole dataset into a training set (80%) to train the model and a test set (20%) to evaluate the model’s perfor-
mance. Initial studies*****»*" utilizing sequence-based feature vectors and traditional machine learning-based
algorithms to learn relevant features have reported training accuracy ranging from 90 to 97.90% for the human
PPI dataset. Our approach’s training accuracy is more than 99.5% with an average test accuracy of 99.02%, which
indicates the superiority of our method over these traditional methods. We have also compared our work with
recent studies employing the latest deep learning algorithms such as stacked auto-encoder®, CNN and LSTM™,
graph-based approaches'>!*, and multi-modal PPI models***. The results are summarized in Table 5. In Table 5,
we have presented the test set results to make the comparisons between the suggested and previous studies, and
the report illustrates the superior performance that our model delivers over the older one and validates the cor-
rectness of our proposed approach. We re-implemented the graph-based approach (S-VGAE)" as the source
codes and PPI datasets are publicly available, and we have used the same PPI datasets to demonstrate our PPI
model’s performance. For the human PPIs dataset, the accuracy and MCC of the proposed approach are 2.09%
and 6.86% greater than those of the earlier graph-based approach'®. Table 6 reports the performance compari-
sons for other species in terms of accuracy. The tabulated results (Tables 5 and 6) prove the efficacy of the sug-
gested method over the existing methods.

Discussion. Current work to predict the interaction between proteins has highlighted two important aspects:
(1) Language model-based feature extraction needs to be explored more as it captures important features directly
from protein sequences. We have also shown that the SeqVec language-model-based features, with an accuracy
of 97.90%, perform better than the conjoint-triad-based features, which have an accuracy of 97.07%. (2) The
graph-based transformer model (Graph-BERT) outperforms its graph convolutional counterpart in learning
low-dimensional node features.

In our previous work'?, utilizing the molecular graph of proteins and residue-level features obtained by lan-
guage models, we have shown that the graph attention-based PPI model using SeqVec-based residue embeddings
performs better than those of ProtBERT-based embeddings. Current work has also shown the same pattern of
results. The proposed approach based on SeqVec-based protein embeddings (accuracy: 99.10%) outperforms
the PPI model based on ProtBERT-based protein embeddings (accuracy: 96.18%). In the future, we will explore
other language models to generate embeddings for protein sequences and analyze the results.

To further analyze the predictive capability of the proposed approach, we trained our model on imbalanced
datasets. We created the imbalanced datasets by randomly selecting interacting and non-interacting pairs in dif-
ferent ratios. The test results on the human PPI dataset, along with the chosen ratio (interacting:non-interacting),
are presented in Table 7. From these results, we can infer that the proposed approach performs well on imbal-
anced datasets as well. We also created imbalanced datasets with interacting and non-interacting samples in a 1:10
ratio to assess the proposed approach’s performance on skewed datasets of other species. The test set results are
presented in Table 8. Based on the sensitivity and specificity values reported in Tables 7 and 8, we can conclude
that our approach performs well on skewed datasets.

Species Proposed Yang et al." Lietal® Sun et al.>! Guo et al.”®
E. coli 99.74 95.61 95.94 93.23 95.28
Drosophila 99.98 96.71 98.38 93.48 96.23
C. elegan 99.44 94.69 98.66 97.86 97.32

Table 6. Performance comparisons of our approach with earlier approaches for other PPI datasets in term of

accuracy. Best values are highlighted in bold.
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Ratio | Accuracy | Sensitivity | Specificity | Precision | F-score | MCC
1:2.5 98.53 99.89 97.92 95.58 97.69 96.67
1:5 98.63 97.42 98.89 94.78 96.08 95.27
1:10 99.44 99.06 99.47 94.62 96.79 96.51

Table 7. Proposed approach’s test results for different ratios on human PPI dataset.

Species Accuracy Sensitivity Specificity Precision F-score MCC
C. elegan 99.18 99.99 99.11 90.62 95.08 94.77
Drosophila 99.96 99.66 99.99 99.99 99.83 99.82
E. coli 99.66 98.75 99.75 97.53 98.13 97.95

Table 8. Proposed approach test results for other PPI datasets with interacting:non-interacting ratio as 1:10.

Conclusion

In this work, we devise the PPI prediction problem as a node classification problem. Firstly, we build the protein
network graph using the PPI database and assign each node (protein pair) a feature vector. The feature vectors
are generated using the SeqVec language model from protein sequences. The Graph-BERT is used to learn the
low-dimensional embeddings for graph nodes, which are input to the fully connected layer (FC). The output of
FC is passed through the softmax layer to predict the PPI labels. The obtained results showcase the superiority
of the suggested approach over previous work, including the graph-based approach by Yang et al. (S-VGAE)".
The final improvements can be summarized under the following pointers: (1) On replacing the conjoint-triad-
based feature vector of the existing work (S-VGAE) with SeqVec language model-based embeddings (modified
S-VGAE), we could find the accuracy improving from 97.07 to 97.90%. ( 2) By reformulating our problem as a
node-classification problem and then using Graph-BERT with the language model-based embeddings, we could
find the accuracy improving from 97.90 to 99.10%. Based on these experimental results, we can infer that the use
of the pre-trained language model and Graph-BERT together boosts the predictive capability of the PPT model.
Future work aims to explore other pre-trained language models to generate embeddings for protein sequences.
Moreover, we will explore the use of other sources of protein information, such as gene co-expression, which
can be utilized as a node feature vector in a PPI network graph.

Data availability
The source code for training and data to train the model are available at https://github.com/JhaKanchan15/PPI_
GBERT. The dataset used in this study is available at https://github.com/fangyangbit/S-VGAE/tree/master/data.
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