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OPEN A graph neural network-based

bearing fault detection method

Lu Xiao¥?*, Xiaoxin Yang¥? & Xiaodong Yang?

Bearings are very important components in mechanical equipment, and detecting bearing failures
helps ensure healthy operation of mechanical equipment and can prevent catastrophic accidents.
Most of the well-established detection methods do not take into account the correlation between
signals and are difficult to accurately identify those fault samples that have a low degree of failure. To
address this problem, we propose a graph neural network-based bearing fault detection (GNNBFD)
method. The method first constructs a graph using the similarity between samples; secondly the
constructed graph is fed into a graph neural network (GNN) for feature mapping, and the samples
outputted by the GNN network fuse the feature information of their neighbors, which is beneficial

to the downstream detection task; then the samples mapped by the GNN network are fed into base
detector for fault detection; finally, the results determined by the integrated base detector algorithm
are determined, and the top n samples with the highest outlier scores are the faulty samples. The
experimental results with five state-of-the-art algorithms on publicly available datasets show that the
GNNBFD algorithm improves the AUC by 6.4% compared to the next best algorithm, proving that the
GNNBFD algorithm is effective and feasible.

With the rapid development of science and technology, mechanical equipment is widely used in modern industry.
And the health monitoring technology of mechanical systems is also an essential issue in modern industry’.
Rotating machinery is frequently used in industrial machinery and equipment, and its condition detection and
fault diagnosis are of great significance in ensuring the reliability and safety of machinery in modern industrial
systems?. Rolling bearing is a crucial component of rotating machinery. Due to its particular working environ-
ment, rolling bearing is prone to accidental failure and damage under high speed and heavy load as well as
repeated high-temperature con-tact, which will directly affect the whole machine’s performance, thus leading
to serious safety hazards and high maintenance costs®. Bearing failure is the most common type of failure in
rotating machinery systems, and according to statistics, 30-40% of rotating machinery failures are caused by
bearing defects®. Therefore, efficiently intelligent fault diagnosis techniques for rolling bearings have been a vital
research element in mechanical failures in the past decades.

Bearing fault diagnosis technology has undergone three stages: manual experience, signal processing, and
intelligence®. Traditional mechanical fault diagnosis methods and theories can play a good role for simple systems
with a single process, single fault, and gradual fault, but for multi-process, multi-fault, and sudden fault, as well
as complex, large, highly automated large equipment and systems have more significant limitations®. Nowadays,
with the development of sensors and computer systems, the amount of data describing the status of mechanical
equipment has increased exponentially. Artificial intelligence methods can extract hidden fault features from
these large-scale data sets and learn new fault types, significantly improving fault diagnosis accuracy while
reducing the labor cost and diagnostic uncertainty of traditional methods’-'°. However, the deep learning-based
method considers the objects to be independently distributed and cannot take into account the correlation
between objects during the training process, so it is still difficult to identify some of the early fault signals. In
this paper, we propose a graph neural network-based bearing fault detection method in order to improve the
accuracy of bearing fault detection.

Our main contributions are summarized as follows:

1. We convert the time-series signal of vibration into non-Euclidean structured graph data by methods such
as feature transformation and similarity measurement.

2. A method for extracting features of vibration signals using graph neural networks is proposed. By feeding
the vibration signal with the constructed graph into the graph neural network for training, the object after
the training is completed can contain a wider range of neighborhood information.
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3. In order to improve the usability of the algorithm in the real world, an ensemble learning approach is pro-
posed to improve the robustness of the proposed algorithm.

Related work

Up to now, a lot of research has been conducted on the intelligent diagnosis of bearing faults. Early widely used
machine learning algorithms, such as PCA (Principal Component Analysis), SVM (Support Vector Machine),
KNN (K-Nearest Neighbor), etc., have achieved satisfactory results in intelligent diagnosis, and the classifica-
tion accuracy has improved significantly compared with the traditional methods. However, classical machine
learning algorithms cannot learn nonlinear relationships'!, and it isn’t easy to find suitable shallow machine
learning methods when there are highly complex and difficult to understand nonlinear relationships between
input data (samples) and output data (labels). As a branch of machine learning, deep learning is highly capable
of modeling nonlinearities with high flexibility and performs much better in dealing with realistic and complex
problems. Therefore, deep learning has been introduced into bearing fault diagnosis to obtain a higher correct
rate of fault diagnosis in complex environments'*">.

Many deep learning-based bearing fault diagnosis algorithms have been proposed as deep learning evolves.

CNN (Convolutional Neural Networks) is the most representative model of deep learning. Janssens et al.'* was
the first paper to apply convolutional neural networks to bearing fault diagnosis, using the spatial structure in the
data to effectively capture the covariance of the frequency decomposition of accelerometer signals; to balance the
training speed and accuracy of the model, Guo et al.'* improved the traditional convolutional neural networks
model by adding adaptive learning rate and momentum components to the weight update process; Xia et al.'® in
the training process of convolutional neural networks both temporal and spatial information of the raw data from
multiple sensors are considered; To deal with mechanical vibration signals with variable sequence length, Zhang
et al.'” proposed a bearing fault diagnosis method based on residual learning algorithm, and the whole network
uses a 1-dimensional convolutional layer to obtain local sequence features of the data information stream; For
data that are difficult to obtain labels in practical situations, Meng et al.}® proposed a data enhancement technique,
using deep convolutional neural network with residual learning algorithm as the main structure to obtain higher
diagnostic accuracy with limited training data; Zhang et al.'’ used a deep full convolutional neural network
(DFCNN) containing four pairs of convolutional pooling layer pairs to convert vibration signals into images as
input; Choudhary et al.® proposed a fault diagnosis method for rotating machinery bearings combining CNN
and thermal images, using various fault conditions explored the availability of thermal imaging in bearing fault
diagnosis; Xu et al.** proposed a rolling bearing fault diagnosis model based on online transfer convolutional
neural network (OTCNN) with pre-trained network model and source domain features.

AE (Autoencoder) is an unsupervised approach to deep learning. In?!, the maximum correlation entropy
was used as the loss function of the deep autoencoder and the critical parameters of the deep autoencoder were
optimized to fit the signal characteristics using an artificial fish swarm algorithm; Wang et al.?> used a Gaussian
radial basis kernel function and acoustic emission method for fault diagnosis of bearings with high diagnostic
accuracy and applicability; Shao et al.?* proposed an ensemble deep autoencoder for intelligent fault diagnosis
of rolling bearings (EDAEs) method for unsupervised feature learning from measured vibration signals; similar
to**~%¢ also improved on SAEs (Stacked Autoencoders) for fault diagnosis of bearings, both with improved detec-
tion results compared to traditional SAEs; Zhang et al.?” proposed a semi-supervised learning method based on a
depth generating model of variational autoencoder (VAE), The VAE generation function is used to improve the
classification performance when only a tiny portion of the data has labels; Cui et al.?® proposed a rolling bearing
fault detection and classification method combining feature distance stacked autoencoder (FD-SAE) and support
vector machines by organically combining machine learning and deep learning methods; Shao et al.* used Morlet
wavelet activation function to establish an accurate non-smooth vibration data based on stacked autoencoder
with an accurate nonlinear mapping between the original non-stationary vibration data and various fault states
using Morlet wavelet activation function; Ma et al.*® applied the weak magnetic detection method to rolling
bearing whole life cycle monitoring with an improved variational autoencoder; Li et al.*! proposed a unified
framework combining predictive generative denoising autoencoder (PGDAE) and deep coral network (DCN).

DBN (Deep Belief Network) is a simple combination of unsupervised networks. Chen and Li*? first applied
deep belief network to bearing fault diagnosis and proposed a multi-sensor feature fusion diagnosis method
for bearing faults based on stacked autoencoder and deep belief network; Hoang et al.** automatically extracted
bearing fault features from signals by DBN and then used Dempster-Shafer evidence theory combined with
information from different sensors to predict bearing fault types; Liang et al.** implemented a four-layer DBN
that processes sensor data through multiple DBNS for feature extraction; Xu et al.*> combined clustering model
affinity propagation (AP) with a DBN containing multiple hidden layers for fault diagnosis; Yu et al.** combined
maximum overlap discrete wavelet packet transform (MODWPT) and deep belief network methods to analyze
rolling bearing fault features and identify fault states; Zhu et al.*” used principal component analysis to extract
fault features and then used DBN for bearing fault diagnosis; Gao et al.*® focused on the structure and momen-
tum of neural networks and used summary optimization algorithm to optimize the network structure of DBN;
Niu et al.** used particle swarm optimization (PSO) and adaptive training strategy to improve DBN to achieve
higher accuracy and faster convergence speed.

In addition to CNN, AE and DBN, some common deep learning methods have also been applied to bear-
ing fault diagnosis. For example*-*, used generative adversarial networks and their variants for bearing fault
diagnosis; with the birth of LSTM (Long Short Term Memory network), References**~*° improved RNN (Recur-
rent Neural Network) and applied it to bearing fault diagnosis; and Refs.***” proposed a bearing fault diagnosis
method with higher diagnostic accuracy based on reinforcement learning. In recent years, researchers have
borrowed ideas from convolutional networks, recurrent networks, and deep autoencoders to define and design
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neural network structures for processing graph data, and graph neural networks have come into being, but up to
now, there is almost no research related to the application of graph neural networks to bearing fault diagnosis.

Model

Among the collected bearing vibration signals, there are normal vibration signals and faulty vibration signals.
The vibration signals are converted into nodes in the graph by means of data slicing and feature transforma-
tion. This converts the fault detection of bearings into a node classification task in machine learning. For the
problem that early bearing fault signals are weak and difficult to distinguish from normal signals, we propose a
graph neural network-based bearing fault detection method (GNNBFD). This method contains five main parts,
which are: (1) dataset process, (2) construct graph, (3) graph neural network, (4) ensemble, and (5) outlier score.
In this section, we will describe each part of the method in detail. Figure 1 represents the detection process of
GNNBED algorithm.

Dataset process. Since it is more difficult for neural networks to extract features from the original dataset,
the dataset needs to be processed first to improve the detection accuracy of the algorithm. The processing of the
dataset consists of two main steps: (1) slicing the dataset; (2) feature transformation. The flow chart of dataset
process are shown in Fig. 2.

Slice and dice the dataset. 'The data set for bearing fault detection is usually N*1 of time-series data, and the
data set is sliced in a segment of 300 data points, after which the original data is transformed into a matrix of
300%(N/300). The transformed data set contains a total of N/300 subsamples, and each subsample consists of
300 data points. It is worth noting that our slicing method for the dataset is obtained using a non-overlapping
moving window.

Feature transformation. ~For each subsample, 23 features in the time and frequency domains are calculated and
used as input to the subsequent model.
Based on Table 1, the index is calculated for each sample. Four steps are required.

(1) Nine time domain indexes are calculated as follows:
I=(11, b, I3, I, Is, Is, I7, I, I9 ] (1)

(2)  Eypp is obtained by calculating WPD energy (parameters j=3 and wavelet Db20).

_[rl 2 3 4 5 6 7 8
Wwpp= [EWPD’EWPD’EWPD’EWPD’EWPD’EWPD>EWPD’EWPD]
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Figure 1. Flow chart of bearing fault detection based on graph neural network.
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Figure 2. Flow chart of data process.

Indexes Formulas

1. Standard deviation | j, — /zﬁ’:l (x(n) —%)%/N

2. Peak I, = max |x(n)]

3. Skewness L=YN xm-03N -1
4, Kurtosis L=YN (xm)—®0YN - DI}

5. Root mean square Is = /Eﬁ]—l x(n)?/N

6. Crest factor Is=1L/ /Zﬁ’:l x(n)?/N

7. Square I = 12/( 5:1 x/JW/N)2

8. Shape factor Iy = /NN xm?/ SN [x(m)|

9. Impulse factor I = max |x(n)\/( 1;]:1 |X(ﬂ)\/N)
10.WPDenergy | 1o = YO, i/ 20 Y, bt

11. EEMD energy Iy = SN IME) P/ SN, SO [IMEs ()]

Table 1. Indexes and the calculation formulas. x(n)and X denote the data sequence and mean of the data
sequence, respectively; N is the number of the data points. x;(n) is the decomposition coeflicient sequence of
the ith (i=0, 1,..., 2/ — 1, j is the WPD decomposition level) frequency band using WPD; IMF;(n) is the ith data
sequence after EEMD, and NI is the decomposition level using EEMD.

(3) EEMD energy is calculated to obtain a dataset as follows:

1 2 3 4 5 6
WEeEmMp= [EEEMD’ Egemps Ezemp» Eeemp» Ezemps EEEMD} (3)
(4) I Wypp, Wepyp are combined into a dataset as follows:

X = [I, Wwpp, Weemp] (4)

The feature transformation of the sliced dataset reduces the redundant information of the subsamples and
can effectively reduce the computational effort of the subsequent model. The extracted 23 time-domain and
frequency-domain features can adequately reflect the information contained in the samples and facilitate further
processing of the subsequent model.
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Construct graph. Since the subsamples processed by Section “Dataset process” are independent of each
other, there is no interconnectivity between the subsamples. Traditional deep learning methods would input
the subsamples directly into the model for training, but this method does not consider the correlation between
the subsamples. For this reason, we propose a method for constructing correlations between subsamples, called
construct graph.

Construct graph mainly considers the similarity between subsamples, and the higher the similarity, the
greater the weight of the connection between them. Construct graph consists of (1) calculating the similarity
between subsamples, (2) assigning weights, and (3) outputting the graph. The flow chart of construct graph are
show in Fig. 3.

Similarity. Let X=1{X,, X5, X;..., X,,} indicate the processed dataset, where X;<Xj,, X;,, Xis.... X;;>indicates a
subsamples in X, and d indicates the dimension of X. X; indicates the value of subsamples X; in the dth dimen-
sion.

We use the normalized Euclidean distance as a measure of similarity between subsamples. Dist (x;, x;) repre-
sents the similarity between subsamples x; and x; and is calculated as shown in the following equation:

Dist(x,-,xj) = (x; — xj)V_l(x,- — x]-)/ (5)

where V is the n-by n diagonal matrix whose jth diagonal element is x;*, where x; is a vector of scaling factors for
each dimension. When the value between Dist (x;, x;) is larger, it means that the similarity between two objects
is higher.

Assigning weights.  First, the top k subsamples with the highest similarity to x; subsamples are selected, and they
form the set of neighbors of x;, which is denoted as N, (x;). Then calculate the weights between these k subsam-
ples and x;, which are calculated as shown in the following equation.

Dist (X;, Xj
# ,Xj € Nk(Xy)

k
WX, X)) = Z:lDiSf(Xij) (6)
]:

0,X; ¢ Ni(X)

Output graph. By calculating the similarity and assigning weights in the first two steps, we can connect the sub-
samples to each other. If the weights between subsamples are greater than 0, there is a connected edge between
them; otherwise there is no connection between them. The subsamples are connected to each other to form the
graph, and we represent the constructed graph by the adjacency matrix A.

1 W (X, X1) e WX, X1)
W(X1,X3) 1 o WX, X2)
A=
WXi, X)) ...
WXL Xp) WXz, Xm) 1

The values of the diagonal elements in the adjacency matrix A are all 1, which indicates that the subsample
itself is connected to itself. In this way, the feature information of the subsample itself can be effectively prevented
from being lost during the training process of the subsequent model.

Graph neural network. Traditional neural network structures such as convolutional neural networks,
recurrent neural network, etc. receive data in Euclidean space as input, and they cannot handle data structures
in non-Euclidean space, such as graphs. Therefore, we will use graph neural networks to handle graph data. GNN
a framework to learn directly from graph structured data using deep learning.

We use a recurrent neural structure to propagate the neighbor information until reach a stable immobility
point to learn the representation of the target node, that is facilitate the subsequent fault detection task. After
feature extraction by the graph neural network, each graph node contains not only its own information, but also
the feature information of its neighbors. Our forward model then takes the simple form:
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Figure 3. Flow chart of construct graph.
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Z = f(X,A) = ReLU((ReLUXAW® — p)aw® — pD) 7)

Here, W € RP*H is an input-to-hidden weight matrix for a hidden layer with H feature maps, and b € R is
an input-to-hidden biases matrix. The GNN weights W®, W and biases b, b") are trained using the gradient
descent.

As shown in Fig. 4, the GNN model is based on an information propagation mechanism, where each node
exchanges information (propagates) with other nodes through continuous iterative updates to reach a stable
state. When the information flow of the whole graph smooth’s out, each node has information about itself and
its neighboring nodes.

Algorithm1 Training GNN

Input: Given dataset X, Adjacency matrix 4, Learning rate #, Number of iterations 7.
Output: Matrix Z

1. Initialize WO, O, ), pD,

2. for iteration=1:¢

3. %Forward Propagation
4. Layer2_output= X* 4* WO * . pO),
5. Z=Layer3 output= Layer2 output* 4* W * - p(),

6. loss =%(X'-Z)z.

7.  %Back Propagation

8. Update J7 and b using batch gradient decent V  (/oss) .

9. end
10. return Z.

Ensemble. In this paper, we combine the detection of Z-matrices using multiple outlier detection algo-
rithms, a process called ensemble. Each subsample of the Z matrix output by the GNN network contains not only
its own eigenvalues, but also those of its neighbors. Inputting the Z-matrix into the outlier detection algorithm
for detection helps to maximize the separation of normal objects from outliers in the dataset.

We use three classical outlier detection algorithms, LOF (Local Outlier Factor), KNN (K-Nearest Neighbor),
and AE (Autoencoder), to detect the Z matrix. LOF is the classical density-based outlier detection algorithm,
KNN is the distance-based outlier detection algorithm, and AE is the neural network-based outlier detection
algorithm. Different types of outlier detection algorithms focus on detecting outliers with different distributions.
Combining the above three types of algorithms can maximize the robustness of GNNBFD. Meanwhile, LOF,
KNN, and AE are all unsupervised outlier detection algorithms, and the first two do not require training process.
When training the AE algorithm, we set its learning rate to 0.0001, the hidden layer depth of the network to three
layers, and the Adam optimizer is used for back propagation.

Each algorithm eventually outputs an outlier value for each subsample in the Z matrix. The outlier value
indicates the probability that the subsample is a faulty sample, and the higher the outlier value, the more likely
the sample is a faulty sample, and vice versa.

Output Graph Eééz Feature map
Input Graph | Multi-dimensional
features

Figure 4. The structure of GNN.
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Outlier score (OS). We define the outlier value of the ith subsample as Outlier Score (OS), OS is calculated
as shown in the following equation:

3 OF;
J; ! (8)
m

OS; =

In the above equation, OF, denotes the outlier factor assigned to the ith subsample by the jth outlier detection
algorithm. OS; denotes the average outlier score of the ith subsample over the m outlier detection algorithms.
By averaging the values in this way, the misclassification rate of the algorithm is reduced and the reliability and
robustness of the final detection results of the algorithm are improved.

Algorithm?2 Estimate the outlier score

Input: The matrix of outliers for each algorithm for subsamples in the dataset. n (the number
of outliers).

Output: The set of outliers O.

1. Use equation (8) to calculate the OS of the object.

2. [value, index] = Sort(OS, *descend’).

3. O=index(1:n, :).

4. return O.

Experiments

In this section, we will demonstrate the effectiveness of the proposed algorithm for bearing fault detection in
detail in four parts. These four sections are: (a) introduction to the experimental environment and data set; (b)
evaluation method and comparison algorithm; (c) experimental results and (d) effectiveness analysis.

In (a) Introduction to the experimental environment and dataset, we describe in detail the experimental plat-
form, hardware and software configurations, and the introduction and processing of the dataset; in (b) valuation
method and comparison algorithm section, we use four evaluation metrics to measure the performance of each
algorithm in a comprehensive manner. In (c) Experimental results, we report the final detection results of the
algorithms in detail and analyze the reasons for them. In (d) effectiveness analysis, we verified the effectiveness
of the GNNBEFD algorithm using k-fold cross-validation.

Experimental environment and dataset. The hardware environment for the experiments is an Intel(R)
Core(TM) i7-7700 3.60 GHz CPU with 8 GB of RAM. The software side contains the platform and operating
system required for the experiments, and we implemented the code required for the model using Matlab 2020,
and the operating system is Windows 10 Professional.

The dataset is the publicly available Case Western Reserve University (CWRU) dataset. The advantage of
using a publicly available dataset is that it is easy for other researchers to reproduce our experimental results.
The bearing type is SKF6250, bearing location is Drive-end, Sample frequency (Hz) is 12000 Hz and the motor
speed (rpm) is 1797. We divided the collected experimental data into 3 groups, each group contains 4 states,
which are: (1) 0.1778 mm inner race fault, 0.3556 mm inner race fault, 0.5334 mm inner race fault and normal
base; (2) 0.1778 mm ball fault, 0.3556 mm ball fault, 0.5334 mm ball fault and normal base; (3) 0.1778 mm outer
race fault, 0.3556 mm outer race fault, 0.5334 mm outer race fault and normal base. Figure 5 shows the normal
bearing and the three faulty bearing states.

Taking the first set of inner circle faults as an example, the normal sample contains a total of 240,000 data
points and the faulty sample contains 120,000 data points. We divide the normal sample and the faulty sample
into a sub-sample with 300 data points. Among the divided fault samples, 20 samples are randomly selected
as outliers and form the first data set together with the normal objects. They were processed with the two data
sets according to the same method, and thus three data sets were obtained, and the details of the data sets are
summarized in Table 2.

(@ (b)

Figure 5. Normal and fault state of bearings (a) normal (b) inner race fault (c) outer race fault (d) ball fault.
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Normal 0 800 Normal 0 800 Normal 0 800
0.1778 20 0.1778 20 0.1778 20

Inner race fault | 0.3556 20 Ball fault 0.3556 20 Outer race fault | 0.3556 20
0.5334 20 0.5334 20 0.5334 20

Table 2. Summary of datasets.

Evaluation methods and comparison algorithms.  We use the receiver operating characteristic (ROC)
curve and corresponding area under the curve (AUC), accuracy (ACC), detection rate (DR), and false alarm rate
(FAR) to measure the detection performance. Higher AUC, ACC, and DR values and lower FAR indicate better

performance.
The calculation method of ACC, DR, FAR can be obtained from the confusion matrix in Table 3.
acC — TP+ TN .
" TP+ TN +FP +EN ©)
DR = L 10

" TP+ FN (10)

FAR = P 11
" TN +FP (an

We compare GNNBED with five representative outlier detection algorithms. These algorithms are common
types in the outlier detection field, and they are used as comparison algorithms in most of the related literature.
They can be divided into five categories: (i) Neuron network-based, SO-GAAL (Single Objective Generative
Adversarial Active Learning); (ii) Graph-based, CutPC (graph-based clustering method using noise cutting);
(iii) Local outlier factor-based, LOF; (iv) Distance-based, KNN; (v) Isolation-based, IForest. The parameter set-
tings are summarized in Table 4.

Experiment results. Experimental results on real-world datasets are shown in Fig. 6. We adjust the param-
eters 10 different times for all algorithms and choose the best result among the 10 times as the evaluation of the
final performance of the algorithm.

Observing the experimental results, some interesting information can be found.

Positive True positive (TP) | False negative (FN)

Negative False positive (FP) | True negative (TN)

Table 3. Confusion matrix.

GNNBFD 2-100 0.0001-0.002 10-100 3 - - -
SO-GAAL - 0.0001-0.002 10-100 3 - - -
CutPC - - - - - - -
LOF 2-100 - - - - - -
KNN 2-100 - - - - - -
IForest - - - - - - 100-256

Table 4. Parameter setting.
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Figure 6. Experimental results.
(1) Among the four evaluation methods, the GNNBED achieves the best results. Compared with the next best
IForest algorithm, GNNBFD improves the AUC value by 6.4% on average, which proves the validity of the
proposed algorithm.
(2) In the Group2 dataset, most algorithms have poor detection results. This is due to the weak fault vibra-
tion signal of the ball and the low degree of deviation of the normal signal from the fault signal. Since the
GNNBFD method can learn the broader neighborhood information of the object, which enables the fault
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k-fold | Group1l | Group2 | Group3
1 0.986 0.971 0.994
2 0.982 0.977 0.993
3 0.974 0.982 0.988
4 0.991 0.963 0.989
5 0.987 0.981 0.991
Avg 0.984 0.975 0.991

Table 5. K-fold cross validation.

signal with low degree of deviation to produce a greater degree of deviation after the graph neural network
embedding.

(3) In the process of converting the vibration signals into graphs, connectivity relations are constructed for
the objects. After training with the graph neural network, the low-dimensional embedding of the objects
contains more valuable information and changes the distribution pattern from the original one. Therefore,
the base detector is able to detect the faulty and normal objects more accurately when performing detection.

The experimental results prove that the GNNBFD is effective and feasible.

Effectiveness analysis. K-fold cross-validation is a commonly used technique for evaluating the perfor-
mance of machine learning models. By using K-fold cross-validation, a more accurate estimate of a model’s per-
formance can be obtained. Furthermore, K-fold cross-validation can help detect whether a model is over fitting,
as it enables evaluation of the model on a larger amount of data.

To analyze the effectiveness of the GNNBFD algorithm proposed in this paper, we performed K-fold cross-
validation. Specifically, we performed a fivefold cross-validation on each of the three datasets. Each time, 150
normal objects and 30 faulty objects were selected from each dataset, and the performance of the proposed
algorithm was measured by the AUC value. The experimental results are shown in Table 5.

To ensure that when performing fault detection, GNNBEFD is blind to the samples. We used random sam-
pling and randomly sorted these samples. Observing the experimental results in Table 5, it can be seen that the
GNNBED algorithm still has good detection results with a small number of samples. The average AUC values
in the three datasets are 0.984, 0.975 and 0.991, it proves that the proposed algorithm can effectively detect the
bearing fault signals.

Conclusion

In this paper, a graph neural network-based bearing fault detection method is proposed to improve the accuracy
of bearing fault detection. The graph neural network has a very powerful feature mapping capability, which can
fit the feature values of the sample and its neighbors simultaneously. The samples outputted by the GNN net-
work after mapping can be more easily separated from normal samples and fault samples by the base detector
algorithm. Considering the higher requirements for algorithm robustness in real production environments, we
use an integrated technique to synthesize the detection results of the base detector to make the GNNBFD algo-
rithm more stable and efficient. Experiments on publicly available datasets show that the GNNBFD algorithm
can successfully detect most of the fault samples in the dataset. In the future work, we will mainly study how to
improve the detection performance of the GNNBFD with a deeper network structure.

Data availability
The datasets generated and/or analyzed during the current study are available in the Case Western Reserve
University (CWRU) repository, https://github.com/yyxyz/CaseWesternReserveUniversityData.
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