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Characterization 
of butyrate‑metabolism 
in colorectal cancer to guide clinical 
treatment
Qinghua Luo 1*, Ping Zhou 2, Shuangqing Chang 1, Zhifang Huang 1 & Xuebo Zeng 3

Colorectal cancer (CRC) is the third most prevalent one in the world among the most common 
malignant tumors. Numerous studies have shown that butyrate has demonstrated promise as an 
antitumor agent in a variety of human cancer types. However, butyrate remains understudied in CRC 
tumorigenesis and progression. In this study, we explored therapeutic strategies to treat CRC by 
examining the role of butyrate metabolism. First, from the Molecular Signature Database (MSigDB), 
we identified 348 butyrate metabolism-related genes (BMRGs). Next, we downloaded 473 CRC 
and 41 standard colorectal tissue samples from The Cancer Genome Atlas (TCGA) database and the 
transcriptome data of GSE39582 dataset from Gene Expression Omnibus (GEO) database. Then we 
evaluated the expression patterns of butyrate metabolism-related genes with difference analysis in 
CRC. Through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) 
analysis, a prognostic model was constructed based on differentially expressed BMRGs. In addition, 
we discovered an independent prognostic marker for CRC patients. According to the expression levels 
and coefficients of identified BMRGs, the risk scores of all CRC samples were calculated. Utilizing 
differentially expressed genes in the high- and low-risk groups, we also constructed a Protein–Protein 
Interaction (PPI) network to visualize the interactions between proteins. Through the results of PPI 
network, we screened out differentially expressed target butyrate metabolism-related genes from 
ten hub genes. Finally, we performed clinical correlation analysis, immune cell infiltration analysis, 
and mutation analysis for these target genes. One hundred and seventy three differentially expressed 
butyrate metabolism-related genes were screened out in all the CRC samples. The prognostic model 
was established with univariate Cox regression and LASSO regression analysis. CRC patients’ overall 
survival was significantly lower in the high-risk group than in the low-risk group for both training 
and validation set. Among the ten hub genes identified from the PPI network, four target butyrate 
metabolism-related genes were identified containing FN1, SERPINE1, THBS2, and COMP, which 
might provide novel markers or targets for treating CRC patients. Eighteen butyrate metabolism-
related genes were used to develop a risk prognostic model that could be helpful for doctors to predict 
CRC patients’ survival rate. Using this model, it is beneficial to forecast the response of CRC patients to 
immunotherapy and chemotherapy, thus making it easier to custom tailor cancer chemotherapy and 
immunotherapy to the individual patient.

In 2020, a total of 1,148,515 new colon cancer patients were diagnosed around the world, or 6% of new cancer 
cases; 576,858 new colon cancer deaths were reported, representing 5.8% of all cancer deaths all over the world 
according to the World Health Organization report1. With the rapid advancement of science and technology, 
medical treatment methods are changing rapidly. In addition to the two conventional faecal occult blood test-
ing and colonoscopy, faecal genetic testing is now employed in pre-colorectal-cancer screening2. In terms of 
common colorectal surgical procedures, Laparoscopic assisted surgery and da Vinci robot-assisted surgery are 
replacing orthodox open surgery3. In terms of postoperative chemotherapy regimens, patients with metastatic or 
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advanced disease are often treated with biologic agents that reinforce cytotoxic therapy including bevacizumab 
and cetuximab, in addition to FOLFOX6 and CapeOX regimens4. Nevertheless, the prognosis of each CRC 
patient is highly heterogeneous, as their genetic characteristics and different risk factors can lead to inconsistent 
disease progression and varying therapy outcomes, particularly in cases of recurrent postoperative CRC, where 
surgery and chemotherapy are not beneficial5,6. Besides, a poor prognosis is associated with CRC in its advanced 
stages7. More importantly, as a result of the rapid growth in developing countries, Arnold et al. have forecast that 
there will be 2.5 million cases of CRC in 20358. Therefore, it is indispensable for us to hunt for a novel method 
to better predict the prognosis of CRC patients.

A short-chain fatty acid (SCFA), butyrate is formed by bacteria in the colon during fermentation of fibre, and 
is used by colonocytes for energy9. By promoting colonic motility, butyrate accelerates blood flow to the colon 
and reduces colonic anastomosis healing time indirectly10. The use of butyrate reduces intestinal permeability, 
improving intestinal mucosal barrier function and improving immune function, which is very beneficial for 
ulcerative colitis and other conditions that affect the intestinal wall11. Butyrate plays an essential role in intestinal 
cancer by providing nutrition to healthy mucosa, promoting its proliferation, and maintaining good intestinal 
barrier condition by accelerating mucus production. In metabolomic and proteomic studies, researchers found 
that butyrate inhibited CRC cell proliferation by directly targeting pyruvate kinase M2 and subsequently repro-
gramming metabolism12. Combining butyrate with the G protein-coupled receptor GPR109A can also suppress 
tumors in the colon13. Metabolic pathway analyses in CRC can provide us with a better understanding of the 
molecular mechanisms involved and provide us with new and more effective therapeutic approaches14. Currently, 
there are no systematic studies on butyrate metabolism-related genes in CRC.

In the present study, we constructed a prognostic model based on butyrate metabolism-related genes using 
univariate Cox regression and LASSO regression analysis, which was validated by the GEO-CRC cohort. CRC 
patients’ overall survival outcomes were comprehensively predicted and analyzed using this prognostic model. 
We also analyzed the differences between high-risk and low-risk CRC patients regarding immune cell infiltra-
tion, gene mutation, chemotherapeutic drug sensitivity, and immunotherapy efficacy. Next, we constructed a 
PPI network to identify ten hub genes utilizing differentially expressed genes in the high- and low-risk groups. 
Four target butyrate metabolism-related genes were identified from 10 hub genes, which might provide novel 
markers or targets for treating CRC patients. Further, we performed an in-depth comparison of these four genes 
in terms of survival prognosis, clinical characteristics and immune cells. The prognostic model has the potential 
to guide prognostic prediction and clinical medication of CRC patients.

Materials and methods
Data collection and collation.  First, we identified a total of 348 butyrate metabolism-related genes from 
the Molecular Signature Database (MSigDB, https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp) by using 
“butyric acid” as a search term15. Subsequently, through the TCGA database (https://​portal.​gdc.​cancer.​gov/), we 
performed the download of raw RNA sequencing (RNA-seq) data profiles and obtained relevant data (survival 
status, follow-up time, sex, age, pathological stage, and TNM stage) for 473 CRC and 41 standard colorectal 
tissue samples. Through the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), we downloaded the transcrip-
tional data and corresponding clinical data of CRC samples (gene ID: GSE39582). The gene IDs of the samples 
were converted to the related gene symbols using human gene annotation files.

Identification of differentially expressed butyrate metabolism‑related genes.  We set |Log2fold 
change (FC)|> 0.585 and false discovery rate (FDR) < 0.05 as a threshold to screen out differentially expressed 
butyrate metabolism-related genes through performing the “limma” package in R software.

Functional enrichment analysis of differentially expressed butyrate metabolism‑related 
genes.  To better investigate the biological characteristics and functional cellular pathways of differentially 
expressed butyrate metabolism-related genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis with p-value < 0.05 for statistical significance16,17. Finally, we used two R 
packages “ggplot 2” and “goplot” to visualize the enrichment analysis results. GO enrichment analysis is divided 
into three major functional aspects, called GO types, including biological process (BP), cellular component 
(CC), molecular function (MF).

Identification of prognostic genes.  We used TCGA-CRC cohort samples as a training set. In order 
to identify the prognostic differentially expressed genes associated with butyrate metabolism, we set a p-value 
lower than 0.05. The “survival” package was used to identify the association between gene expression levels and 
patients’ overall survival using univariate Cox regression analysis on differentially expressed butyrate metab-
olism-related genes of the training set. The number of genes was further reduced and gene collinearity was 
eliminated using LASSO Cox regression. Moreover, we analyzed the intrinsic relationship between mutation 
frequency and mutated genes in the training set using the “maftools” R package.

Principal component analysis.  We used the “limma” package in R software for principal component 
analysis to better differentiate CRC patients between high and low-risk groups. We used the “ggplot2” package 
to obtain two-dimensional principal component analysis plots of the two principal components based on the 
expression profiles of genes related to butyrate metabolism and the gene expression profiles of the predictive risk 
score model, respectively.

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Construction and validation of a prognostic model.  The risk scores of all samples were calculated 
using the following equation based on the results of LASSO Cox regression: risk score = Coef1 × ExpGene1 + Coe
f2 × ExpGene2 + Coef3 × ExpGene3 + … + Coefi × ExpGenei.

“Coef ” corresponds to the non-zero regression coefficient obtained by LASSO Cox regression analysis, and 
“ExpGene” corresponds to the expression value of the gene in the prognostic risk score model. All the CRC 
patients were divided into low-risk and high-risk groups based on the median risk score. Kaplan–Meier survival 
plots were calculated using the R package “survival”. In order to evaluate the prognostic ability of the model, a 
receiver operating characteristic (ROC) curve was generated using the timeROC package. We validated the results 
using samples from the GEO database simultaneously. The same formula used in the training set was applied 
to patient risk scores from the GEO cohort. Next, we investigated whether CRC risk score was an independ-
ent predicator of overall survival using univariate and multivariate independent prognostic analysis. Statistical 
significance was determined by a p-value less than 0.05.

Construction and evaluation of the nomogram of CRC patients.  To build a predictive model based 
on independent clinical parameters that can be used intuitively to study the overall survival of individual CRC 
patients, we used the “nomogram” package in R for this process. The relationship between risk score and clinical 
information was explored using the “limma” package, which included gender, age, pathological stage, and TNM 
stage. Calibration plots and ROC curves were used to assess the predictive performance of this model. To deter-
mine whether nomogram could be a reliable independent prognostic indicator for CRC patients, univariate and 
multivariate independent analyses were performed. P-value of < 0.05 was used to show statistical significance.

Characteristics of patients in high‑ and low‑risk groups.  Using the “ggpubr” package, we obtained 
a correlation between patients’ risk score and tumor mutation frequency. To estimate the relationship between 
immune cell infiltration and risk score, we downloaded the immune cell infiltration files from Timer2.0 (http://​
timer.​cistr​ome.​org/), and then used the “limma” and “pheatmap” R packages for differential analysis. The 
“GSVA” and “GSEABase” packages were used to analyze the differences in immune-related functions between 
the high-risk and low-risk groups. To predict the effect of immunotherapy in the high and low-risk groups, we 
used the TIDE online database (http://​tide.​dfci.​harva​rd.​edu/). P-values of less than 0.05 indicated a statistically 
significant difference.

Identification of potential drugs for CRC patients.  The “PRRophetic” R package was used to predict 
the semi-inhibitory concentrations of drugs in the high-risk and low-risk groups and identify drugs with dif-
ferential efficacy.

Protein–protein interaction network and target gene characteristics.  Using the STRING online 
database (https://​cn.​string-​db.​org/), the interaction network of these differentially expressed genes between high 
and low-risk groups were mapped (medium confidence > 0.40). Using the cubHubba plugin of Cytoscape soft-
ware (version 3.9.1), we screened out the top 10 network core genes. Using the GEPIA (http://​gepia.​cancer-​pku.​
cn) online database, differentially expressed target genes in tumor tissues and normal tissues were filtered from 
the top 10 core genes by setting threshold log2FC > 1 and p-value < 0.05. To analyze the infiltration of the target 
genes in 22 tumour-infiltrating lymphocytes in the microenvironment of high-risk and low-risk CRC patients, 
the CIBERSORTx online database (https://​ciber​sortx.​stanf​ord.​edu/​index.​php) was used, and then “reshape2 
“reshape2” and “ggpubr” R packages were used to map out the differential results. The “limma” and “ggpubr” R 
packages were used to analyze the relationship between target gene expression and clinical characteristics (age, 
sex, grade, TNM stage) in CRC patients. Finally, we performed an in-depth study of the correlation between 
target genes using the GEPIA online database with Spearman test.

Results
Enrichment analysis of differentially expressed butyrate metabolism‑related genes.  Gene 
expression levels were compared between normal colorectal and cancerous tissue samples related to butyrate 
metabolism. We screened out a total of 173 differentially expressed butyrate metabolism-related genes between 
CRC and normal colorectal tissues, including 132 upregulated genes and 41 down-regulated genes. The distribu-
tion of these differentially expressed butyrate metabolism-related genes in normal and tumor samples were visu-
alized by the heatmap (Fig. 1A). According to the visualization chart of GO enrichment analysis, we can see that 
in terms of BP, the differentially expressed butyrate metabolism-related genes were mostly gathered in nuclear-
transcribed mRNA catabolic process, nuclear-transcribed mRNA catabolic process, deadenylation- dependent 
decay. In terms of CC, the differentially expressed butyrate metabolism-related genes were mostly gathered in 
nuclear exosome (RNase complex), cytoplasmic exosome (RNase complex), and exosome (RNase complex). In 
terms of MF, the differentially expressed butyrate metabolism-related genes were mostly gathered in 3’ − 5’ − exo-
ribonuclease activity, exoribonuclease activity, producing 5’ − phosphomonoesters, and exoribonuclease activity 
(Fig. 1B). According to the visualization of KEGG enrichment analysis, differentially expressed butyrate metab-
olism-related genes were mostly gathered in nuclear − transcribed mRNA catabolic process exonucleolytic 3’ − 5’, 
nuclear − transcribed mRNA catabolic process exonucleolytic, nuclear RNA surveillance (Fig.  1C). From the 
above results, we found that these differentially expressed butyrate metabolism-related genes in CRC are closely 
related to RNA metabolism.

http://timer.cistrome.org/
http://timer.cistrome.org/
http://tide.dfci.harvard.edu/
https://cn.string-db.org/
http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
https://cibersortx.stanford.edu/index.php
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Construction of a prognostic model in the train set.  Our training set was made up of TCGA-CRC 
cohort samples. We selected 27 butyrate metabolism-associated genes associated with prognosis from the 173 
differentially expressed butyrate metabolism-associated genes with p value < 0.05 using univariate Cox regres-
sion analysis (Fig. 2A). The somatic mutation profiles of CRC patients were drawn for 27 genes linked to butyrate 
metabolism. There were 112 mutations in butyrate metabolism-related genes in 447 CRC samples, resulting in 
a 25.06 percent frequency (Fig. 2B). The more apparent mutations could be observed in DNAH17, CDK5RAP2, 
IGF2BP1, CLCN3, SLC2A2, and PLCB2, while the corresponding mutation frequencies were 12%, 6%, 4%, 4%, 
3% and 3%, respectively. The visualization of co-mutations revealed a mutational positive relationship between 
DNAH17 and most of the other genes (Fig. 2C). Then, eighteen genes (PTGDS, STC2, CDK5RAP2, ETS2, CAL-
COCO1, DNAH17, ENKD1, SLC2A2, IGF2BP1, FABP4, GDI1, TIMP1, ALAD, CLCN3, PRKAR2A, PYGL, 
CDK10, and HSPB1) were screened out to construct a prognostic model using LASSO Cox regression analysis 

Figure 1.   Analysis of differentially expressed butyrate metabolism-related genes. (A) Heatmap of differentially 
expressed butyrate metabolism-related genes. (B) GO analysis of differentially expressed butyrate metabolism-
related genes. (C) KEGG analysis of differentially expressed butyrate metabolism-related differential genes.
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Figure 2.   Identification of prognostic genes. (A) Univariate Cox regression analysis of butyrate metabolism-
related genes. When the hazard ratio of a gene is > 1, it indicates that the gene is a risk factor for the 
corresponding tumor, and vice versa. (B) Gene mutations in CRC patients. (C) Correlation of mutations in 27 
butyrate metabolism-related genes. Brown color indicates negative correlation, and blue color indicates positive 
correlation. (D) LASSO coefficient spectrum of 27 butyrate metabolism-related genes. (E) Cross-validation of 
adjustment parameter selection in a proportional hazards model. (F) PCA based on all butyrate metabolism-
related genes. (G) PCA based on butyrate metabolism-related model genes. The red group represents high-risk 
patients, and the blue group represents low-risk patients.
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(Fig. 2D,E). The prognostic model was built according to the following risk score formula: Riskscore = (0.0744 
* PTGDS) + (0.1617 * STC2) + (0.3586 * CDK5RAP2) + (− 0.2655 * ETS2) + (0.0244 * CALCOCO1) + (0.2413 
* DNAH17) + (0.0420 * ENKD1) + (−  0.7597 * SLC2A2) + (0.0762 * IGF2BP1) + (0.0308 * FABP4) + (0.0344 
* GDI1) + (0.1029 * TIMP1) + (0.2256 * ALAD) + (−  0.0333 * CLCN3) + (−  0.4618 * PRKAR2A) + (0.0428 * 
PYGL) + (0.1531 * CDK10) + (0.0426 * HSPB1). The CRC samples in TCGA were distinguished between the 
low-risk and high-risk groups by this risk model (Fig. 2F,G).

The relationship between risk score and clinical features.  In the constructed risk model, we divided 
CRC patients into two groups on the basis of their median risk scores in the training set and test set. The clini-
cal prognosis of the low-risk group was found to be better than that of the high-risk group in both the training 
and test groups (p-value < 0.05) (Fig. 3A,B). Univariate and multivariate independent prognostic analysis were 
performed on the training set to investigate whether risk score could be an independent factor to predict the 
overall survival of CRC patients. The results indicated that age, T stage, and risk score could be independent 
factors to predict the overall survival of CRC patients (Fig. 3C,D). In assessing the reliability of the risk score of 
the prognostic model, we plotted receiver operating characteristic (ROC) curves and the area under the curves 
(AUCs) of CRC patients were 0.739, 0.753 and 0.727 for 1-, 3- and 5-year, respectively (Fig. 3E). The AUC value 
of the risk score was only slightly lower than the AUC value of the stage, which could indicate that the accuracy 
of the risk model is excellent (Fig. 3F). Furthermore, the prognostic model was validated in GSE39582 dataset. 
The result demonstrated that risk score and tumor stage were strongly correlated with overall survival of CRC 
patients based on univariate and multivariate Cox analyses (Fig. 4A,B). AUC values of CRC patients were 0.780, 
0.816, 0.776 for 1-, 3- and 5-year, respectively (Fig.  4C). Meanwhile, Fig.  4D indicating that our prognostic 
model could have a higher prognostic value than traditional models. Considering the above results, we are able 
to conclude that risk score is a reliable independent indicator for predicting the overall survival rate of patients 
with CRC.

Construction and evaluation of nomogram.  A nomogram including risk score, grade, TNM stage, age, 
and gender can predict the 1-year, 3-year, and 5-year survival rates of patients with CRC (Fig. 5A). A calibration 
curve at 1 year, 3 years, and 5 years demonstrated that the nomogram accurately predicted the overall survival 
of CRC patients (Fig. 5B). It was evident from the ROC curve that AUC value of nomogram (AUC = 0.816) was 
superior to any single indicator (Fig. 5C). The results of univariate and multivariate independent prognostic 
analysis suggest our nomogram could be an independent factor to predict the overall survival of CRC patients 
(p-value < 0.05) (Fig.  5D,E). In conclusion, the predictive accuracy of the presently constructed prognostic 
model is confirmed by the above aspects.

Immune‑related characteristics between the low‑ and high‑risk groups.  The immune cells 
upregulated in the low-risk group were Plasma cells, CD4 memory resting T cells, resting Dendritic cells, acti-
vated Dendritic cells, and Eosinophils (p-value < 0.05), while upregulated immune cells in the high-risk group 
were CD8 T cells, Macrophages M0 (p-value < 0.05) (Fig. 6A). Immune function analysis showed that the high-
risk group was active in HLA, Type II IFN Reponse immune-related functions (p-value < 0.05) (Fig. 6B). In the 
graph of the Tumor Immune Dysfunction and Exclusion (TIDE) score, the score in the high-risk group was 
higher than in the low-risk group (Fig. 6C), which could indicate that the high-risk group was more prone to 
immune escape, and their immunotherapy was less effective.

Potential drugs for CRC patients.  In the treatment of patients with CRC, potential drugs may be special 
targets. In this study, we obtained a total of 58 drugs with statistical difference including 19 drugs more sensi-
tive to the low-risk group and 39 drugs more sensitive to the low-risk group (Supplementary Table 1). The top 3 
drugs more sensitive to the low-risk group were Erlotinib, GSK591, and AZD3759 (Fig. 7A,C,E), while the top 
3 drugs more sensitive to the high-risk group were IGF1R, AZ960, and AZD1332 (Fig. 7G,I,K). Interestingly, 
the relationship between risk score and 3 drugs more sensitive to the low-risk group were positively correlated 
(Fig. 7B,D,F), while the relationship between risk score and 3 drugs more sensitive to the high-risk group were 
negatively correlated (Fig. 7H,J,L). Oxaliplatin, a commonly used chemotherapeutic agent in CRC patients, was 
more sensitive in the high-risk group (p-value < 0.05) (Fig. 7M), and the relationship between risk score and its 
chemotherapeutic drug sensitivity was negatively correlated (Fig. 7N). In conclusion, these drugs can be benefi-
cial in treating patients with CRC by providing new targets.

PPI network of differentially expressed genes in low‑ and high‑risk groups.  We constructed a 
PPI network using differentially expressed genes in low- and high-risk groups (Fig. 8A). We used Cytoscape 
software with degree algorithm to identify ten hub genes including FN1, COL1A1, ACTC1, ACTG2, MYH11, 
SERPINE1, KRT5, THBS2, COMP, APOE (Fig. 8B). From ten hub genes, four differentially expressed target 
genes (FN1, SERPINE1, THBS2, COMP) were identified using the GEPIA database, which had significant 
statistical differences in the survival analysis and expression analysis (p-value < 0.05). The expression levels of 
these four genes were higher in tumor tissues than in normal tissues (Fig. 9A,C,E,G), and the high expression 
of these genes had poor prognosis (Fig. 9B,D,F,H). Further analysis of these four genes was carried out next. 
According to the results of immune cell infiltration, the immune cells that were upregulated in the gene COMP 
high expression group were Macrophages M2 and resting Dendritic cells, and the downregulated immune cells 
were memory activated T cells CD4 and activated Dendritic cells (Supplementary Fig. 1A); the immune cells 
that were upregulated in the gene FN1 high expression group were Macrophages M1, and the downregulated 
cells were naive B cells, memory B cells, and Plasma cells (Supplementary Fig. 1B); the immune cells that were 
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upregulated in the SERPINE1 high expression group were Macrophages M0, Macrophages M0, Macrophages 
M2, activated Mast cells, Eosinophils Neutrophils, memory B cells, follicular helper T cells, resting Mast cells 
(Supplementary Fig. 1C); THBS2 high expression group The upregulated immune cells in the expression group 

Figure 3.   Predictive value of butyrate metabolism risk score in CRC survival. (A) Overall survival by butyrate 
metabolism risk score in the TCGA-CRC cohort. (B) Overall survival by butyrate metabolism risk score in the 
GEO-CRC cohort. (C) Results of univariate independent prognostic analysis in the TCGA-CRC cohort. (D) 
Results of multivariate independent prognostic analysis in the TCGA-CRC cohort. (E) AUC values at 1, 3, and 
5 years in the TCGA-CRC cohort. (F) ROC curves of risk scores and clinical characteristics in the TCGA-CRC 
cohort.
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were Macrophages M2 and resting Dendritic cells, and the downregulated immune cells were naive B cells, 
memory B cells, Plasma cells, activated Dendritic cells (Supplementary Fig. 1D). Next, we explored the relation-
ship between gene expression and clinical features of these four genes (Supplementary Figs. 2–5). Clinical cor-
relation analysis showed that in COMP, FN1, and SERPINE1 genes, the expression levels were significantly lower 
in stage I patients than in stage II, III and IV patients (p-value < 0.05) (Supplementary Fig. 2E, Supplementary 
Fig. 3E, Supplementary Fig. 5E). Mutation analysis revealed that only FN1 has significant differences between 
mutant and wild types (Supplementary Fig. 6). In the target gene correlation analysis, THBS2 and other three 
genes (COMP, FN1, SERPINE1) were positively correlated with each other with statistically significant differ-
ences (p-value < 0.001). The relationship between COMP and FN1, SERPINE1 were also positively correlated 
with each other with statistically significant differences (p-value < 0.001) (Supplementary Fig. 7). Based on the 
above findings, it can be concluded that the high expression group had a high level of immune cell infiltration 
and high levels of activity, which makes it suitable for immunotherapy.

Discussion
Colorectal cancer ranks second in mortality and third in morbidity worldwide according to statistics in 2021, 
which seriously affects human health1,18. Current treatment options for CRC are mainly surgery, chemotherapy, 
radiotherapy and targeted therapy, which can improve the prognosis to some extent but also have limitations, 
especially for patients with advanced CRC with recurrence or distant metastases. Besides, it has been reported that 
immunotherapy-related therapeutic strategies had the ability to overcome the limitations of classical treatment19. 
Standard conventional treatments including chemotherapy and radiotherapy have many side effects owing to 
their cytotoxicity and unspecificity toward any cells are growing and dividing. Immunotherapy overcomes the 
issue of specificity which is the major problem in chemotherapy and radiotherapy. Cancer immunotherapy targets 
cancer antigens of tumor cells specifically, alerts the immune systems to the presence of foreign substances and 
eradicates cancer through the concert of immune responses. The normal cells with no cancer antigens are not 
affected20. The principle of immunotherapy treatment is to inhibit cancer progression by activating the natural 
immune molecular components of the tumor microenvironment. According to reports, the cells with antitumor 

Figure 4.   Validation of the prognostic model in GSE39582. (A) Univariate independent prognostic analysis 
in the GSE39582 cohort. (B) Multivariate independent prognostic analysis in the GSE39582 cohort. (C) AUC 
values at 1, 3 and 5 years in the GSE39582 cohort. (D) ROC curves of risk scores and clinical characteristics in 
the GSE39582 cohort.
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characteristics in the tumor microenvironment are CD8 + cytotoxic T cells, Th1 helper cells and their associated 
cytokines such as interferon21. In vivo, there is a high proportion of Th1, CD8 + T and effector memory T cells, 
indicating better prognosis22. A number of cytokines can be produced by Treg cells to enhance their ability to 
fight tumors23. In this study, the results indicated that the TIDE score in the high-risk group was higher than in 
the low-risk group, which could indicate that the high-risk group was more prone to immune escape, and their 
immunotherapy was less effective. Previous studies showed that a high TIDE score indicates a high likelihood of 
antitumor immune escape24. This is consistent with our above results. Thus, the treatment of patients with CRC 
may be improved by immunotherapy in the low-risk group, which is expected to have good efficacy.

Figure 5.   Construction of nomogram. (A) Nomogram to predict 1-, 3-, and 5-year overall survival in 
the TCGA-CRC cohort. (B) Calibration curves to assess the accuracy of a nomogram. (C) ROC curves of 
nomogram and clinical characteristics in the TCGA-CRC cohort. (D) Univariate independent prognostic 
analysis to determine whether the nomogram can be used as an independent prognostic factor. (E) Multivariate 
independent prognostic analysis to determine whether the nomogram can be used as an independent 
prognostic factor.
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Different types of cancer have different mechanisms for butyrate’s anticancer properties25. By activating 
MCT4, butyrate enhances the antitumor activity of 3-bromopyruvate in vivo and inhibits breast cancer growth26. 
The butyrate also inhibited bladder cancer cell migration by inducing autophagy and apoptosis27. Furthermore, 
butyrate inhibits cellular activity, which results in hepatocellular carcinoma and glioblastoma carcinoma that 
progress more slowly28. Butyrate has a strong relationship with CRC, and its anticancer and anti-inflammatory 
effects are evident in this disease29–31. Research on the intrinsic oncogene pathways in cancer is in full swing. 
However, no predictive model for butyrate metabolism-related genes has been developed in CRC so far. In the 
present work, the TCGA-CRC cohort was used as the training set, and the GEO-CRC cohort was used as the 
test set for accuracy validation. AUC value of the risk model was 0.739, 0.753 and 0.727 for 1-, 3- and 5-year 
respectively, exhibiting superior performance than some other signatures in predicting the prognosis of CRC. 
In previous studies, ferroptosis-related gene signature was constructed in CRC, and AUC was 0.64, 0.64, and 
0.71 for 1-, 3- and 5-year respectively32. A necroptosis-related risk score model was also identified, and AUC was 
0.665, 0.712, and 0.758 for the 1-, 3-, and 5-year OS33.

Past studies have found the intimate relationship between butyrate metabolism-related genes in the risk model 
and tumorigenesis and progression of CRC. As a secretory glycoprotein hormone, Stanniocalcin 2 (STC2) was 
involved in the progression and development of CRC through activating the Wnt/β-catenin signaling pathway 
and promoting CRC cell proliferation and migration34. Previous study have demonstrated that RNA-binding 
protein CELF1 targeted ETS2 in colorectal cancer, contributing to tumor cell migration, invasion and promo-
tion of chemoresistance35. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) has the ability 
to shape extracellular vesicles cargo in human CRC, and higher expression level of IGF2BP1 is correlated with 
poor clinical outcome36. FABP4 expression was associated with E-cadherin and Snail expression in CRC tissue, 
indicating that FABP4 may promote CRC development related to epithelial-mesenchymal transition (EMT)37. 
TIMP1 was found to be overexpressed in colon tissue and lymph node metastasis specimens, and suppression of 
TIMP1 expression inhibited proliferation, and metastasis but promote apoptosis through inducing FAK-PI3K/
AKT and MAPK pathway38.

This new risk prediction model can aid in predicting the treatment outcome for patients and analyze the 
relationship between target genes and immune cell infiltration, clinical characteristics. In immune cell infiltration 

Figure 6.   Immune-related analysis between high-risk and low-risk groups. (A) The immune infiltration 
of immune cell types in high-risk and low-risk patients in the TCGA-CRC cohort. (B) Analysis of immune 
functions in high-risk and low-risk patients in the TCGA-CRC cohort. (C) High-risk and low-risk CRC patients 
with TIDE scores in the TCGA-CRC cohort. *p < 0.05, **p < 0.01, ***p < 0.001.
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analysis, the low-risk group was enriched in Plasma cells, CD4 memory resting T cells, resting Dendritic cells, 
activated Dendritic cells, and Eosinophils. With their potent antigen presenting ability, dendritic cells have long 
been considered a key component of antitumor immunity39. Activated dendritic cells are key to the development 
of long-term and effective anticancer immunity40. It is well documented that eosinophils infiltrate tumors, and in 
most cases, this translates into a better prognosis41. The high-risk group is active in HLA, Type_II_IFN_Reponse 
and there is a study that Type_II_IFN_Reponse is essential for immune editing of tumors42, which indicates that 
the high-risk group is suitable for immunotherapy. In conclusion, targeting different targets, immunotherapy 
may be beneficial for both high-risk and low-risk CRC patients.

Relying on the differentially expressed genes between high and low-risk groups, we cleverly mapped the 
PPI network, from which we filtered the top 10 core genes of the network. We finally obtained four target 
genes (FN1, SERPINE1, THBS2, COMP), which were significantly different in survival analysis and expression 
analysis (p-value < 0.05). It is thought that these four genes are high-risk genes since they are highly expressed 
in tumors, and a high level of expression of these genes is associated with poor prognoses. FN1 can promote 
embryogenesis and host defense, as well as inhibit apoptosis while promoting the growth of CRCs in combina-
tion with ITGA543. CRC aggressiveness is triggered by SERPINE1 activation by ARNTL2 and circadian rhythm 

Figure 7.   Identification of potential drugs. (A,C,E,G,I,K,M) Drug sensitivity analysis between high- and low-
risk groups. (B,D,F,H,J,L,N) The relationship between butyrate metabolism risk scores and drugs.
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variations in circulating PAI-1 levels44. CRC cells migrate and invade more rapidly when THBS2 regulates the 
Wnt/β-linked protein signaling pathway45. It has been reported that COMP promotes cell proliferation during 
the early stages of colon cancer tumorigenesis46. According to these studies, the results are generally consistent 
with ours, confirming the accuracy of the model and its scientific validity. Moreover, the ability of these four 
genes to act on various immune cells suggests that immunotherapy may improve survival rates in patients with 
poor prognoses. However, further investigation of these results is necessary.

Figure 8.   Identification of hub genes. (A) PPI network of differentially expressed genes between high- and low-
risk groups. (B) Top 10 hub genes.
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To conclude, the butyrate prognostic model is capable of evaluating butyrate metabolism patterns comprehen-
sively. The risk score can be used to predict chemotherapy sensitivity, as well as the prognosis of CRC patients. An 
effective clinical follow-up strategy can be achieved through an understanding of the risk score and the clinical 

Figure 9.   Analysis of target genes. The expression of (A) COMP, (C) FN1, (E) SERPINE1, and (G) THBS2 
between normal and tumor tissues. The survival analysis of (B) COMP, (D) FN1, (F) SERPINE1, and (H) 
THBS2.
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stage. The prognostic model of our study will help to promote the development of new diagnostic ideas, and 
facilitate the search for new therapeutic targets and prognostic molecular markers in the future.

Conclusion
In summary, a novel risk model for butyrate metabolism was developed based on data from the TCGA and 
GEO databases. The butyrate metabolism-related four target genes were closely related to the clinical stage and 
prognosis of patients with CRC and showed specificity in immune cell infiltration. It may be possible to use 
these four genes as biomarkers for individualized treatment of patients with CRC to improve their prognoses.

Data availability
This study relied on publicly available data. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases contain this information.
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