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Delineating COVID-19 subgroups
using routine clinical data identifies
distinct in-hospital outcomes
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The COVID-19 pandemic has been a great challenge to healthcare systems worldwide. It highlighted
the need for robust predictive models which can be readily deployed to uncover heterogeneities in
disease course, aid decision-making and prioritise treatment. We adapted an unsupervised data-driven
model—SuStaln, to be utilised for short-term infectious disease like COVID-19, based on 11 commonly
recorded clinical measures. We used 1344 patients from the National COVID-19 Chest Imaging
Database (NCCID), hospitalised for RT-PCR confirmed COVID-19 disease, splitting them equally into
atraining and an independent validation cohort. We discovered three COVID-19 subtypes (General
Haemodynamic, Renal and Immunological) and introduced disease severity stages, both of which were
predictive of distinct risks of in-hospital mortality or escalation of treatment, when analysed using Cox
Proportional Hazards models. A low-risk Normal-appearing subtype was also discovered. The model
and our full pipeline are available online and can be adapted for future outbreaks of COVID-19 or other
infectious disease.

The COVID-19 pandemic, caused by the rapid spread of the original SARS-CoV-2 virus (and its follow-on vari-
ants) is one of the greatest health challenges faced in the modern age. As of May 2022 the global death toll exceeds
6.3 million people with more than 544 million confirmed infections'. Even though large-scale vaccination pro-
grams have mitigated the death toll and hospitalizations, seasonality of spread and new virus variants continue to
cause new ‘waves’ of increased infection. As a result, COVID-19 still puts significant strain on healthcare systems
worldwide. Even though the pandemic has been put into relative control in many countries, recent examples of
virus resurfacing, e.g. the 2022 surge in Shanghai, China? (due to mutations, lack of containment measures, and
vaccine resistance) suggest the world is still in danger of further ‘waves. Insights into factors which can predict
mortality and morbidity of patients infected with SARS-CoV-2 can aid physicians, health facility managers
and policy makers to make better informed decisions, both at present and in future epidemics. Moreover, the
pandemic demonstrated the relative unpreparedness of healthcare systems to deal with many infected patients
while providing adequate care to them. One aspect of this unpreparedness can be attributed to the lack of robust
and appropriate disease models. Through the pandemic, there was a significant effort to develop algorithms and
decision-support systems to aid triaging and patient management. While it is still difficult to say which models
and Al tools have been useful, most studies relied on either established or newly-designed clinical scores (e.g.
the NEWS-2 score®, ROX index*, ISARIC-4C® score), classic machine learning classification (e.g. Support Vector
Machines®), or neural networks/Deep Learning for either imaging’ or clinical data® to predict patient outcomes.
Of the methods utilised to date, clinical scores have shown most promise. Yet perhaps due to the rapid develop-
ment and testing of methods, the majority of existing studies have shown significant limitations—e.g. lack of
independent test dataset®®, overfitting, miscalibration’ (especially for imaging-based deep learning models),
non-availability of code implementation, lack of explainability, small sample size, or biased data selection”’.
To overcome these limitations, we adapted an unsupervised algorithm, SuStaIn'’, to be deployed to data from
the first wave of the COVID-19 pandemic. SuStaln has already shown great promise in in tackling several chronic
diseases'' '3, but it can now be used to gain insights and aid management of shorter-term, infectious disease. We
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used 11 routinely collected clinical measures on admission to hospital to disentangle distinct clusters of patients
(called subtypes) and severity stages of the disease within subtypes, both of which were predictive of inpatient
hospital outcomes. Predictions from SuStaln provide insight into both disease subtypes and severity—a nuance
which many models miss. It further balances model complexity, to capture biomarker dynamics, and explain-
ability, which positions it as a useful clinical tool for triaging patients based on their SuStaln subtype and stage.
Unlike other predictive scales or deep-learning models, it is now readily deployable to future infectious disease
epidemics and the model implementation is available online.

Methods

Population

This study analysed data from the National COVID-19 Chest Imaging Database (NCCID), which comprised
COVID-19 positive and negative patients'*'>. All patients in the study were admitted with suspected COVID-
19 infection. In patients with a confirmed positive Polymerase Chain Reaction (PCR) SARS-CoV-2 RNA test,
NCCID also collected imaging: Computed Tomography (CT) and Chest X-ray (CXR), as well as clinical informa-
tion, where the imaging was performed during the hospitalisation period and the salient clinical readings were
acquired at admission. The study also included a group of patients who were hospitalized but were subsequently
found to be negative for COVID-19. They had to have tested negative on repeated PCR for COVID-19 and not
have been admitted to hospital in the subsequent month. All data used was collected from patients admitted
to hospital in the UK from January 2020 to January 2021. The data was collected from 14 NHS Hospital Trust
centres in the UK, comprising 52 hospitals, which submitted a variable number of cases each.

All data was previously gathered as part of the NCCID study and was stored and analysed in accordance
with the established study guidelines as outlined in an earlier work describing the dataset!'®. Ethical approval
was granted by the UK Health Research Authority and the Scottish Public Benefit Privacy Panel (PBPP), and
was also reviewed by NHS Information Governance'®. Processing of pseudonymised patient data for this study
was allowed under a nationally issued Notice under Regulation 3(4) of the Health Service Control of Patient
Information Regulations 2002 (COPI). This notice required all hospitals and NHS centres to share and process
confidential patient information for COVID-19 purposes (protecting public health, providing healthcare services
to the public and monitoring and managing the outbreak)'>. Subject consent for publication was not required as
all data was pseudonymised'. All data collection, processing and sharing in the NCCID study was done under
the rules and conditions outlined in the Notice. Approval for the retrospective analysis of clinically data and
imaging data in NCCID was obtained from the local research ethics committees and Leeds East Research Ethics
Committee: 20/YH/0120.

Data preparation

Even though NCCID enrolled many centres in data collection, the significant load imposed by the ongoing
COVID-19 pandemic led to many instances of missing data, especially in the clinical readings at admission. As
aresult, we used a portion of the NCCID dataset, primarily driven by data completeness. A total of 1344 subjects
(referred to as case population) were used in the current study, in addition to 137 COVID-19 negative patients
who were utilised as controls for the disease progression model (please see “Subtype and stage inference model”).
Manual data quality assurance, curation and standardisation was performed on all clinical data.

We selected eleven clinical tests as biomarkers for disease progression modelling: creatinine, urea, C-reactive
protein, lymphocyte count, platelet count, white cell count, respiratory rate, temperature, heart rate, systolic and
diastolic blood pressure. Several of these measures have been suggested as being prognostically important in
previous survival analyses>>!¢. The choice of clinical tests to include in our model was driven by previous use
in research and by practicality. All clinical test results were recorded on admission of the patients to hospital.

The 1344 covid-positive cases were split randomly into a training and validation sample of 672 subjects
after matching the two populations for age. All model training and tuning was performed solely on the training
population and the patients in the validation population were used only at testing.

NCCID data was accessed through a UCL-owned XNAT instance. The Microsoft Azure platform and tools
from Microsoft Project InnerEye Open Source Software were used for cloud-based modelling and analysis
(https://aka.ms/InnerEyeOSS).

Subtype and stage inference model

Subtype and Stage Inference (SuStaln) is an unsupervised learning algorithm that simultaneously identifies
clusters (subtypes) and progression sequences (stages) of disease based on worsening biomarker readings. SuS-
taln was first developed to model long-term chronic diseases such as Alzheimer’s'® and Chronic Obstructive
Pulmonary Disease (COPD)!". Uniquely, it extracts a temporal (or pseudo-temporal) evolution of disease from
single-timepoint, cross-sectional data to account for the inherent progression of diseases. The present study is
the first to apply SuStaln to an infectious disease in its acute phase.

Linear z-score SuStaln was the chosen SuStaln model, in which each of the eleven clinical biomarkers was
transformed to a z-score with reference to a control population. The control population for this study consisted
of 137 patients who were suffering from acute disease (initially suspected to be COVID-19) and were hospital-
ised but were later determined to not have COVID-19. This population was favourable for usage as controls to
SuStaln since all patients were unwell enough to be admitted to hospital but were not infected with COVID-19.
By z-scoring the 11 biomarkers to this population, the effects of COVID-19 infection on the biomarkers were
separated from the effects of other acute disease.

Several data preparation steps were carried out prior to initiating modelling with SuStaln to isolate the
COVID-19 signal from other potential covariates. First, the effects of age and sex on all 11 biomarkers were
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learned in the control population and regressed out from the entire population. Second, the distributions of
biomarkers were checked for normality through the Shapiro-Wilk and D’Agostino’s K? test. If a biomarker
distribution failed any of the normality tests, a power transform (either the Box-Cox or Yeo-Johnson) was used
to improve the normalisation of its distribution. The transformations were applied both on the control and case
populations and were necessary since normal distributions are assumed by the linear z-score SuStaln model.

Finally, each biomarker was transformed into a z-score with reference to the control population, as described
earlier. Since some biomarkers were expected to increase or decrease with disease progression, those found to
decrease in the case population with reference to the control population (implying negative z-scores), were
inverted to ensure all biomarker progression was represented by monotonically increasing z-scores.

Several hyperparameters—model parameters which are not automatically learned, but are instead chosen
and optimised by the researcher, were selected—namely the z-score thresholds which represent a stage of pro-
gression and the maximum number of subtypes (clusters) to search for. These were tuned and the best-fitting
model selected. Table 1 outlines the z-score thresholds selected for each biomarker. When a biomarker reaches
a certain z score value (e.g. z=1 or z=2), this represented a new disease severity stage.

After the model was trained (on the training population), each subject was assigned a SuStaln subtype and
stage. Subtype was assigned by selecting the most probable cluster. Instead of assigning a simple integer stage to
each subject, a weighted stage was designated. For each subject, each stage was weighed by the probability of the
subject belonging to that stage and the result was then summed, producing a continuous weighted stage. Sub-
jects in the validation population were subtyped and staged using the model trained on the training population.

Frailty Cox proportional hazards models

To model the survival of patients admitted with COVID-19 infection, the Cox Proportional Hazards (PH)
model was used. We used 5 predictor variables in the model: age, sex, subtype, weighted stage, and the subtype-
weighted stage interaction. Two outcomes were predicted—time to in-hospital death and time to escalation of
patient management. Escalation was defined as in-hospital deterioration which resulted in either ITU admission,
intubation or death. The earliest of these 3 events was used as the measure of time to escalation for each patient.
Observations were right censored to 6 months after hospital admission as this was the maximum hospital stay for
some patients (before discharge or death). To account for the significant variability between centres, a frailty Cox
PH model'” was adopted with NHS centre as the frailty variable, modelling the random effects in the population.

Results

Covid subtypes and severity progression

SuStaln discovered 3 clinical subtypes of COVID-19 (based on the training population), characterised by distinct
in-hospital disease progression. SuStaln has previously been used to model long-term disease like Alzheimer’s or
COPD, which span years, but we adapted it for the relatively short time span of an infectious disease (in-hospital
monitoring for up to 6 months). Hence, the disease stages can be interpreted as sequences of progression in the
severity of disease within each subtype. We named the three subtypes ‘General Haemodynamic, ‘Renal” and
‘Immunological’ (Fig. 1).

Subtype 1: general haemodynamic

In this subtype, less severe disease was characterised by high diastolic blood pressure, temperature, respiratory
and heart rate, which was then followed by further heart rate increases, elevated CRP and a decrease in lym-
phocyte levels.

Included
Z-score
thresholds
Biomarker Unit z=1 |z=2
Creatinine pmol/L X
Urea mmol/L X
Respiratory rate breaths/min | x X
C-reactive protein mg/L X X
Temperature °C X
Systolic BP mmHg X
Diastolic BP mmHg X
Heart rate beats/min X X
Lymphocyte count | 10°/L X X
Platelet count 10°/L X
White cell count 10°/L X

Table 1. The clinical measures (biomarkers) used for SuStaln modelling. Biomarkers were thresholded at
certain z-score values to represent a SuStaln disease severity stage—either when a biomarker reaches a z-score
of 1 or a z-score of 2. Each threshold for each clinical measure is marked with an X’ in the table below.

Scientific Reports |

(2023) 13:9986 | https://doi.org/10.1038/s41598-023-32469-9 nature portfolio



www.nature.com/scientificreports/

Subtype 1 (f=0.35) Subtype 2 (f=0.34)

creatinine -
_ urea
respiratory rate{ [l
crp |
temperature { M
systolic bp - H
diastolic bp #l
heart rate - | I
lymphocyte count - N
platelet count
WCC -

o

I
|
B

UM N BN BN BN BN BN BN B B B B B B 1T 11+ 11 T

NV By A %Q.@\;\.QQ\;\!;) %2 Vﬁb«%q»g\.\’q.\?\’w

SuStaln stage SuStaln stage
Subtype 3 (f=0.31)

Biomarker z-score

creatinine
urea
respiratory rate - - zZ=
cp
temperature - [ - 7-1
systolic bp 1l
diastolic bp | jm| - s =1
| h hetart rat% . |
ymphocyte count H
platelet count - B:--
WCC -

LU B I B A R B N B B B BN B B

Y1 B9 04 29,0000
SuStaln stage

Figure 1. COVID-19 subtypes and disease severity progression. The warm colours represent disease stages
progressing towards positive z-scores (z=1, z=2) and the cold colours—towards negative z-scores (z=- 1,
z=-2). Increased colour transparency signifies greater uncertainty. The f-value next to each subtype represents
the fraction of the training population which was classified as belonging to this subtype.

Subtype 2: renal

The Renal subtype was characterised by early elevations in creatinine and urea levels, followed by a decrease of
systolic blood pressure and an increase in CRP. Unlike the other 2 subtypes, which only exhibit abnormal cre-
atinine and urea in late-stage disease (SuStaln severity stages 12+), patients with the Renal subtype experienced
these abnormalities early in their disease severity progression.

Subtype 3: immunological
In the Immunological subtype, COVID-19 began with abnormally low systolic blood pressure, followed by a
cascade of decreases in lymphocyte and platelet count and then elevated temperature, heart rate and CRP levels
at more advanced disease.

In all subtypes, abnormalities in the systolic and diastolic blood pressures seemed to be separated—being
placed at the opposite ends of SuStaln stage in all three subtypes.

Data exploration

SuStaIn modelling revealed a large proportion of patients were assigned to SuStaln stage 0—a disease state, which
was very similar to the control population. These patients were grouped into a separate, Normal-appearing Sub-
type 0—290 patients from the training population and 317 patients from the validation population were found
to belong to this subtype. These subjects had a milder COVID-19 presentation and were later found to have a
much higher probability of survival.

Furthermore, for the following biomarkers, progression represented a decrease rather than an increase in
the real-value biomarker readings: systolic blood pressure, lymphocyte count and platelet count. This meant
that for these 3 biomarkers, the average biomarker readings were lower in the case population as compared to
the control population. Advancing of SuStaln stages for these 3 biomarkers, therefore, represented decreases in
their absolute values. For clinical context, Table 2 presents an overview of the absolute values of each biomarker
for each subtype. General demographic data for the training and validation populations, in aggregate, and also
split by subtype, can be found in Table 3.

Cox proportional hazards (PH) frailty model

SuStaln subtype and weighted stage was found to be a significant predictor of both in-hospital escalation of
patient management and in-hospital mortality for patients admitted with COVID-19. Cox PH models were
fitted separately on the training and test populations and then set against one another to confirm consistency
of the results. The Kaplan-Meier curves and model coefficients were examined as a form of validation, as sug-
gested previously'®.
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Respiratory rate
Creatinine (umol/L) Urea (mmol/L) (breaths/min)
Biomarker | Mean | Std Median | Mean | Std Median | Mean | Std | Median
Subtype 0 82.8 309 |76.0* 59 2.8 5.3% 20.1 39 20.0*
Subtype 1 1047 | 99.1 |87.0° 7.9 5.4 6.4° 28.2 7.6 | 28.0°
Subtype 2 2287 |211.7 |156.5° 15.8 8.9 13.8¢ 234 7.5 21.0°
Subtype 3 102.9 80.2 | 86.0* 8.3 6.0 7.1° 22.8 5.7 21.0°
Temperature (°C) Systolic BP (mmHg) Diastolic BP (mmHg)
Mean | Std Median | Mean | Std Median | Mean |Std | Median
Subtype 0 37.0 0.9 36.9* 1343 | 232 131.0* 75.1 12.6 | 75.0°
Subtype 1 38.1 1.0 38.2° 1489 |233 |147.0° 889 |16.7 |87.0°
Subtype 2 37.2 1.1 37.1* 1209 |20.4 120.0¢ 68.3 12.6 | 69.0¢
Subtype 3 37.6 1.1 37.7¢ 118.4 |20.2 118.0¢ 68.2 12.3 | 68.0°
Lymphocyte count (10°/L) | Platelet count (10°/L) WCC count (10°/L)
Mean | Std Median | Mean | Std Median | Mean | Std | Median
Subtype 0 1.4 2.0 1.1* 242.7 104.2 | 225.0* 7.4 3.7 6.7
Subtype 1 1.0 0.7 0.8 249.8 | 1734 |223.0° 87 |41 |78
Subtype 2 1.3 1.9 0.9*° 256.7 | 128.7 |233.5% 12.1 6.8 10.8¢
Subtype 3 0.5 0.2 0.4¢ 159.4 76.7 | 158.0° 6.9 55 5.8%
CRP (mg/L) Heart rate (beats/min)
Mean | Std Median | Mean | Std Median
Subtype 0 62.3 64.2 40.2% 84.7 |16.1 84.0°
Subtype 1 1167 |117.6 | 90.0° |1058 |19.9 |104.0°
Subtype 2 165.2 | 107.0 | 148.1¢ 91.3 19.3 91.0°
Subtype 3 105.6 76.8 89.5" 924 | 193 90.5¢

Table 2. Descriptive statistics for the 11 biomarkers in the entire case population, split by subtype. Subtype
0 represents the ‘normal looking subtype, which is most similar to the control population. Std—standard
deviation. One-way ANOVA with the Tukey post-hoc tests performed between subtypes for each biomarker:
results indicated with labels (a, b, ¢, d)—subtypes with a significant pairwise difference have different labels,
while subtypes which were not significantly different share the same labels.

Training Validation

All Subtype 0 Subtype 1 Subtype 2 | Subtype 3 All Subtype 0 Subtype 1 Subtype 2 Subtype 3
Age [mean (std)] 70.0 (16.2) 67.0 (16.9) 69.2 (15.0) 74.3 (15.5) | 73.0 (15.1) 69.5 (16.2) 66.2 (17.1) 71.8 (14.9) 73.9 (14.4) 71.4 (14.7)
Sex [% female) 59.8 55.2 63.4 60.6 67.0 61.6 59.3 68.2 63.0 59.8

N:32.7 N:32.8 N:36.1 N:30.5 N:31.3 N:31.7 N:31.7 N:31.1 N:32.5 N:31.9
Smoking status [% in each E: 20.0 E: 204 E: 194 E:16.1 E:27.7 E:20.2 E: 18.3 E:23.7 E:20.2 E: 22.0
category] C:34 C:3.2 C:3.7 C:2.6 C:4.8 C: 4.6 C:4.2 C:6.5 C:35 C:5.5

U:43.4 U:43.6 U:40.7 U:50.8 U:36.1 U:43.4 U:45.8 U: 387 U:439 U:40.7
Mortality [% died] 329 18.6 38.2 52.8 38.5 299 18.9 32.7 47.1 37.4
Days to death [mean (std)] 125.5(78.5) | 149.3(64.4) | 115.4(82.8) [93.3(83.7) | 116.1(81.5) |130.3(76.8) | 149.1(64.6) |124.4(80.4) | 101.5(85.1) | 117.6(81.4)
Escalation [% escalated] 41.1 224 58 57.7 48.6 37.6 25.2 45.5 55.8 43.0
gfg)s]“’ escalation [mean 110.5(83.9) | 142.4(70.2) | 78.5(86.8) |84.4(83.7) |98.1(85.0) |115.5(83.4) |137.4(73.9) |101.2(87.0) |83.4(86.6) |107.1(84.7)

Table 3. Demographics per population and subtype. Smoking status: N—never, E—ex-smoker, C—current
smoker, U—unknown. No significant differences were found in any variable between the training and
validation populations (using t-tests for continuous variables and chi-squared tests for nominal and binary
variables).

Predicting escalation of patient management using SuStaln
Table 4 is a summary of the multivariable Cox proportional hazards models fitted to both the training and valida-
tion population, with a frailty term accounting for bias between submitting NHS Hospital trusts. The results were
consistent between populations, suggesting that SuStaln subtype and stage generalise as predictors of escalation
between 2 randomly selected populations (albeit in patients whose data was collected as part of the same study).
The interaction of subtype and weighted stage, moreover, produced the greatest overlap in coefficients.

Model concordance was good and was nearly equal in the Cox models fitted to both the training (C index of
0.69, 95% CI 0.66-0.72) and validation (C index of 0.69, 95% CI 0.65-0.72) populations.
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Training Validation
Covariate HR | Lower 95% | Upper 95% | p-value | HR | Lower 95% | Upper 95% | p-value
Age 1.01 | 1.00 1.02 0.01 1.01 | 1.00 1.01 0.29
Sex 0.80 | 0.62 1.03 0.08 0.59 | 0.45 0.78 0.00
Subtype 1 4.05 |2.08 7.88 0.00 2,69 |1.32 5.47 0.01
Subtype 2 3.73 | 1.85 7.49 0.00 2.77 | 1.41 5.45 0.00
Subtype 3 5.04 |237 10.74 0.00 2.58 |1.28 5.17 0.01
Weighted stage 2.74 | 135 5.56 0.01 299 |1.58 5.66 0.00
Subtype 1: wstage | 0.44 | 0.22 0.90 0.02 0.39 |0.20 0.75 0.00
Subtype 2: wstage | 0.42 | 0.21 0.86 0.02 042 |0.22 0.80 0.01
Subtype 3: wstage | 0.35 | 0.17 0.72 0.00 0.38 |0.20 0.73 0.00

Table 4. Multivariable Cox Proportional Hazards modelling of Time to Escalation in the training and
validation population. The hazard ratios, HR, (and consequently the exponent of model coefficients) between
the training and validation populations show significant overlap. The effects of the frailty variable—NHS
Hospital trust, are not shown as there are 14 centres in the population. wstage: weighted SuStaln stage; sex 0:
female; sex 1: male; variable interactions denoted with
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Figure 2. Kaplan-Meier plots for 6-month in-hospital escalation of treatment for the training (left) and
validation (right) population. wstage—weighted SuStaln stage.

Early SuStaln stages and Subtype 0 were found to predict much less frequent in-hospital escalation of treat-
ment as compared to the other 3 subtypes (Fig. 2). Among the three subtypes, patients assigned to the Immu-
nological subtype (subtype 3) were least likely to experience escalation of treatment, while the General Haemo-
dynamic (subtype 1) and Renal (subtype 2) subtypes were more likely to require treatment escalation while
hospitalised (Fig. 2). The Kaplan-Meier curves for SuStaln subtypes were generally consistent in the training
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Figure 3. SuStaln stage provides better discrimination of time to escalation than age or sex: left—training
population, right—validation population. wstage—weighted SuStaln stage. sex 0—female, sex 1—male.

and validation populations. The only subtype showing poorer calibration between populations was the haemo-
dynamic subtype where the KM curves differed between populations.

SuStaln stage on its own had significant discrimination for the need for escalation of treatment (Fig. 3) and
was a better predictor of escalation than patient age or sex.
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Training Validation
Covariate HR | Lower 95% | Upper 95% | p-value | HR | Lower 95% | Upper 95% | p-value
Age 1.04 |1.03 1.05 0.00 1.04 |1.03 1.05 0.00
Sex 0.85 |0.65 1.13 0.26 0.69 |0.51 0.94 0.02
Subtype 1 2.35 | 1.07 5.14 0.03 2.35 | 1.00 5.51 0.05
Subtype 2 3.39 | 1.58 7.26 0.00 228 | 1.04 5.03 0.04
Subtype 3 3.07 |1.30 7.25 0.01 2.55 | 1.14 5.68 0.02
Weighted stage 2.32 | 1.01 5.30 0.05 2.72 | 1.28 5.78 0.01
Subtype 1: wstage | 0.52 | 0.22 1.19 0.12 042 |0.19 0.90 0.03
Subtype 2: wstage 049 |0.21 112 0.09 0.47 |0.22 1.01 0.05
Subtype 3: wstage | 0.44 | 0.19 1.02 0.06 0.43 |0.20 0.92 0.03

Table 5. Multivariable Cox proportional hazards analyses modelling time to death in the training and
validation groups. HR: hazard ratio; wstage: weighted SuStaln stage; sex 0: female; sex 1: male.

Mortality prediction using SuStaln

SuStaln subtype and stage were also good predictors of in-hospital mortality. As shown in Table 5, the hazard
ratio confidence intervals show good overlap between training and validation populations. For determining
mortality, subtype and weighted stage on their own were better predictors than the subtype-stage interaction
(which did not achieve significance at the 0.05 threshold in the training population). Model concordance for both
the training and validation populations was equal: C index of 0.74, 95% CI 0.71-0.77 on the training population

Mortality in the train population by subtype

L

Mortality in the test population by subtype

Follow-up Time [months]

Follow-up Time [months]

Figure 4. Kaplan-Meier plots for 6-month in-hospital mortality for the training (left) and validation (right)
population. Wstage—weighted SuStaln stage.

e |
-1 %
o |
o
. 2
St lnmias B S S S + g © |
o o
....... o
___________________________________ o
............................... . =
©
2 3
o
g
(7]
subtype_CATEG0=0 subtype_CATEG0=0
subtype_CATEGO=1 S subtype_CATEGO=1
-+-+ subtype_CATEG0=2 <+-+ subtype_CATEG0=2
-~ subtype_CATEG0=3 =+ subtype_CATEG0=3
o |
=
T T T T T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Follow-up Time [months] Follow-up Time [months]
Mortality in the train population by wstage Mortality in the test population by wstage
o |
© |
o
=
2ol
o o
[
o
©
> <
S o
g
7]
wstage <= Median wstage <= Median
wstage > Median g - wstage > Median
o |
o
T T T T T T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Scientific Reports |

(2023) 13:9986 |

https://doi.org/10.1038/s41598-023-32469-9

nature portfolio




www.nature.com/scientificreports/

Mortality in the train population by age Mortality in the test population by age
o | o
© | ©
o Pl
2 >
2 s
© © © @
p > |
E 8°
S s
.g o § <
s ° R
= =]
» »
age <= Median age <= Median
g J age > Median g | age > Median
o | o |
o o
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Follow-up Time [months] Follow-up Time [months]
Mortality in the train population by sex Mortality in the test population by sex
o | o
© «© |
o 7 o
2 2
3 5
© < I
g° 8
s s
g < S <]
2 ° e °
> >
» 7]
o | o
o o
o | o |
o o
‘ T ‘ : ‘ : : T ‘ T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Follow-up Time [months] Follow-up Time [months]
Mortality in the train population by wstage Mortality in the test population by wstage
o | e
«© |
2 o
> 2
3 =
© @9 T 24
8 ° 8
5 a
S . 2=
23 $3
=1 3
7] @
wstage <= Median wstage <= Median
g N wstage > Median g g wstage > Median
o | < |
o o
T T T T ‘ ‘ ‘ ‘ T : ; ‘ : ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Follow-up Time [months] Follow-up Time [months]

Figure 5. SuStaln stage provides better discrimination for 6-month in-hospital mortality than age or sex (left—
training population, right—validation population. wstage—weighted SuStaln stage. sex 0—female, sex 1—male.

and C index of 0.74, 95% CI 0.71-0.77 on the validation population, showing a slightly better concordance than
the models for escalation of patient management.

SuStaln subtype 0 was, as with the models of treatment escalation, characterised by significantly lower in-
hospital mortality. The Renal subtype demonstrated the highest risk of dying in hospital, showing consistent
results of ~ 50% survival at 6 months in both the training and validation populations. Subtypes 1 and 3 had very
similar prognoses in the training population (at ~ 70% 6-month survival), but subtype 3 showed slightly worse
calibration in the validation population and a slightly worse survival.
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SuStaln stage was also, independently, associated with higher risk of in-hospital mortality (Fig. 4).

As expected, age was a strong predictor of in-hospital mortality, with older patients being at higher risk. Sex
had a smaller effect on mortality, but calibration for sex was poor (Fig. 5), probably as a consequence of the
random sampling used when creating the training and validation populations, which led to a slightly different
proportion of men and women (Table 3).

Discussion

We demonstrated that an unsupervised machine learning model, traditionally used for long-term disease pro-
gression modelling—SuStaln, is readily adaptable to a pandemic of viral disease. The three SuStaln subtypes
we discovered likely represent disease involvement in distinct organ systems while SuStaln stages provide the
required gradation to disease severity in patients with COVID-19, which is valuable for risk stratification and
outcome prediction. The zeroth subtype also represents a valuable signal, characterizing patients who have been
admitted to hospital but were in fact at low risk of death or escalation of treatment. The robustness of our results
further highlights our model’s significance as a readily available clinical tool in future epidemics of influenza or
further COVID-19 variants.

Several studies have previously investigated factors associated with differing severity of COVID-19 infec-
tion on a number of large-scale datasets, such as the NCCID, ISARIC, PHOSP-COVID®. As a result, various
clinical measures and biomarkers have been derived for use as prognostic factors for patients diagnosed with
COVID-19. Patients admitted for COVID-19 have been reported to have a~ 5 times higher hazard ratio for
death, ~ 4 higher hazard ratio for mechanical ventilation and 2.41 higher hazard ratio for being admitted to an
intensive care unit (ITU)* compared to influenza. In addition to the pulmonary manifestations of pneumonia
and ARDS?!, COVID-19 infection is further associated with injuries to other organs including: acute kidney
injury, deep venous thrombosis, stroke, sepsis and sudden cardiac death®. To predict short-to-medium term
outcomes (in-hospital death or ITU admission), the National Early Warning Score (NEWS2)—an existing risk
stratification tool was initially used. However, studies have shown its low discrimination power when applied to
COVID-19 patients**. A combination of NEWS2 with 8 further routinely collected blood and clinical measures
(supplemental oxygen flow rate, urea, age, oxygen saturation, C-reactive protein, estimated glomerular filtration
rate, neutrophil count, neutrophil/lymphocyte ratio) improved its discrimination power for severe COVID-19
outcomes, but model calibration remained poor®, necessitating the development of COVID-19 specific patient
stratification and prognostication tools. One such tool was the ROX index, evaluated by Prower et al.* The ROX
index represents the ratio between the peripheral oxygen saturation (SpO2), and the concentration of oxygen in
inhaled oxygen (21% in room air), divided by the patient’s respiratory rate and was developed to indicate the need
for intubating patients suffering from hypoxia. The authors found that the ROX index predicted adverse events
5 h earlier than NEWS2 and provided a clinically useful warning signal. The study emphasized the prognostic
importance associated with a deterioration in respiratory parameters in escalation management of COVID-19.
Investigation into other prognostic factors for COVID-19 in hospitalized patients included the development of
the ISARIC 4C Mortality Score®. The score ranges from 0 to 21 points and included eight routinely collected
clinical readings: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of
consciousness, urea level, and C reactive protein®. The ISARIC 4C Mortality score was developed on a large UK
population (~ 58,000 patients), as part of the ISARIC study* and the authors reported excellent discrimination
of the score for in-hospital mortality and, more importantly, very good model calibration suggesting applicability
of the score when used in new centres and populations. The performance of the score in predicting mortality
was also superior and the authors compared their score to 15 other risk stratification scores®. The ISARIC 4C
consortium further developed a Deterioration model (based on multiple logistic regression) to predict not only
mortality, but clinical deterioration, defined as admission to ITU or need for mechanical ventilation'. The model
displayed convincing discrimination and calibration by using 11 clinical biomarkers: age, sex, respiratory rate,
oxygen saturation, room air or oxygen, level of consciousness (Glasgow Coma Scale), nosocomial infection,
radiographic infiltrates, urea concentration, lymphocyte count and C reactive protein'®.

While it is difficult to make direct model comparison due to an only partial overlap in the used clinical
measures/biomarkers, we demonstrated that by using a purely cross-sectional clinical and biological data at
admission for COVID-19 (11 routinely collected biomarkers) and modelling disease severity progression with
SuStaln, clinically meaningful subtypes and stages of COVID-19 can be derived. This departs from the idea of a
one-size-fits-all index and allows us to model involvement in different organ systems through SuStaln subtypes.
In addition to being predictive of in-hospital outcomes, our results can be valuable for organ-specific studies of
damage from COVID-19. Previous studies, using tools such as the ISARIC 4C* or ROX index* tried to use a
single scale to predict patients outcomes and prioritise treatment. However, this view, while it has shown clini-
cal utility, may miss the inherent nuance in the progression patterns of patients infected with Sars-CoV-2. In
terms of triaging, our model can be used to assign patients admitted to hospital for COVID-19 to one of the 4
subtypes by simply taking the readings of the 11 biomarkers we used. Subtype 0 patients, while ill enough to be
hospitalised, can be classified as low-risk’ for either experiencing escalation of treatment or dying in hospital.
Subtype 3 patients, similarly, are at a lower risk, but patients assigned to Subtypes 1 or 2, and especially at their
more advanced SuStaln stages, should be prioritised for treatment and monitored more closely.

The disease subtypes discovered by SuStaln modelling broadly affect different systems within the body and
consequences from COVID-19 in these systems have been previously described. The Renal subtype (Subtype
2) is consistent with several studies which identified some COVID-19 patients experiencing significant kidney
problems or even acute kidney injury (AKI)*>**. In the consensus report, patients suffering AKI were at sig-
nificantly increased risk of all-cause death in hospital®. Our model further provides stages within this subtype
which can differentiate patients by considering all 11 readings. While patients admitted with just elevated urea
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and creatinine, for example, might belong to subtype 2, if they are relatively normal in the other 9 biomarkers,
they may be assigned to an early SuStaln stage. A clinician might then monitor development of further changes
in biomarkers to diagnose severity progression within the Renal subtype, which can inform risk determination
and treatment.

The General Haemodynamic subtype (Subtype 1) can be hypothesised to relate to the common blood-clotting
and hyper-inflammatory effects, described in a number of studies*?. An interesting finding which our model
uncovered is that late-stage disease patients who are at the greatest risk of escalation and dying within this subtype
(advanced SuStaln stage) experience a drop in their lymphocytes, platelets, and systolic blood pressure. An early
decrease in platelet count was found to predict mortality in a study in Wuhan?’, which might represent a pos-
sible depletion of systemic platelets due to significant clotting in the lung. Another study also reported a trend of
rather sharply dropping platelets in non-survivors over multiple timepoints during hospitalisation?®. Indeed, late
SuStaln stages in both Subtypes 1 and 2 were characterised by a drop in platelet count—those were the patients
at greatest risk of dying in hospital. Although our work reconstructs disease severity progression from just a
single timepoint reading, patients assigned to the later SuStaln stages of Subtypes 1 and 2 might have already had
a reduced platelet count by the time of hospital admission (effectively more advanced disease). By examining
the absolute values of platelet counts for these patients, the same ranges of values (between 100 and 150 x 10°/L)
were discovered in late-stage patients in our study and in Yang et al.?® The decreases in total lymphocyte count,
characteristic of the late SuStaln stages in subtype 1 and 2 patients is also consistent with a meta-analysis of 20
studies, which determined this decrease to be closely associated with advanced severity of disease®.

The Immunological subtype (subtype 3), on the other hand showed lower levels of lymphocytes and platelets
in the lowest-risk, early disease stages. These findings highlight the importance of signals contained within the
multitude of biomarkers routinely collected during medical care. Our model aggregated several of these biomark-
ers and benefited from the inferred clustering of disease and stages of disease severity rather than employing a
one-size-fits-all approach for triaging and prognostication. While decreased lymphocytes and platelets might
imply a high risk of death and escalation of treatment when occurring after a series of haemodynamic (Subtype
1) or renal (Subtype 2) symptoms, they might indicate lower risk if occurring without these symptoms as seen in
Subtype 3. SuStaln’s ability to disentangle sequences of progressing severity and subtype simultaneously provides
a far more detailed picture than a single score for all patients.

Our approach also identified an interesting dissociation of systolic and diastolic blood pressure in all subtypes.
Namely, the abnormally increased diastolic blood pressure and abnormally decreased systolic blood pressure were
always placed at opposite ends of disease severity stages. This suggests that instead of one of the blood pressure
phases indicating severe disease, it might be the effectively decreased pressure range between systole and diastole
(pulse pressure) which hallmarked advanced COVID-19 and increased a patient’s chance of both escalation of
treatment and death. This signal merits further investigation as two studies indicated that a high variability of
blood pressure in COVID-19 patients is associated with poorer outcomes® and, interestingly, that patients who
have recovered from COVID-19 tend to have impaired aortic distensibility*'.

The main strength of the present work is that it was able to demonstrate clinically significant differences in
both escalation of treatment and mortality for patients hospitalised for COVID-19, based on 11 routine and easy
to collect clinical measurements. We discovered 3 distinct subtypes of COVID-19, which might imply different
underlying pathophysiology and disease course in different patients. Although the data we used was collected
as part of a single study (the NHSX NCCID), it came from hospitals and NHS trusts throughout the UK and
included patients from diverse socio-economic and racial backgrounds. We further employed one of the most
challenging techniques for the validation of our Cox Proportional Hazards models—replication on a separate
sample of patients. Our model can be readily applied, tested, and tuned on a larger sample of patients (e.g., from
different studies) using the 11 biomarkers we studied. More broadly, our model can be further augmented should
a more complete set of biomarkers, or other feasible biomarkers become available.

There were several limitations to this study. Methodologically, SuStaln was developed for modelling long-
term, chronic disease. This was the first time it was adapted to severe infectious disease. One of its assumptions
is that biomarkers can only become more abnormal with time. This means that it cannot inherently derive the
transient drops and increases in biomarkers, which might happen while a patient is hospitalised. Nevertheless,
the model is still appropriate for stratification of patients and triaging since it focuses on the severe period of
disease when patients are hospitalised and deteriorating. All clinical measurements in the NCCID were per-
formed in this period. Hence, in this sense the learned model represents a progression of severity of disease and
does not currently capture recovery. Furthermore, while the learned disease severity progression is currently
unidirectional, the model poses no constraints on staging patients to an earlier (less severe) stage in case data was
available for a follow-up visit. Hence, at the individual patient level, recovery can be modelled. Future work on
making SuStaln even more useful for shorter term infectious disease outbreaks could also relax the assumption
of unidirectionality in disease progression, to capture potential population-wide increases and declines in health.

The data which was available for this study also had several limitations. First, the NCCID dataset did not track
the presence of coronavirus variants (Alpha, Beta, Gamma, Delta, Omicron)!**? and this information would
have been useful for disease modelling since the population likely included different virus variants. However,
the common nature of the biomarkers used in our models opens the way for relatively easy validation when new
data becomes available. A follow-up timepoint to validate disease progression, as well as availability of additional
variables such as patient blood type would also have benefitted our study. Furthermore, there was a risk of false
negative PCR tests across the population, which might have caused presence of COVID-19 positive patients in
the control population. Finally, the specific causes of death, for example cardiac arrest or pulmonary embolism
due to COVID-19, were not recorded in the study—the availability of these would have brought further insight
into the pathophysiology of COVID-19.

Scientific Reports |

(2023) 13:9986 | https://doi.org/10.1038/s41598-023-32469-9 nature portfolio



www.nature.com/scientificreports/

In conclusion, we found that by using 11 common clinical readings at admission to hospital for COVID-19,
we could learn distinct COVID-19 subtypes and disease severity stages, which are predictive of patient outcomes.
Importantly, we've adapted SuStaln for use in further infectious disease flares and the model can be readily tune or
retrained to capture a finer-grained picture of disease, which can aid patient triaging and resource prioritisation.

Data availability

The current study analysed data which was previously collected as part of the NCCID'®. As described in the
dataset overview study'*, all data from the NCCID is available to any user by submitting an application through
a rigorous Data Access Request (DAR) and then following the described procedure outlined in https://nhsx.
github.io/covid-chest-imaging-database.
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