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A federated learning differential 
privacy algorithm for non‑Gaussian 
heterogeneous data
Xinyu Yang  & Weisan Wu *

Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and 
centers do not follow a normal distribution, posing significant challenges to learning. Based on 
the assumption that the client data have a multivariate skewed normal distribution, we improve 
the DP-Fed-mv-PPCA model. We use a Bayesian framework to construct prior distributions of local 
parameters and use expectation maximization and pseudo-Newton algorithms to obtain robust 
parameter estimates. Then, the clipping algorithm and differential privacy algorithm are used to 
solve the problem in which the model parameters do not have a display solution and achieve privacy 
guarantee. Furthermore, we verified the effectiveness of our model using synthetic and actual data 
from the Internet of vehicles.

In the present increasingly developed technology, various intelligent terminals collect personal data, and because 
of improvements in storage devices and communication technology, people have begun to focus on the collection 
and release of high-dimensional complex data; however, the data often contain private information. Considering 
this situation, Google proposed the federated learning (FL) model1 such that the clients do not send the original 
data to the central server, but only need to train the data locally and thereafter send the trained parameters to 
the central server. Although the raw data are not sent, an attacker can still infer the original data based on the 
sent training parameters, thereby causing privacy leakage. To ensure client-level privacy, the fashion method 
uses differential privacy (DP) with rigorous mathematical proofs. Several successful algorithms have combined 
DP and FL.

Heterogeneous and heavy-tailed data are often encountered in high-dimensional data, and the effects of 
traditional privacy protection algorithms on such data are often unsatisfactory. To protect client privacy, research-
ers have attempted to combine DP with different FL models such as those of Agarwal et al.2, Asoodeh et al.3, 
and Geyer et al.4. In 2022, Balelli adopted a DP-FL algorithm (DP-Fed-mv-PPCA)5 for multi-view data. The 
algorithm assumes that data and latent variables follow a Gaussian distribution, handles statistical heterogeneity 
and missing view data in local datasets using the Bayesian method, and proves that it guarantees privacy and 
convergence. FL can be used in various fields, such as using FL in combination with the Internet of Things, edge 
computing blockchains, and 5G networks, as well as for studying more complex instances with heterogeneous 
servers.6–8. Simultaneously, we also noted that in the field of vehicle networks, the use of FL methods can not only 
effectively integrate data generated by various users and vehicles but also protect users’ personal privacy. There 
have been some detailed studies on this subject9–11, but they are all based on the strong assumption that the data 
follow a normal distribution, whereas in practice, the data are often asymmetric, heavy-tailed, or long-tailed.

In this study, we use a multivariate skewed normal distribution instead of a Gaussian distribution to improve 
the robustness of the statistical inference model for client data with heavy-tail and asymmetric characteristics, 
and to ensure the privacy of client data. A skewed normal distribution was proposed by Azzalini12 in 1985 on 
the basis that the data did not meet the requirements of the normal distribution. This distribution has a flexible 
skewness parameter that describes data asymmetry. After the bias normal distribution was proposed, remarkable 
success was achieved in data fitting. Based on this, Azzalini proposed a multivariate normal distribution13 in 
1996 and skewed distribution14 in 2005. Subsequently, new skewed distributions have been proposed continu-
ously, for instance, skew-laplace distribution15, skew-cauchy distribution16, and skew-logistic distribution17. The 
main purpose of these distributions is to describe the degree of skew and thicker tail of the data by relying on 
flexible hyperparameters.

The remainder of this paper is organized as follows: In “Related works” section, we present the work on hetero-
geneous FL and the contributions of our work. In “Preliminaries” section, we introduce some necessary concepts, 
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theories, and notation symbols, and provide a detailed analysis of client data with skewed normal distribution, 
combined with the design based on these conclusions. In “Methods” section, we skew the normal distribution 
difference of the privacy federal study expectation maximization (EM) algorithm. Furthermore, we verify the 
effect of our model using synthetic and real data from the Internet of Vehicles in “Performance evaluation” 
section. Finally, “Conclusions” section summarizes the advantages of the model and discusses future research.

Related works
Several studies have been conducted on heterogeneous data federation learning. The FedProx algorithm proposed 
by Li et al. in 201818 is an improved FedAvg algorithm for partial local work that avoids data heterogeneity by 
introducing an approximation term. Li considered multi-center scenarios in 202019. In the past two years, Zhu 
considered the knowledge distillation method in 202120 and Guo studied heterogeneous FL in 5G networks 
using the dynamic scheduling method in 202221. Similarly, Wang also developed the device sampling method of 
heterogeneous FL and the node sampling theory of graph convolutional neural network in 202122. Shen studied 
a fast algorithm for heterogeneous federation learning in 202223 when clients were mixed, which could effectively 
reduce the variance of the model.

For more theoretical and applied research, please read Fed2KD: Heterogeneous FL for Pandemic Risk Assess-
ment via Two-way Knowledge Distillation by Sun et al.24,HFedMS: Heterogeneous FL with Memorable Data 
Semantics in Industrial Metaverse by Zeng et al.25, FedRolex: Model-heterogeneous FL with Rolling Sub-model 
Extraction by Alam et al.26, Lazy Aggregation for Heterogeneous FL by Xu et al.27 and FedFOR: Stateless Het-
erogeneous FL with First-order Regularization by Tian et al.28 in detail.

All these studies are generalized studies on heterogeneous FL, either to improve computing speed or to focus 
on the heterogeneity of the client or central server. However, there have been no in-depth studies on irregular 
data with non-normal scores. Therefore, our study contributes to the literature in several ways.

•	 We use the EM algorithm to study the parameter estimation problem of client and server data with biased 
normal structure FL.

•	 By calculating the sensitivity of the parameters, our algorithm makes the parameters have a small estimation 
error and ensures the differential privacy during the EM algorithm iteration.

•	 We applied our algorithm to both synthetic data and real data from the Internet of vehicles. The results 
demonstrate that our algorithm is more robust and can ensure the accuracy of estimation while achieving 
DP.

Preliminaries
Model setting.  We assume that there are I mutually independent service centers and that each service 
center i, i ∈ {1, 2, · · · , I} contains the local original dataset Di = {xi,n}nii=1 . Furthermore, we assume that the local 
dataset is incomplete and missing at least one view in the dataset. For every g ∈ 1, · · · ,G , the dimensions of the 
gthview are dg , and d :=

∑G
g=1 dg . We denote by x(g)i,n  the raw data of subject n in center i corresponding to the 

gth-view, and xi,n = (x
(1)
i,n , · · · , x

(g)
i,n ).

Federated multi‑views PPCA and multivariate skew normal distribution.  In this section, we first 
review the federated multi-view PPCA model given by Balelli5 and assume that the client data have a multivariate 
skewed normal distribution. Then, we present related concepts and lemmas. Based on Arella noValle’s study29, 
we extend the theories of joint density and conditional density of multivariate skew normal random variables.

We consider a situation in which the underlying data distribution has a hierarchical structure and assume that 
the global parameter is θ̃ and the corresponding density function is f (θ̃ ) . For each center, the local parameter θi 
is generated by the distribution f (θi|θ̃ ) . Furthermore, the local data xi are generated from the local distribution 
f (xi|θi) . The federated algorithm, known as Fed-mv-PPCA, can be used to solve the inverse problem from the 
local data to the central server in a hierarchical structure using a Bayesian method, and the parameters of this 
model can be estimated by maximizing the likelihood.

First, we assume that the local data of subject n corresponding to the gthview, x(g)i,n  , are generated as follows:

where ε(g)i ∼ N(0, σ
(g)
i

2

Idg ) denotes a Gaussian noise, zi,n ∼ SNdg (0, I ,�
(g)
i ) denotes a q−dimension latent vari-

able, and we assumed q < ming dg for computation. A(g)
i  and µ(g)

i  are the coefficients and offsets with respect to 
view g, respectively. We find that A(g)

i zi,n follows the multivariate skew normal distribution by Arellano Valle 
(2005) in Corollary 2.3 as follows29:

and

(1)x
(g)
i,n = µ

(g)
i + ε

(g)
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(g)
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(2)A
(g)
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Idg ),



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5819  | https://doi.org/10.1038/s41598-023-33044-y

www.nature.com/scientificreports/

where �̃
(g)
i = (1+ηT�−1

X η)−
1
2ωX�

−1
X �η, η = ω−1A

(g)
i �

(g)
i ,ωX = (�X ⊙ I)

1
2 ,�

(g)
i = A

(g)
i A

(g)
i

T
+σ

(g)
i

2

Idg , 
 and ⊙ is the Hadamard product. Then, concatenate all views x(g)i,n  into a compact formulation from Equation 
(1) as follows:

where Ai ,µi are obtained by concatenating all A(g)
i ,µ

(g)
i  , and �i denotes a block diagonal matrix with the gth

block from ε(g)i . From the described analysis process, we can denote the local parameter as follows:

We consider a Bayesian approach to (5) in which θi is regarded as random with a prior distribution that reflects 
the degree of belief in the different values of these quantities. The prior distributions selected are weakly informa-
tive and subject to vague prior knowledge, and this avoids non-integrable posterior distributions. The prior 
distributions for the model are as follows:

Thus, we denote the global prior distribution by parameter θ̃i = {µ̃(g), σµ̃, Ã
(g), σÃ(g) , β̃(g), γ̃ (g), �̃(g)}.

Second, we need to concrete analyze the joint and conditional density functions of the observed and latent 
variables. Therefore, we introduce the Arellano Valle 2005 standard skewed normal distribution theory and 
extend it to general location and scale cases30.

Lemma 3.1  If Z1 ∼ SNm(�1),Z2 ∼ SNm(�2) , then the conditional density of Z1 given Z2 = z2 is as follows:

.

Theorem 3.2  If W1 = µ1 +�
1
2
1 Z1,Z1 ∼ SNm1(�1),W2 = µ2 +�

1
2
2 Z2,Z1 ∼ SNm2(�2) , then the conditional 

density of W1 given W2 = w2 is as follows:

Proof  Because of W1 = µ1 +�
1
2
1 Z1,Z1 ∼ SNm1(�1),W2 = µ2 +�

1
2
2 Z2,Z1 ∼ SNm2(�2) , we know about 

W1 ∼ SNm1(µ1,�1,�1) , W2 ∼ SNm2(µ2,�2,�2) . Thus, the random variable W1 has the following density 
function:

W1,W2 have a joint density function, as follows:

Furthermore, the conditional density function of W1 given W2 = w2 is as follows:

Specifically, we can express the (xi,n, zi,n) joint density as follows:

(4)x
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Therefore, the conditional density function of zi,n given xi,n is as follows:

By combining Equations (13) and (14), we obtain the posterior logarithmic likelihood function of the complete 
data as follows:

	�  �

Methods
In this section, we present the detailed process and algorithm of parameter estimation and the DP algorithm 
with a privacy guarantee.

Federated multi‑views PPCA for non‑Gaussian data.  Based on the described analysis of the observed 
and latent variables, we use the EM and pseudo-Newton algorithms to estimate the parameters locally, release 
all the local parameters to the master, aggregate the parameters at the master, and estimate the global parameters 
using maximum likelihood estimation (Algorithm 1).

The parameter estimation in Algorithm 1 is as follows: For simplicity, we take the parameter µ as an example 
and assume that in center i, the gth-view is missing, instead of simply removing it. We assume ∀i, g.

Step 1. In each center: Estimate µ(g)
i [s + 1]|(µ̃(g), σµ̃

2)[s] from Equation (1). The marginal distribution of x(g)i,n  
is as follows:

Recall:

(13)
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the log-likelihood function is:

where ζ0(x) = log 2x . Subsequently, we fixed the center order i and considered the following optimization prob-
lem for ∀g ∈ 1, · · · ,G,

where log f (µ(g)
i ) = − 1

2σ
µ̃(g)

2 (µ
(g)
i − µ̃(g))T (µ

(g)
i − µ̃(g))+ c1, c1 is a constant independent of µ(g)

i  . Using the 
maximum-likelihood method for this problem, we obtain the following:

Step 2. In the master: Estimate (µ̃(g)[s + 1], σµ̃(g)
2[s + 1]) given µ(g)[s + 1] for each i.

Let ∂L

∂µ̃(g) = 0, and ∂L
∂σ

µ̃(g)
2 = 0 , we can obtain:

and

respectively.
We performed similar treatments for the other parameters. Notably, although the skewness parameter 

depends on both the location and scale parameters, the prior distribution of the transformed parameter δ is 
uniform under the Bayesian framework.

DP‑Fed‑mv‑PPCA algorithm for non‑Gaussian data.  In this section, we propose an improved DP-
Fed-mv-PPCA algorithm based on clients with skewed normal data. Our main goal is to protect the privacy 
of the training parameters of the local data, which requires the use of different noise mechanisms for different 
components to perturb the data properly.

First, let us provide the basic concept of DP and classical combinatorial theory. Then, we will gradually use 
these theories in the algorithm.

Definition 1  Given a data universe X , we say that two datasets D,D′ are neighbors if they differ by only one entry, 
which is denoted as DD̃′ ⊆ X . A randomized algorithm M is (ε, δ)-differentially private (DP) if for all neighbor-
ing datasets D,D′ and for all events S in the output space of M , we have P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S)+ δ.

Definition 2  Given a function q : X n → R
d , the Gaussian Mechanism is defined as: M(D; q; ·) = q(D)+ Noise ; 

where Noise is drawn from a Gaussian distribution N(0, σ 2Id) with σ ≥
√

2 ln 1.25/δ�2(q)

ε
 , �2(q) is the l2− sensi-

tivity of the function q, i.e., �2(q) = supD D′ �q(D)− q(D′)�2 . The Gaussian mechanism preserves (ε, δ)−DP.

Definition 3  Given a function q : X n → R
d , the Laplace mechanism is defined as: M(D; q; ·) = q(D)+ Noise ; 

where Noise is drawn from a Laplace distribution Lap(0, �1(q)
ε

),�1(q) is the l1− sensitivity of the function q, i.e., 
�1(q) = supD D′ �q(D)− q(D′)�1 . The Laplace mechanism preserves (ε, 0)−DP.
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Lemma 4.1  Given any function q : X n → R
d and ε > 0, δ ∈ (0, 0.5) , the Gaussian mechanism is defined as 

follows:

where c =
√

ln(2/(
√
16δ + 1− 1)) preserves (ε, δ)−DP.

Lemma 4.2  Given any function q : X n → R
d×q and ε > 0, δ ∈ (0, 0.5) , the matrix-normal mechanism is defined 

as follows:

where c =
√

ln(2/(
√
16δ + 1− 1)) preserves (ε, δ)−DP.

Lemma 4.3  For i = 1, · · · , k let Mi be an (εi , δi)− DP algorithm, and M(q) = (M1(q), · · · ,Mk(q)) . Then, M is 
(
∑k

i=1 εi ,
∑k

i=1 δi)−DP.

Although the algorithm does not show an expression for client-level optimization, we can ensure that the 
local parameters achieve DP with appropriate clipping methods, such as Zhang et al.31 (see Algorithm 2 for the 
detailed procedure).

With respect to Algorithm 1, we need to perform appropriate clipping when the local dataset uses the EM 
and textbfpseudo-Newtonalgorithms to estimate the parameters, and then add noise from different mechanisms 
(Laplacian or Gaussian32) to the parameters to ensure that the data released to the master achieve DP33. The 
specific execution process is as follows:

1. The client provides the prior distribution in round r and updates the local parameters according to Algo-
rithm 1 based on the prior distribution. The client calculates the difference between the updated parameters in 
round r + 1 and the prior parameters in round r.

2. The updated difference is clipped according to the standard deviation of the prior values.

where g(σθ̃ [r]) := c2 · θ̃[r] and c2 is a constant fixed by the client. The clipping upper bound of ℓp norm of 
�̄θ i[r + 1] is g(σθ̃ [r]) , and the ℓp sensitivity of �̄θ i[r + 1] at most 2g(σθ̃ [r]).

3. We propose a noise mechanism for the clipped difference using

We propose to add Gaussian noise to ¯�µi
(g) and ¯�Ai

(g) , while adding Laplace noise to (�̄σ
(g)

)2i  and �̄δ(�)
(g)
i .

4. The client adds a priori and sends �̄θ i[r + 1] = Mθi [r + 1] + θ̃[r] to the master.
Figures 1 and 2 shows the graphical model of Fed-mv-PPCA and iterative flow diagram of component param-

eters of the skew normal mixture model.

(25)M(D; q; ·) = q(D)+ N(0, (
(c +

√
c2 + ε)�2(q)√

2ε
)2Id),

(26)M(D; q; ·) = q(D)+ Nd,q(0d,q, (
(c +

√
c2 + ε)�2(q)√

2ε
)2Id),

(27)�θi[r + 1] = θi[r + 1] − θ̃ [r].

(28)�̄θ i[r + 1] = �θi[r + 1]/max{1, ��θi[r + 1]�p/g(σθ̃ [r])},

(29)Mθi [r + 1] := �̄θ i[r + 1] + Noise(2g(σθ̃ [r]), ε, δ).
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We provide the privacy budget for Algorithm 1 using the following theorem:

Theorem 4.4  For simplicity, let us select the same ε, δ for all the mechanisms considered (a generalization to a 
parameter-specific choice of εi , δi is straightforward). The total privacy budget for the output of Algorithm 2 is 
(4Gε, 3Gδ) , where K denotes the total number of views.

Notably, the data in each center were disjoint. At all centers, we consider the mechanism 
M := {M

µ
(g)
i
,M

A
(g)
i
,M

σ
(g)
i

2 ,M
δ(�)

(g)
i
} , where for all g, M

µ
(g)
i

 and M
A
(g)
i

 are (ε, δ)-DP, whereas for all g, M
σ
(g)
i

2 

and M
δ(�)

(g)
i

 are ε-DP. We can obtain the results from the composition theorem and post processing of DP.

Performance evaluation
Introduction to dataset.  Synthesis data (SD): A total of 10,000 observations were generated using the 
generation model, which comprised k = 3 views with dimensions of d1 = 2, d2 = 10 , and d3 = 5 . Each view was 
generated using a common 5-dimensional potential space. We selected the parameters A(g),µ(g), σ (g) randomly.

Didi Chuxing GAIA data (DiDi): The data security of connected car users is a concern. In this section, as in 
[9], we use car-networking data from Didi Chuxing GAIA Initiative (https:gaia.didichuxing.com). We selected 
10,000 vehicle data points from the driver trajectory data of the Chengdu Second Ring Road from 00 : 00 to 
24 : 00 on October 15, 2019. The longitude and latitude coordinates in the dataset were also converted through 
WGS84 coordinate system and thereafter converted into east-north coordinates in meters using the UTM grid 
point system. We also used the binary Gaussian random error in [9].

Results.  To verify that the non-Gaussian data fitting is more effective in the actual data, in the DiDi dataset, 
we first performed a mixed biased normal distribution fitting on the data and compared the fitting effect when 
the number of components was 1-8, which significantly improved the accuracy of the normal fitting compared 
with [9]. From the results, the best fit was achieved when the component was g = 5 . For the comparison index of 
the experiment, we used the common evaluation indices MSE and mean absolute error (MAE). Further results 
are summarized in Table 1 along with AIC and BIC results, which are caused by the complex traffic condition 
data structures.

To verify that our algorithm can provide both privacy assurance and data availability, we compared our 
method with Fed-mv-PPCA in the SD and DiDi datasets and with the FedVCP method in the dataset.

Figure 1.   Graphical model of Fed-mv-PPCA.

Figure 2.   Parameter iteration process of algorithm DFmP-SN.
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For the SD dataset and DiDi dataset, the calculation results (see Tables 1 and 2) demonstrate that for differ-
ent privacy parameters, our algorithm can achieve privacy guarantee and is clearly better than FedVCP. For the 
DiDi dataset, our algorithm achieved a stronger privacy guarantee. It can be clearly seen from Figs. 3, 4, 5, 6, 7, 
8 and 9 that our estimation error is smaller in MSE .

Conclusions
In this study, we introduce a skewed normal distribution as the non-Gaussian data likelihood and prior. Our 
application proves that Fed-mv-PPCA is robust to increasing levels of heterogeneity in training centers, and 
provides high-quality data reconstruction that outperforms competing methods in all scenarios. In addition, 
when DP was introduced, we investigated the performance of the proposed method according to different privacy 

Table 1.   Results of model selection for gaussian and non-gaussian on SD dataset.

1 2 3 4 5 6 7 8

k (Gaussian)

AIC 405.12 415.11 427.55 433.84 439.07 434.91 430.10 431.78

BIC 432.22 445.32 451.29 470.31 481.19 467.28 472.23 473.18

MSE 0.21 0.19 0.15 0.14 0.13 0.12 0.12 0.12

MAE 0.19 0.14 0.13 0.11 0.07 0.07 0.07 0.06

k (Non-Gaussian)

AIC 472.11 477.36 479.35 480.85 490.01 487.75 476.68 477.79

BIC 500.15 521.12 522.23 531.11 543.33 540.59 540.01 522.55

MSE 0.09 0.07 0.07 0.04 0.02 0.02 0.02 0.02

MAE 0.07 0.06 0.06 0.03 0.01 0.01 0.01 0.01

Table 2.   Results of model selection for gaussian and non-gaussian on DiDi dataset.

1 2 3 4 5 6 7 8

k (Gaussian)

AIC 1789.25 1792.11 1840.22 1823.33 1811.05 1766.55 1744.56 1705.63

BIC 1822.05 1827.66 1859.87 1845.55 1833.78 1821.25 1801.01 1796.34

MSE 0.17 0.11 0.09 0.09 0.09 0.09 0.09 0.07

MAE 0.19 0.12 0.10 0.10 0.10 0.10 0.09 0.09

k (Non-Gaussian)

AIC 1925.23 1935.53 1979.99 1976.52 1927.27 1900.35 1892.25 1888.87

BIC 1975.57 1986.68 2016.64 2008.98 2001.13 1999.76 1989.68 1980.35

MSE 0.11 0.10 0.04 0.04 0.03 0.03 0.02 0.02

MAE 0.05 0.04 0.02 0.02 0.012 0.01 0.01 0.01

Figure 3.   Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.1.
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Figure 4.   Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.2.

Figure 5.   Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.8.

Figure 6.   Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.1.
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budget scenarios. Notably, there are four DP hyperparameters that play a key role and may influence the proper-
ties of DP-Fed-mv-PPCA: the privacy budget parameters (ε, δ) , and the clipping and skewness parameters δ(�) . 
These parameters are closely related and both help determine the magnitude of the noise used to perturb the 
updated difference �θ . Indeed, increasing δ or decreasing the multiplicative constant in the clipping mechanism 

Figure 7.   Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.2.

Figure 8.   Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, ε = 0.8.

Figure 9.   Effect comparison of three algorithms in different budget of MSE (FedVCP, Fed-mv-PPCA, 
DFmP-Sn) on DiDi dataset, d = 10.
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implies the addition of less noise, thereby improving the overall utility of the global model. However, the smaller 
the values of ε and δ , the higher the privacy guarantee.

There is much more work to be conducted in the future. First, reducing the computational and sample com-
plexities of the DP calculation between the client and server is the key problem because heterogeneous data with 
multiple sources often face the problem of small data. Second, different noise mechanisms are also the main 
direction of subsequent studies, and we note that matrix variables and tensor data are also challenges in modern 
FL. Finally, we studied distributions with thicker tails and shear methods suitable for high-dimensional data to 
improve the robustness of the model. Meanwhile, for outlier datasets, the Huber contamination model can be 
considered for the FL of DP.

Data availibility
The datasets generated and/or analyzed in the present study are not publicly available, but are available from the 
corresponding author upon reasonable request.
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