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OPEN A federated learning differential

privacy algorithm for non-Gaussian
heterogeneous data

XinyuYang & Weisan Wu"™*

Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and
centers do not follow a normal distribution, posing significant challenges to learning. Based on

the assumption that the client data have a multivariate skewed normal distribution, we improve
the DP-Fed-mv-PPCA model. We use a Bayesian framework to construct prior distributions of local
parameters and use expectation maximization and pseudo-Newton algorithms to obtain robust
parameter estimates. Then, the clipping algorithm and differential privacy algorithm are used to
solve the problem in which the model parameters do not have a display solution and achieve privacy
guarantee. Furthermore, we verified the effectiveness of our model using synthetic and actual data
from the Internet of vehicles.

In the present increasingly developed technology, various intelligent terminals collect personal data, and because
of improvements in storage devices and communication technology, people have begun to focus on the collection
and release of high-dimensional complex data; however, the data often contain private information. Considering
this situation, Google proposed the federated learning (FL) model’ such that the clients do not send the original
data to the central server, but only need to train the data locally and thereafter send the trained parameters to
the central server. Although the raw data are not sent, an attacker can still infer the original data based on the
sent training parameters, thereby causing privacy leakage. To ensure client-level privacy, the fashion method
uses differential privacy (DP) with rigorous mathematical proofs. Several successful algorithms have combined
DP and FL.

Heterogeneous and heavy-tailed data are often encountered in high-dimensional data, and the effects of
traditional privacy protection algorithms on such data are often unsatisfactory. To protect client privacy, research-
ers have attempted to combine DP with different FL models such as those of Agarwal et al.?, Asoodeh et al.%,
and Geyer et al.*. In 2022, Balelli adopted a DP-FL algorithm (DP-Fed-mv-PPCA)? for multi-view data. The
algorithm assumes that data and latent variables follow a Gaussian distribution, handles statistical heterogeneity
and missing view data in local datasets using the Bayesian method, and proves that it guarantees privacy and
convergence. FL can be used in various fields, such as using FL in combination with the Internet of Things, edge
computing blockchains, and 5G networks, as well as for studying more complex instances with heterogeneous
servers.. Simultaneously, we also noted that in the field of vehicle networks, the use of FL methods can not only
effectively integrate data generated by various users and vehicles but also protect users’ personal privacy. There
have been some detailed studies on this subject’!1, but they are all based on the strong assumption that the data
follow a normal distribution, whereas in practice, the data are often asymmetric, heavy-tailed, or long-tailed.

In this study, we use a multivariate skewed normal distribution instead of a Gaussian distribution to improve
the robustness of the statistical inference model for client data with heavy-tail and asymmetric characteristics,
and to ensure the privacy of client data. A skewed normal distribution was proposed by Azzalini'? in 1985 on
the basis that the data did not meet the requirements of the normal distribution. This distribution has a flexible
skewness parameter that describes data asymmetry. After the bias normal distribution was proposed, remarkable
success was achieved in data fitting. Based on this, Azzalini proposed a multivariate normal distribution'® in
1996 and skewed distribution'* in 2005. Subsequently, new skewed distributions have been proposed continu-
ously, for instance, skew-laplace distribution'®, skew-cauchy distribution'®, and skew-logistic distribution'”. The
main purpose of these distributions is to describe the degree of skew and thicker tail of the data by relying on
flexible hyperparameters.

The remainder of this paper is organized as follows: In “Related works” section, we present the work on hetero-
geneous FL and the contributions of our work. In “Preliminaries” section, we introduce some necessary concepts,
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theories, and notation symbols, and provide a detailed analysis of client data with skewed normal distribution,
combined with the design based on these conclusions. In “Methods” section, we skew the normal distribution
difference of the privacy federal study expectation maximization (EM) algorithm. Furthermore, we verify the
effect of our model using synthetic and real data from the Internet of Vehicles in “Performance evaluation”
section. Finally, “Conclusions” section summarizes the advantages of the model and discusses future research.

Related works

Several studies have been conducted on heterogeneous data federation learning. The FedProx algorithm proposed
by Li et al. in 20188 is an improved FedAvg algorithm for partial local work that avoids data heterogeneity by
introducing an approximation term. Li considered multi-center scenarios in 2020'. In the past two years, Zhu
considered the knowledge distillation method in 2021?° and Guo studied heterogeneous FL in 5G networks
using the dynamic scheduling method in 20222, Similarly, Wang also developed the device sampling method of
heterogeneous FL and the node sampling theory of graph convolutional neural network in 2021%. Shen studied
a fast algorithm for heterogeneous federation learning in 2022?* when clients were mixed, which could effectively
reduce the variance of the model.

For more theoretical and applied research, please read Fed2KD: Heterogeneous FL for Pandemic Risk Assess-
ment via Two-way Knowledge Distillation by Sun et al.**, HFedMS: Heterogeneous FL with Memorable Data
Semantics in Industrial Metaverse by Zeng et al.>>, FedRolex: Model-heterogeneous FL with Rolling Sub-model
Extraction by Alam et al.?%, Lazy Aggregation for Heterogeneous FL by Xu et al.”” and FedFOR: Stateless Het-
erogeneous FL with First-order Regularization by Tian et al.”® in detail.

All these studies are generalized studies on heterogeneous FL, either to improve computing speed or to focus
on the heterogeneity of the client or central server. However, there have been no in-depth studies on irregular
data with non-normal scores. Therefore, our study contributes to the literature in several ways.

e We use the EM algorithm to study the parameter estimation problem of client and server data with biased
normal structure FL.

® By calculating the sensitivity of the parameters, our algorithm makes the parameters have a small estimation
error and ensures the differential privacy during the EM algorithm iteration.

®  We applied our algorithm to both synthetic data and real data from the Internet of vehicles. The results
demonstrate that our algorithm is more robust and can ensure the accuracy of estimation while achieving
DP.

Preliminaries
Model setting. We assume that there are I mutually independent service centers and that each service
centeri,i € {1,2,-- ,I}contains the local original dataset D; = {x;,},. Furthermore, we assume that the local

dataset is incomplete and missing at least one view in the dataset. For every g € 1, - - - , G, the dimensions of the
©

gthview are dg, and d := Zg;l d,. We denote by x;7,;
(1 e x(g))
> )

in>

the raw data of subject n in center i corresponding to the

gth-view, and x; , = (x,

Federated multi-views PPCA and multivariate skew normal distribution. In this section, we first
review the federated multi-view PPCA model given by Balelli® and assume that the client data have a multivariate
skewed normal distribution. Then, we present related concepts and lemmas. Based on Arella noValle’s study?,
we extend the theories of joint density and conditional density of multivariate skew normal random variables.

We consider a situation in which the underlying data distribution has a hierarchical structure and assume that
the global parameter is § and the corresponding density function is f(6). For each center, the local parameter 6;
is generated by the distribution f (6; |6). Furthermore, the local data x; are generated from the local distribution
f(xi]6;). The federated algorithm, known as Fed-mv-PPCA, can be used to solve the inverse problem from the
local data to the central server in a hierarchical structure using a Bayesian method, and the parameters of this
model can be estimated by maximizing the likelihood.

First, we assume that the local data of subject n corresponding to the gthview, xi(i), are generated as follows:

xfi) = ,ugg) + ng) +Al(vg)z,',n, (1)
here e © ©?2 . N © . . .
wheree;”” ~ N(0,0;% Ij,) denotes a Gaussian noise, z; , ~ SNg, (0,1, A;™) denotes a g—dimension latent vari-

able, and we assumed q < ming dg for computation. Al(-g )and ul(»g) are the coeflicients and offsets with respect to

view g, respectively. We find that Al(-g)zi,n follows the multivariate skew normal distribution by Arellano Valle
(2005) in Corollary 2.3 as follows®:

T
APz ~ SNy (0,AP AP AP, @)
and
( 2
e + 1 ~ Ngy (0 1, 3)
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x& ~ SNy (. 28 A, @)

- T 2
where A = (147705 ) 7ox Q' Q0.0 = 0 AP AR 0x = (Qx 0D, T = AFAF 40071y,
and © is the Hadamard product. Then, concatenate all views xi)(gn) into a compact formulation from Equation
(1) as follows:
Xin = i + ®i + Aizig, (5)
where A;, j1; are obtained by concatenating all Agg ), p.gg), and ®; denotes a block diagonal matrix with the gth
block from efg ) From the described analysis process, we can denote the local parameter as follows:

2
@ 597 A%, ()

1

0; == {ufg),A

We consider a Bayesian approach to (5) in which 6; is regarded as random with a prior distribution that reflects
the degree of belief in the different values of these quantities. The prior distributions selected are weakly informa-
tive and subject to vague prior knowledge, and this avoids non-integrable posterior distributions. The prior
distributions for the model are as follows:

179, 05) ~Ng (29, 052),
(A,(-g) |A®), 0a@) ~Na, (A®, Tiw )
@1, 7O) ~P(FD, 79,
GO @) ~U(=1,1).
Thus, we denote the global prior distribution by parameter éi = {[L(g), Ofis A®), Oie> B ®, y © AQ® I3
Second, we need to concrete analyze the joint and conditional density functions of the observed and latent

variables. Therefore, we introduce the Arellano Valle 2005 standard skewed normal distribution theory and
extend it to general location and scale cases®.

Lemma3.1 IfZ; ~ SNy (A1), Zs ~ SNu(A2), then the conditional density of Z, given Z; = z; is as follows:

fr120=2(21) = Gy (20) Pomymy (AT 21 + AT 22\ Ly sy — AT AL — AT A2) /@y (AL 23| 1, — AT A2) (8)

1 1
Theorem 3.2 If W) = pu; + X7 Z1,Z1 ~ SNyi (A1), Wa = uz + £5 25, Z1 ~ SN2 (A2), then the conditional
density of W given Wy = wy is as follows:

_ 1 _1 -1
FwiWamw, (WD) =121 — 25 21|72 B2 T 2, (2 2 (i — 1))
_1 _1
Doy my (AT B7 2 (w1 — 1) + AT 2 (wa — ) Iy, — AT AL — AT A/ 9)
_1
Py (A3 Ty 2 (w2 — p2)|Imy — A] A).

1 1
Proof Because of Wi = p1 + X} Z1,Z1 ~ SNu1 (A1), Wa = iy + £7Z5,Z1 ~ SN2 (A2), we know about

W1 ~ SNy (1, 21, A1), Wz ~ SNy (2, 2, Az). Thus, the random variable Wi has the following density
function:

_1 -3 -3
fwr (1) =2"1Z1|7 2k, (B 2 (w1 — 100) @iy (A] Zq 2 (Wi — )Ly — Af A1)fwrs (w2)

_1 -1 T —1 T (10)
=2"5]7 2, (2, 2 (w2 — 12)) Py (A5 Xy 2 (Wy — ) I, — Aj Ap).
W1, W5 have a joint density function, as follows:
+ -1 1 1 -3 -1
Swwy (Wi, wy) =272 8] — B8 Bl 2| Bl 2¢m, (B 2 (w1 — 1)k, (T, 2 (w2 — p12)) an

_1 _1
Dy (AL Ty 2 (w1 — 1) + AT Ty 2 (W — 1)Ly 4y — AL A1 — AT A).

Furthermore, the conditional density function of W given W, = w; is as follows:

_1 1 _1
Omy (24 > (wy — lll))(bml-%—mz(/\?z] 2w — 1) + Agzz 2 (wy — w2 Iy +my — A{Al - AgAZ)

_ 1 1 -1
121 — S22 2 10] 2|20 2 Dy (AT D5 2 (w2 — )|y — AT AD)

Jwiwa=w, (W1) =

(12)
Specifically, we can express the (x; 4, zi,,) joint density as follows:
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_1 _1
f i zin) =2 NAAT + 0714, 172 ¢a, (AT + 071,177 (i — 14) g (Zin)

~ _l ~ ~ ~
Py, 1q (A TAAT + 071,172 (xipg — i) + A zinlla g — AT Ai = AT A

_1 1 _1 (13)
=249 .47 4 a,»zldg| 22% exp _E(xi,n — u)|AAT + UizIdg| 2 (i — i)’
~ 1 ~ ~
Py, 4q(AAA] + 0213, 172 (tin — i) + A zinllgg 19 — Af Ai = A A)).
Therefore, the conditional density function of z; , given x; , is as follows:
~ 1 ~ ~ o~
. Pyt q(ATIAAT + 0214, 177 (Xip — i) + Al zinllg, g — AT A — AT A)
f(zi,nlxi,n) =2 ¢q(zi,n) o T 2 1 T .
@, (A |AiA; + 0714, 172 (Xin — midlld, — Aj Ad)
(14)

By combining Equations (13) and (14), we obtain the posterior logarithmic likelihood function of the complete
data as follows:

n; G
! d, 1 _
logf (xiym zimlfh) = ¢+ 1D [ log lAA] + 07T | + S tr(AiA] + 0P 1g )™ i — il

n=1 g=1

~ _1 15

+ logl®y, 1o (ATIAAT + 021y |77 (i — 1) (15)

- U 1
+ Al zinllggrg = AT Ai = AT ADT+ St (@i Z,))-
O

Methods
In this section, we present the detailed process and algorithm of parameter estimation and the DP algorithm
with a privacy guarantee.

Federated multi-views PPCA for non-Gaussian data. Based on the described analysis of the observed
and latent variables, we use the EM and pseudo-Newton algorithms to estimate the parameters locally, release
all the local parameters to the master, aggregate the parameters at the master, and estimate the global parameters
using maximum likelihood estimation (Algorithm 1).

Algorithm 1 Fed-mv-PPCA

Input: Rounds R, Iterations 7', latent dimensional ¢,
Output: 6,
forr=0,1,--- ,R do,
fori=1,---,I do in parallel,
Each center i initializes 6; using f(6;]0);
T iterations of MAP estimation of 6; using 6 as prior;
end for
Each center i returns 6; to the master;
The master collects 6;,i = 1,---,I and estimates 6 through ML;
The master sends 8 to all centers,
end for.

The parameter estimation in Algorithm 1 is as follows: For simplicity, we take the parameter x as an example
and assume that in center i, the gth-view is missing, instead of simply removing it. We assume Vi, g.

i ~ Na (39, 021, (16)

@

in

Step 1. In each center: Estimate Mgg) [s+ 1]|(/l(g),aﬁz)[s] from Equation (1). The marginal distribution of x;
is as follows:

x® ~ SNy (12, 28 A, (17)

Recall:
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£ =20m) F R ap S 6 - u©)TE0) () - 1) o(AD) (@)@ - )

2
(18)
the log-likelihood function is:

N;
1 _
¥ = — S (Nidglog (2m)log || + >~ (5] — i) () () — )+
n=1 (19)
(AT @) @ - u® ),

where £y (x) = log2x. Subsequently, we fixed the center order i and considered the following optimization prob-
lemforvVgel,---,G,

(9} )
max e+ logf(ugg )s (20)
(g)) =— 7 (g)z (/,L ﬂ(g))T(u(g) ®) 4 c1, ¢l is a constant independent of,ugg). Using the
maximum-likelihood method for this problem, we obtain the following:

where log f (1

ls + 11 = [Nily, + 00 2117 [wa + o0 2SI A9 [s]1. (21)
i=1

Step 2. In the master: Estimate (A®[s + 1], (7/1@2[5 + 1]) given w®[s + 1]for each i.

1
£=Y logf(u{)

i=1

(22)
_Z{cl ||u - A9,
Let da)(:g) =0,and ”(g)z = 0, we can obtain:
A€ +11=1" Zu [s + 11, @3)
i=1
and
Gﬂ(g)[S‘Fl] _ (Id )~ IZ”M [s+1] — M(g)[s+1]||2, (24)
i=1
respectively.

We performed similar treatments for the other parameters. Notably, although the skewness parameter
depends on both the location and scale parameters, the prior distribution of the transformed parameter § is
uniform under the Bayesian framework.

DP-Fed-mv-PPCA algorithm for non-Gaussian data. In this section, we propose an improved DP-
Fed-mv-PPCA algorithm based on clients with skewed normal data. Our main goal is to protect the privacy
of the training parameters of the local data, which requires the use of different noise mechanisms for different
components to perturb the data properly.

First, let us provide the basic concept of DP and classical combinatorial theory. Then, we will gradually use
these theories in the algorithm.

Definition 1 Given a data universe Z’, we say that two datasets D, D’ are neighbors if they differ by only one entry,
which is denoted as DD’ C Z'. A randomized algorithm ./ is (¢, §)-differentially private (DP) if for all neighbor-
ing datasets D, D" and for all events S in the output space of .#, we have P(.# (D) € S) < e!P(M# (D') € S) + 6.

Definition 2 Given a functiong : ' " — R4, the Gaussian Mechanism is defined as: .# (D; q; -) = q(D) + Noise;

where Noise is drawn from a Gaussian distribution N (0, o2I;) with o > 7‘Zlnl'2‘:/M2<q), A, (q) is the I, — sensi-
tivity of the function g, i.e., A2(q) = supp, y |g(D) — g(D) 2. The Gaussian mechanism preserves (¢, §)—DP.

Definition 3 Given a functiong : 2 " — R, the Laplace mechanism is defined as: .#/ (D; q; -) = q(D) + Noise;
where Noise is drawn from a Laplace distribution Lap(0, Als(q) ), A1(q) is the I; — sensitivity of the function g, i.e.,
A1(q) = supp p I1g(D) — g(D') ||1. The Laplace mechanism preserves (g, 0) —DP.
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Lemma 4.1 Given any functionq: & " — R and & > 0,8 € (0,0.5), the Gaussian mechanism is defined as
follows:

(c+ vV +e)Axg) ,
( > V1),

M (D; g; -) = q(D) + N(0,
(D; q;-) = q(D) ( 7

(25)

wherec = \/ln(Z/(«/l65 + 1 — 1)) preserves (¢,8)—DP.

Lemma 4.2 Given any functionq : & " — R™ande > 0,8 € (0,0.5), the matrix-normal mechanism is defined
as follows:

M (D; q; ) = q(D) + Ny g(04,4, )*1a), (26)

((c + /2 +e)A2(g)
V2e

wherec = \/ln(2/(\/165 + 1 — 1)) preserves (¢, 8)—DP.

Lemma4.3 Fori=1,--- ,klet .#;bean (g, 8;)—DP algorithm, and M (q) = (M1(q), - - , Mk(q)). Then, M is
(Zf'(:1 €i> 25:1 8i)—DP.
Although the algorithm does not show an expression for client-level optimization, we can ensure that the

local parameters achieve DP with appropriate clipping methods, such as Zhang et al.*! (see Algorithm 2 for the
detailed procedure).

Algorithm 2 DP-Fed-mv-PPCA algorithm for Non-Gaussian data (DFmP-SN)

Input: Rounds R, Iterations 7', latent dimensional ¢, parameter €, J,

Output: 6,

for r=0,1,--- ;R do,
fori=1,--- I do in parallel,
Initialize 6; using f(6;0[r]);
Update local parameters: T iterations of MAP estimation (EM + prior) to optimize 6;[r + 1] using 8[r] as prior;

Compute difference: Ag;[r+ 1] = 6;[r+ 1] — 0[r];
Clip:AB;[r+ 1] = AG;[r + 1]/ max{1, |A6;[r+1]||,/g(05[r]) };

Add noise: #g,[r+1] = A8;[r+ 1] + Noise(2g(05]r]), €,6);
Return 6;[r+ 1] = .#4,[r + 1] + 6[r] to the master;

end for.

The master collects all 6;[r + 1] and estimates 8[r 4 1] through maximized likelihood method;
The master sends 0[r+ 1] to all centers;

end for.

With respect to Algorithm 1, we need to perform appropriate clipping when the local dataset uses the EM
and textbfpseudo-Newtonalgorithms to estimate the parameters, and then add noise from different mechanisms
(Laplacian or Gaussian®?) to the parameters to ensure that the data released to the master achieve DP**. The
specific execution process is as follows:

1. The client provides the prior distribution in round r and updates the local parameters according to Algo-
rithm 1 based on the prior distribution. The client calculates the difference between the updated parameters in
round r + 1 and the prior parameters in round r.

A6i[r + 11 = 6ilr + 11 = 6lr]. (27)
2. The updated difference is clipped according to the standard deviation of the prior values.

AGilr + 11 = Abi[r + 11/ max{1, [|A6;[r + 1]ll,/g(o5(rD)}, (28)

where g(oj[r]) :=c2- 6[r] and ¢2 is a constant fixed by the client. The clipping upper bound of £, norm of
AB;i[r + 1]is g(olr]), and the £, sensitivity of AG;[r + 1]at most 2g(olrD.
3. We propose a noise mechanism for the clipped difference using

Mo [r + 1] 1= A-Q,-[r + 1] + Noise(2g(o;[r]), €, 8). (29)

We propose to add Gaussian noise to A_u,-(g) and A}\,-(g), while adding Laplace noise to (Ao (g))% and AS(/l)fg).
4. The client adds a priori and sends Abi[r+1] = Mo;[r + 1]+ §[r]to the master.
Figures 1 and 2 shows the graphical model of Fed-mv-PPCA and iterative flow diagram of component param-
eters of the skew normal mixture model.
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Figure 1. Graphical model of Fed-mv-PPCA.

Add Noise

Figure 2. Parameter iteration process of algorithm DFmP-SN.

We provide the privacy budget for Algorithm 1 using the following theorem:

Theorem 4.4 For simplicity, let us select the same €, 8 for all the mechanisms considered (a generalization to a
parameter-specific choice of &;,8; is straightforward). The total privacy budget for the output of Algorithm 2 is
(4Ge, 3G$), where K denotes the total number of views.

Notably, the data in each center were disjoint. At all centers, we consider the mechanism

M = {/%ul(g), //A!@, %ai(g)z, ,//l(swl(g) }, where for all g, ,/%M’gg) and ,//Agg) are (¢, 8)-DP, whereas for all g, e/%a‘(g)z

and ./ (e are &-DP. We can obtain the results from the composition theorem and post processing of DP.

Performance evaluation
Introduction to dataset. Synthesis data (SD): A total of 10,000 observations were generated using the
generation model, which comprised k = 3 views with dimensions of d; = 2,d, = 10,and d3 = 5. Each view was
generated using a common 5-dimensional potential space. We selected the parameters A€, 1®), 5 ® randomly.
Didi Chuxing GAIA data (DiDi): The data security of connected car users is a concern. In this section, as in
[9], we use car-networking data from Didi Chuxing GAIA Initiative (https:gaia.didichuxing.com). We selected
10,000 vehicle data points from the driver trajectory data of the Chengdu Second Ring Road from 00 : 00 to
24:00 on October 15, 2019. The longitude and latitude coordinates in the dataset were also converted through
WGS84 coordinate system and thereafter converted into east-north coordinates in meters using the UTM grid
point system. We also used the binary Gaussian random error in [9].

Results. To verify that the non-Gaussian data fitting is more effective in the actual data, in the DiDi dataset,
we first performed a mixed biased normal distribution fitting on the data and compared the fitting effect when
the number of components was 1-8, which significantly improved the accuracy of the normal fitting compared
with [9]. From the results, the best fit was achieved when the component was g = 5. For the comparison index of
the experiment, we used the common evaluation indices MSE and mean absolute error (MAE). Further results
are summarized in Table 1 along with AIC and BIC results, which are caused by the complex traffic condition
data structures.

To verify that our algorithm can provide both privacy assurance and data availability, we compared our
method with Fed-mv-PPCA in the SD and DiDi datasets and with the FedVCP method in the dataset.
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[1 |2 [3 |4 5 ls E E

k (Gaussian)

AIC 405.12 | 415.11 | 427.55 |433.84 |439.07 |434.91 |430.10 |431.78
BIC 432.22 | 44532 |451.29 |470.31 |481.19 |467.28 |472.23 |473.18
MSE 0.21 0.19 0.15 0.14 0.13 0.12 0.12 0.12
MAE 0.19 0.14 0.13 0.11 0.07 0.07 0.07 0.06

k (Non-Gaussian)
AIC 472.11 | 477.36 |479.35 |480.85 |490.01 |487.75 |476.68 |477.79
BIC 500.15 |521.12 |522.23 |531.11 |543.33 |540.59 |540.01 |522.55
MSE 0.09 0.07 0.07 0.04 0.02 0.02 0.02 0.02
MAE 0.07 0.06 0.06 0.03 0.01 0.01 0.01 0.01

Table 1. Results of model selection for gaussian and non-gaussian on SD dataset.

v 2 |5 [+ s ¢ [7 s
k (Gaussian)
AIC 1789.25 | 1792.11 | 1840.22 |1823.33 | 1811.05 | 1766.55 | 1744.56 | 1705.63
BIC 1822.05 | 1827.66 | 1859.87 |1845.55 |1833.78 | 1821.25 | 1801.01 | 1796.34
MSE 0.17 0.11 0.09 0.09 0.09 0.09 0.09 0.07
MAE 0.19 0.12 0.10 0.10 0.10 0.10 0.09 0.09

k (Non-Gaussian)
AIC 1925.23 | 1935.53 | 1979.99 |1976.52 | 1927.27 |1900.35 | 1892.25 | 1888.87
BIC 1975.57 | 1986.68 |2016.64 |2008.98 |2001.13 |1999.76 | 1989.68 | 1980.35
MSE 0.11 0.10 0.04 0.04 0.03 0.03 0.02 0.02
MAE 0.05 0.04 0.02 0.02 0.012 0.01 0.01 0.01

Table 2. Results of model selection for gaussian and non-gaussian on DiDi dataset.

16 —+— FedVCP, d=10
FedVCP, d =50
-
14 e <+ FedVCP, d =200
12 e —— Fed-mv-PPCA, d =10
T -+- Fed-mv-PPCA, d =50
10 e «# Fed-mv-PPCA, d =200
w DFmP-SN, d = 10
g 81 >~ DFmMP-SN, d =50
6l & DFmP-SN, d = 200
4 B N
2
0

Number of Iterations

Figure 3. Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, & = 0.1.

For the SD dataset and DiDi dataset, the calculation results (see Tables 1 and 2) demonstrate that for differ-
ent privacy parameters, our algorithm can achieve privacy guarantee and is clearly better than FedVCP. For the
DiDi dataset, our algorithm achieved a stronger privacy guarantee. It can be clearly seen from Figs. 3, 4, 5, 6, 7,
8 and 9 that our estimation error is smaller in MSE .

Conclusions

In this study, we introduce a skewed normal distribution as the non-Gaussian data likelihood and prior. Our
application proves that Fed-mv-PPCA is robust to increasing levels of heterogeneity in training centers, and
provides high-quality data reconstruction that outperforms competing methods in all scenarios. In addition,
when DP was introduced, we investigated the performance of the proposed method according to different privacy
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Figure 4. Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, & = 0.2.
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Figure 5. Effect comparison of three algorithms in different dimensions of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, & = 0.8.
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Figure 6. Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, ¢ = 0.1.
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Figure 7. Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, & = 0.2.
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Figure 8. Effect comparison of three algorithms in different samples of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, & = 0.8.
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Figure 9. Effect comparison of three algorithms in different budget of MSE (FedVCP, Fed-mv-PPCA,
DFmP-Sn) on DiDi dataset, d = 10.

budget scenarios. Notably, there are four DP hyperparameters that play a key role and may influence the proper-
ties of DP-Fed-mv-PPCA: the privacy budget parameters (¢, §), and the clipping and skewness parameters § ().
These parameters are closely related and both help determine the magnitude of the noise used to perturb the
updated difference A6. Indeed, increasing § or decreasing the multiplicative constant in the clipping mechanism
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implies the addition of less noise, thereby improving the overall utility of the global model. However, the smaller
the values of € and §, the higher the privacy guarantee.

There is much more work to be conducted in the future. First, reducing the computational and sample com-
plexities of the DP calculation between the client and server is the key problem because heterogeneous data with
multiple sources often face the problem of small data. Second, different noise mechanisms are also the main
direction of subsequent studies, and we note that matrix variables and tensor data are also challenges in modern
FL. Finally, we studied distributions with thicker tails and shear methods suitable for high-dimensional data to
improve the robustness of the model. Meanwhile, for outlier datasets, the Huber contamination model can be
considered for the FL of DP.

Data availibility
The datasets generated and/or analyzed in the present study are not publicly available, but are available from the
corresponding author upon reasonable request.
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