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A neural network based global 
traveltime function (GlobeNN)
Mohammad H. Taufik 1, Umair bin Waheed 2* & Tariq A. Alkhalifah 1

Global traveltime modeling is an essential component of modern seismological studies with a whole 
gamut of applications ranging from earthquake source localization to seismic velocity inversion. 
Emerging acquisition technologies like distributed acoustic sensing (DAS) promise a new era of 
seismological discovery by allowing a high-density of seismic observations. Conventional traveltime 
computation algorithms are unable to handle virtually millions of receivers made available by DAS 
arrays. Therefore, we develop GlobeNN—a neural network based traveltime function that can provide 
seismic traveltimes obtained from the cached realistic 3-D Earth model. We train a neural network to 
estimate the traveltime between any two points in the global mantle Earth model by imposing the 
validity of the eikonal equation through the loss function. The traveltime gradients in the loss function 
are computed efficiently using automatic differentiation, while the P-wave velocity is obtained from 
the vertically polarized P-wave velocity of the GLAD-M25 model. The network is trained using a 
random selection of source and receiver pairs from within the computational domain. Once trained, 
the neural network produces traveltimes rapidly at the global scale through a single evaluation of the 
network. As a byproduct of the training process, we obtain a neural network that learns the underlying 
velocity model and, therefore, can be used as an efficient storage mechanism for the huge 3-D Earth 
velocity model. These exciting features make our proposed neural network based global traveltime 
computation method an indispensable tool for the next generation of seismological advances.

Traveltime modeling is an essential component of modern seismological studies with applications in earthquake 
source localization1–4, earthquake early warning systems5,6, seismic velocity inversion7–12, and earthquake source 
parameter estimation13. Recent advances in seismological instrumentation have seen the emergence of fiber-optic 
Distributed Acoustic Sensing (DAS) technology as a dense array of strain sensors for continuous and real-time 
seismic monitoring14. Conventional finite-difference-based traveltime algorithms are computationally intractable 
for handling millions of virtual receivers provided by DAS arrays for large 3-D surveys, like the US seismological 
array. Although a standard first-order conventional eikonal solver is mostly employed in practice15, their effi-
ciency and accuracy limits hamper its practical application for inverse problems at such scales, and especially for 
real time applications. Therefore, to extract full value from dense 3-D seismic data sets, an alternative approach is 
needed that could model seismic traveltimes efficiently between any two points. One way to obtain this efficiency 
can be achieved through forming a functional that inherently stores the traveltime between two points, and as 
result has the velocity model information embedded.

Currently, seismic traveltimes are computed by numerically solving the eikonal equation, which is a first-order 
nonlinear partial differential equation (PDE) and can be derived from both the wave equation via the Wentzel-
Kramers-Brillouin approximation or Huygens’ principle using ray theory16. It is essentially used to address two 
fundamental questions pertaining to traveling seismic waves: (i) What paths do these waves take in traveling 
between any two points of interest? (ii) How long do they take in doing so? Seismologists use this information 
for locating earthquakes and performing subsequent downstream seismological analyses, including seismic 
tomography and earthquake property estimation.

Throughout the past decades, geometric ray theory has been an established field to solve the seismic tomog-
raphy problem. Being an important part during the forward problem (modeling traveltimes), methods based on 
this approach can be categorized into two major groups; ray-based and grid-based approaches. The former17–20, 
relies on solving the characteristic equation derived from the high-frequency asymptotic assumption of the 
wave equation, the eikonal, while the later directly solves the eikonal equation. The ray-based (e.g., two-points 
ray-tracing21) approach has the advantage of being able to track multi-arrivals, as compared to the grid-based 
eikonal solvers, which primarily tracks the first-arrivals. For a strongly heterogeneous medium, however, ray-
based methods often fail to solve for the traveltime as rays may diverge, and thus eikonal solvers is a more suitable 
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solution22. Nevertheless, the governing PDE for traveltimes under the high frequency asymptotic approximation 
of the wave equation is the eikonal equation. Thus, both numerical ray-based methods and direct finite-difference 
methods have been utilized in traveltime tomography23–27.

Several finite-difference-based algorithms have been deployed over the years to solve the eikonal equation28,29. 
However, these methods suffer from a number of limitations. Primarily, they are limited by computational bot-
tlenecks when repeated traveltime computations are needed for perturbations in the earthquake source location 
or the seismic velocity model. Moreover, in the case of dense seismic networks, the finite-difference grid has to 
be chosen accordingly, requiring prohibitively large disk storage, causing a further strain on the computational 
resources. Advances in the field of scientific machine learning offer new pathways to address these outstanding 
challenges and usher in a new era of scientific discovery in Earth sciences.

Physics-informed machine learning30,31 has been very useful in addressing various problems in computational 
sciences32–35. In seismology, they have demonstrated efficacy on both forward and inverse problems at local and 
regional scales based on wave fields36,37 and traveltimes38–41. Such physics-informed neural networks (PINNs) 
leverage the capabilities of deep neural networks as universal function approximators42. Contrary to purely 
data-driven deep learning approaches, PINNs restrict the space of admissible solutions by enforcing the validity 
of the underlying partial differential equation governing the actual physics of the problem. This is achieved by 
using automatic differentiation43 to compute gradients of the neural network’s output with respect to its inputs.

We harness the capabilities of neural networks as function approximators to learn a traveltime map for the 
global mantle Earth model. By minimizing a loss function formed by imposing the validity of the underlying 
eikonal equation, a neural network is trained to produce traveltime solutions between any points in a 3-D Earth 
model. Specifically, we use automatic differentiation to compute the spatial gradients of traveltime fields, which 
are then used to obtain a recovered velocity model using the eikonal equation. Then, the neural network training 
process aims at minimizing the difference between the predicted and the provided target velocity models. For 
the target velocity model, we use the GLAD-M25 model44. The term global used throughout the article refers to 
the global mantle velocity model used as the input.

Our proposed framework allows the neural network to learn a traveltime function that is mesh-free and can 
be used to instantly evaluate the traveltime between any two points in the 3-D Earth model. This allows us to 
avoid storing traveltime lookup tables, as the traveltimes can be generated on the fly using the trained neural 
network. This ensures that the method scales independently of the number of seismic stations and has a compact 
memory footprint. Moreover, the obtained traveltime solution is guaranteed to be differentiable with respect to 
the source or receiver locations. This allows our trained neural network to be used for a variety of seismologi-
cal applications at the global scale. These exciting features offer a promising alternative in seismic traveltime 
modeling at the global Earth scale, and our trained PINN model can be used as an efficient modeling engine for 
seismological inverse problems. As a byproduct of the training process, we obtain a neural network that learns 
the underlying velocity model and, therefore, it can also be used as an efficient storage mechanism for the huge 
3-D Earth velocity model, which can be queried for further applications, avoiding the I/O bottleneck.

Results
To demonstrate the ability of our neural network function (Fig. 1) in rapid modeling of global seismic traveltimes, 
we perform several numerical tests to analyze its accuracy, robustness, and generalization ability. We group these 
tests into two main categories. In the first case, we consider a single earthquake located inside the Earth and 
train the PINN model for evaluating traveltimes from this point-source to any location on the surface of the 
Earth or the interior of it down to the outer core boundary. Next, we consider a more realistic case using 2234 
seismic stations from the USArray, which covers the entire contiguous United States and parts of Canada. We 
analyze the performance of GlobeNN in rapidly computing traveltimes from any candidate point-source inside 
the Earth to the USArray stations. We also evaluate the extrapolation ability of our trained model in predicting 
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Figure 1.   Physics-informed neural network based global seismic traveltime modeling. A neural network 
consisting of 20 residual blocks along with a fully-connected layer on either sides of it is used. Each of these 
layers contains 512 neurons. The input to the network are the source and receiver coordinates, while the output 
is the traveltime factor τ . The spatial gradients of the traveltime factor ∇τ are obtained through automatic 
differentiation. These gradients along with the input velocity information are used to form the training loss 
function J. Once the network is trained, it can be used to instantly evaluate traveltimes between any two points 
in the global Earth model.
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traveltimes to stations outside the USArray domain. To analyze the performance of GlobeNN for these tests, we 
compare the target GLAD-M25 velocity model with the one recovered using the traveltimes predicted by the 
trained PINN model and computed using Eq. (5).

Point‑source traveltime modeling.  In this case, we examine the 2001 south of Honshu, Japan earth-
quake (Mw 6.8, mb 6.4, Ms 6.5). It was situated at 33.97◦ N, 132.52◦ E, and had a depth of 47.4 km, and shown 
with a black star in Figs. 2, 3. We consider a random selection of receiver points spread throughout the GLAD-
M25 velocity model and train our neural network to minimize the loss function given in Eq. (7). Once the train-
ing is completed, we evaluate traveltimes to all points of the discretized GLAD-M25 model emanating from the 
considered point-source. This traveltime map is then used to compute the corresponding (recovered) P-wave 
velocity through Eq. (5). To analyze the performance of the traveltime predictions, we compare the recovered 
velocity obtained from the predicted traveltimes with the reference GLAD-M25 velocity model at depths of 
24 km and 250 km. These depths are chosen to demonstrate the varying accuracy of traveltime predictions for 
regions with different velocity structures.

In Fig. 2, we analyze the performance of traveltime prediction represented by the recovered velocity at a depth 
of 24 km. This allows us to demonstrate the challenge associated with accurate traveltime computation for the 
highly heterogeneous lithosphere. Figure 2a shows the target velocity from the GLAD-M25 model, whereas 
Fig. 2b shows the recovered velocity, both at a depth of 24 km. We observe close similarity in the macro-trends of 
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Figure 2.   Accuracy analysis for the traveltimes predicted by the neural network trained for a point-source using 
model depth of 24 km. The target P-wave velocity model from the GLAD-M25 model (a) and the one recovered 
using the predicted traveltime map (b) at a depth of 24 km show similar macro trends, highlighting the accuracy 
of the traveltime predictions. The velocity residual (c) and the relative velocity residual (d) show that for the 
most part, the difference is close to zero. Some differences are observed in the boundary zone between the 
oceanic and continental lithosphere due to sharp velocity variations that are not fully captured by the trained 
PINN model. The traveltime map from the considered point-source (e) highlights that the method can be used 
for global seismic traveltime computation on a dense grid of stations. The recovered velocity error histogram (f) 
shows that for a majority of the geographical region at this depth, the errors are close to zero, highlighting the 
accuracy of PINN-based traveltime prediction despite the complexities of the Earth’s lithosphere.
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the two velocities. To analyze the differences, we plot the residual between the target and the recovered velocities 
in Fig. 2c and the relative residual in Fig. 2d. We observe that the recovered velocity is accurate for most of the 
geographical area at this depth, although some errors are noticeable mainly at the boundary between the oceanic 
and continental lithosphere, where we have sharp variations in the velocity model. This is understandable due to 
the spectral bias of neural networks as they favor learning a smoother representation of the underlying function 
and take considerably longer training times to approximate high-frequency features in the underlying solution45. 
Despite the complex nature of Earth’s lithosphere, the recovered P-wave velocity indicates that the PINN model is 
able to compute traveltimes with high accuracy. Figure 2e shows the traveltime map from the considered point-
source to all points at a depth of 24 km. The trained neural network provides a traveltime function defined over 
a continuous domain. Thus, it can be evaluated at any arbitrary point within the computational domain. Finally, 
in Fig. 2f, we plot the residual histogram for all points at a depth of 24 km, confirming that the error is close to 
zero for the majority of the area at this depth.

In Fig. 3, we analyze the performance of traveltime prediction considering recovered velocity in the upper 
mantle region at a depth of 250 km. Figure 3a,b show the target and recovered velocities at this depth, respec-
tively, indicating close similarity between the two. Figure 3c plots the residual between the recovered and target 
velocities and Fig. 3d shows the relative residual. We observe negligible errors at this depth throughout the 
entire geographical area, indicating high accuracy of traveltime prediction. Compared with the prior analyzed 
depth of 24 km, we observe even improved accuracy as the target velocity at this depth does not contain sharp 
velocity variations as in the complex lithosphere. This allows the PINN model to learn the underlying function 
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Figure 3.   Accuracy analysis for the traveltimes predicted by the neural network trained for a point-source 
using model depth of 250 km. The target P-wave velocity model from the GLAD-M25 model (a) and the one 
recovered using the predicted traveltime map (b) at a depth of 250 km show striking similarity. The velocity 
residual (c) and the relative velocity residual (d) show that the difference is close to zero throughout the model 
at this model depth. The relatively smoother velocity variations at this depth compared to the lithosphere are 
well captured during the neural network training. The traveltime map from the considered point-source (e) 
highlights that the method can be used for global seismic traveltime computation on a dense grid of stations. 
The recovered velocity error histogram (f) shows that for the most part, the errors are between − 0.5 and 0.5%, 
highlighting the accuracy of PINN-based traveltime prediction.
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accurately, which translates into the accuracy of the traveltime predictions. In Fig. 3e, we plot the traveltime map 
from the considered point-source to all points at a depth of 250 km. The recovered velocity histogram at this 
depth is plotted in Fig. 3f showing that the majority of the relative residual lies between -0.5 to 0.5%, indicating 
an accuracy of 99% for most of the computational domain.

Next, we compare the velocity distribution between the target and recovered velocity models in Fig. 4. First, 
we compare the histogram of velocity values at a depth of 24 km in Fig. 4a. We observe a good match between the 
target and predicted velocities, particularly for higher velocity values corresponding to the continental part of the 
lithosphere. However, we observe a mismatch in velocity histograms for values corresponding to the boundary 
zone between the continental and oceanic lithosphere (velocities from 7 to 7.5 km/s). The recovered velocity is 
smeared in the region as it is unable to capture the rapid variations. On the contrary, in Fig. 4b we observe an 
excellent match between the target and predicted velocity histograms at a depth of 250 km. Finally, to have an 
idea of the overall accuracy across the entire model, Fig. 4c compares the velocity histograms for all depths in 
the GLAD-M25 model indicating a striking match between the target and recovered velocities. We confirm these 
observations through the cosine similarity (CS) metric. This metric quantifies an inner product between two 
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Figure 4.   Comparison of velocity distributions between the target and recovered velocity models for the single 
point-source case. Distribution for the target (green) and the recovered (blue) velocities at a depth of 24 km 
(a) show a relatively good match for continental and oceanic parts of the lithosphere but the boundary zone 
between the two is smeared in the recovered velocity as the PINN model is unable to capture sharp velocity 
variations at this depth. However, the comparison at a depth of 250 km (b) shows striking similarity as the 
velocities at this depth have smoother variations. The comparison considering all the depth values (c) in the 
GLAD-M25 model show near-perfect recovery of the velocity model, highlighting the accuracy of traveltime 
predictions. The cosine similarity (CS) index is used to quantify the similarity between the distributions.
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normalized histograms. In other words, it quantifies the similarity distance as a function of the cosine angle46. 
The CS value of 0.999 for the entire model indicates overall high accuracy of traveltime predictions (CS value of 
1 indicates identical distributions).

We further analyze the accuracy of predicted traveltimes by comparing vertical slices of the two velocities 
taken around a latitude of 0 ◦ and a longitude of − 180◦ , as shown in Fig. 5. We observe that the vertical slices 
show similar velocity features between the target and the recovered velocity models. Moreover, by looking at the 
residual values (blown up by 100 times) and the relative residual values, we observe negligible differences across 
depths, again an indication of the overall high accuracy of our traveltime predictions. We notice that while most 
of the residual values are near zero, the dominant absolute errors are merely around 0.02–0.05 km/s.

Finally, we investigate the accuracy of the recovered velocity model by comparing 1-D velocity profiles. Fig-
ure 6 shows 1-D velocities corresponding to the average taken at each depth for the recovered and the GLAD-
M25 velocity models. In addition, we show the minimum and maximum velocity values from the GLAD-M25 
velocity model at each depth. Figure 6 is used to highlight velocity comparison at the three main seismic velocity 
discontinuities. The first discontinuity is along the crust-mantle boundary, the Moho discontinuity47, highlighted 
in Fig. 6a. The second discontinuity corresponds to the upper mantle and transition zone boundary, which is 
highlighted in Fig. 6b. The third discontinuity corresponds to the upper-lower mantle boundary, the 660 km 
discontinuity48, and highlighted in Fig. 6c. At all the three discontinuities, we observe a close match between the 
mean GLAD-M25 and the mean recovered velocities. Even for the largest discontinuity near the lithosphere, the 
average recovered velocity (solid blue line) matches the average target velocity values (dashed green line) fairly 
well (see Fig. 6a). This comparison highlights the fact that the NN is able to learn the underlying function and 
can produce accurate traveltimes, which were used to obtain the recovered velocity model. These discontinui-
ties represent the main challenge for the algorithm as they are often difficult to capture using NNs due to their 
spectral bias45.

USArray traveltime modeling.  Having analyzed the accuracy of global seismic traveltime computation 
using PINNs for a single earthquake, we now turn towards a more realistic setting. We train the PINN model to 
predict traveltimes between any earthquake location in the global mantle Earth model to all the 2234 USArray 
stations. To speed up the training process, we initialize the neural network parameters using values from the 
previous training and use fine-tuning to update the weights. For efficient training, we use reciprocity between 
seismic sources and receivers and consider USArray stations as point-sources and randomly select points within 
the Earth model as receivers. This minor detail significantly speeds up the training process without affecting the 
training outcome. To keep the training time and memory requirements tractable, we use the same total number 
of training points as in the case of a single point-source. This results in a decreased coverage of the computational 
domain per USArray station as the total number of training points is distributed across the USArray stations. 
Once the training is complete, we analyze the accuracy of traveltime computation by considering each individual 
USArray station and predicting traveltimes from every point of the discretized GLAD-M25 model to the consid-
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Figure 5.   Accuracy analysis using vertical slices from the target and recovered velocity models and their 
difference for the single point-source case. A comparison of vertical profiles between the target and the 
recovered velocity models taken around the latitude of 0 ◦ (a) and the longitude of − 180◦ (b) show similar 
macro features. The velocity difference (blown up by 100 times) shows that the residuals are negligible and 
lie mostly between an absolute value of 0.02–0.05 km/s. The relative velocity residual confirms the agreement 
between the target and recovered velocity models.
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ered station. Specifically, the horizontal (longitude and latitude) grid spacing is 0.5◦ while the vertical discretiza-
tion is performed such that the lithosphere is more finely sampled ( ≈ 1 km) compared to the lower mantle layer 
( ≈ 16 km). These traveltimes are then used to compute the recovered velocity as before and compared with the 
target GLAD-M25 P-wave velocity model. We present the analysis considering two representative USArray sta-
tions for analyzing each depth presented here.

Figure 7a,b plot the predicted traveltime maps for the two considered USArray stations, while Fig. 7c,d show 
the recovered velocity for each station at a depth of 24 km, computed using these traveltime maps. While the two 
velocity models are largely similar, there are observable differences that are attributable to different ray coverage 
for each individual USArray station during the training process. By comparing these two recovered velocities with 
the target in Fig. 2a, we observe differences pre-dominantly at the boundary between the oceanic and continental 
lithosphere. This is understandable, as stated earlier, due to the sharp variation in velocity around this region. In 
Fig. 7e, we show the mean recovered P-wave velocity averaged over all recovered velocities for individual USAr-
ray stations indicating a similar trend. The variance of these recovered velocities is shown in Fig. 7f, indicating 
minor differences between the recovered velocities for each USArray station.

In Fig. 8, we perform a similar analysis for velocities at a depth of 250 km by considering two different 
USArray stations indicated using black stars. The traveltime maps corresponding to the two stations are shown 
in Fig.  8a,b. The recovered velocities using these traveltime maps are shown in Fig. 8c,d. Both the recovered 
velocities show similar trends with minor differences. The mean recovered velocity, obtained by averaging over 
all the USArray stations, is shown in Fig. 8e. It bears a close resemblance to the target velocity at this depth (see 
Fig. 3a), indicating accurate traveltime prediction for the entire USArray model from source points at this depth. 
Moreover, Fig. 8f shows the variance between the recovered velocities at different USArray stations, indicating 
minor differences between them.

In Fig. 9, we compare the vertical slices around the latitude of 0 ◦ and the longitude of − 180◦ . We again 
observe similar velocity macro-trends between the mean recovered velocity and the target velocity. The residual 
plots are blown up 100 times to highlight the differences. While the recovery is quite accurate for most parts, the 
error in the recovered velocity ranges merely between − 0.08 and 0.08 km/s. The relative residual plot confirms 
that the differences between the recovered and the target velocities are negligible, indicating accurate traveltime 
prediction for the entire USArray stations. Nevertheless, we notice that the accuracy, in this case, is slightly worse 
than the single-point source test (Fig. 5). This is because we use the same number of training points, but here, 
they are distributed over the entire USArray stations instead of focusing on a single point, resulting in slight 
degradation of accuracy.
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Figure 6.   Comparison of 1-D velocity profiles at different seismic velocity discontinuities. The comparison 
between the mean GLAD-M25 and the recovered velocity models obtained by averaging all velocity values 
at each depth shows a close match. Zoomed-in views are presented to highlight the match at the three major 
seismic discontinuities. The minimum and maximum velocities for the GLAD-M25 velocity model at each 
depth are also shown.
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Figure 7.   Analysis of recovered velocity for the USArray traveltime modeling case using a depth of 24 km. 
Traveltime maps for two representative USArray stations indicated by black stars (a,b) and their corresponding 
recovered velocity models (c,d) are shown. By comparing with the target velocity model at this depth (Fig. 2a), 
we observe similar velocity trends. Differences can be observed at boundary zone between the oceanic and the 
continental lithosphere which is due to the limited ability of the PINN model to capture sharp velocity variations 
in the lithosphere. The mean recovered velocity (e), taken by averaging over all USArray stations, shows the 
overall high accuracy of traveltime prediction. The recovered velocity variance (f) across all USArray stations 
shows small differences between the different recovered velocity models.
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Figure 8.   Analysis of recovered velocity for the USArray traveltime modeling case using a depth of 250 km. 
Traveltime maps for two representative USArray stations indicated by black stars (a,c) and their corresponding 
recovered velocity models (b,d) are shown. By comparing with the target velocity model at this depth (Fig. 3a), we 
observe similar velocity trends. Only minor differences are observed that are attributable to different ray coverage for 
each individual USArray station. The mean recovered velocity (e), taken by averaging over all USArray stations, shows 
the overall high accuracy of traveltime prediction. The recovered velocity variance (f) across all USArray stations shows 
negligible differences between the different recovered velocity models.
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Global mantle traveltime modeling.  We now analyze the extrapolation capability of our PINN model 
trained on the USArray to estimate traveltimes for stations beyond the USArray coverage. We consider three 
large magnitude earthquakes from different regions of the globe and estimate traveltimes from these earth-
quakes to hypothetical receivers lines covering part the USArray and extending beyond it. Furthermore, we also 
compare these traveltimes with observed traveltime values picked at seismic stations that lie on the considered 
hypothetical line of receivers. The coinciding seismic stations are part of the USArray and the International 
Seismological Centre (ISC) array.

First, we consider the M w 7.7 earthquake that occurred on January 28, 2020 between Cuba and Jamaica. 
We estimate traveltimes from this earthquake to a dense line of receivers at a latitude of 60◦ . The earthquake 
location and the receiver line are shown in yellow in Fig. 10a. Figure 10d compares the traveltimes obtained 
using the trained PINN model (solid yellow line) and those observed at the seismic stations (green stars) lying 
on this hypothetical line of receivers. The stations are located within a radius of 1 ◦ within the hypothetical line. 
We observe a close match between neural network predicted traveltimes and the observed earthquake events. 
Figure 10g plots the distribution of absolute traveltime residuals predicted by the trained neural network. The 
majority of the absolute erros are within 1 second. It is also worth mentioning that we do not perform any outli-
ers removal to ensure the credibility of the residuals49,50.

Next, we perform a similar analysis for the M w 9.1 Tohoku earthquake that occurred on March 11, 2011 on 
the east coast of the Tohoku region in Japan. We estimate traveltimes from this earthquake to a dense line of 
receivers at a longitude of − 112◦ . The earthquake location and the receiver line are shown in yellow in Fig. 10b. 
We also increase the radius to 2 ◦ within the hypothetical line to select the stations. The neural network predicted 
traveltimes are shown in Fig. 10e. We also plot traveltimes observed at seismic stations that lie on the considered 
hypothetical line of receivers. Compared to the previous case, the study is performed on the data recorded using 
the ISC array as opposed to the USArray (training data). Thus, with this setup we want to infer the generalization 
of the computed traveltime. Despite a slight reduction in the absolute residual values, as depicted in Fig. 10h, the 
trend clearly indicates that our method is capable of providing accurate predictions for traveltimes.

Finally, we analyze the extrapolation ability of the trained PINN model using the recording from the ISC 
array for the M w 8.8 Chile earthquake in the southern hemisphere, that occurred on February 27, 2010 off the 
coast of central Chile. We estimate traveltimes from this earthquake to a dense line of receivers at a longitude of 
− 100◦ , as shown in Fig. 10c. The neural network predicted traveltimes are shown in Fig. 10f along with those 
observed at the actual seismic stations, with the same radius selection of 2 ◦ , lying within this line of receivers. 
Again, we observe good match between the predicted traveltimes and the observed values.

These examples show that our trained PINN model is capable of providing accurate traveltimes from any 
earthquake location to not only the area covered by the USArray but even beyond. Moreover, the traveltime 
prediction using the trained PINN model (performed on a CPU for fair comparison) is an order of magnitude 
faster than computing them using a 1-D velocity model calculated using a 1-D ray tracing Python library, ObsPy51, 
as well as a 3-D ray tracing method52. For a single source-receiver pair, the computational time required by our 
trained method is only 0.05 milliseconds. In comparison, 1-D and 3-D ray tracing methods require 32.84 seconds 
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Figure 9.   Accuracy analysis using vertical slices from the target and mean recovered velocity models and their 
difference for the USArray modeling test. A comparison of vertical profiles between the target and the mean 
recovered velocity models taken around a latitude of 0 ◦ (a) and a longitude of − 180◦ (b) show similar macro 
features. The velocity difference (blown up by 100 times) shows that the residuals are small and lie mostly below 
an absolute value of 0.08 km/s. The relative velocity residual confirms the agreement of the mean recovered 
velocity model with the target, highlighting the high accuracy of traveltime computation.
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and 61.40 seconds, respectively, illustrating the efficiency of our approach. While these ray-tracing codes may 
be further optimized to improve their efficiency, the idea here is to compare our method with open-source tools 
that are readily available and routinely used by seismologists.

(a) Locations of the
2020 Cuba earthquake
and the hypothetical
receiver line

(b) Locations of the
2011 Tohoku earthquake
and the hypothetical
receiver line

(c) Locations of the
2010 Chile earthquake
and the hypothetical
receiver line

−160−140−120−100−80
Longitude (degree)

8.5

9.0

9.5

10.0

10.5

11.0

11.5

T
ra
ve
lt
im

e
(m

in
ut
es
)

Picked
NN Prediction

(d) Traveltime compar-
ison for the 2020 Cuba
earthquake

20 30 40 50 60
Latitude (degree)

10.5

11.0

11.5

12.0

12.5

13.0

T
ra
ve
lt
im

e
(m

in
ut
es
)

NN Prediction
Picked

(e) Traveltime compari-
son for the 2011 Tohoku
earthquake

20 30 40 50
Latitude (degree)

11

12

13

T
ra
ve
lt
im

e
(m

in
ut
es
)

NN Prediction
Picked

(f) Traveltime compari-
son for the 2010 Chile
earthquake

0 1 2 3
Traveltime (seconds)

0

1

2

3

4

5

6

N
um

be
r
of

ev
en
ts

(g) Absolute traveltime
residual histogram for the
2020 Cuba earthquake

0.0 2.5 5.0 7.5 10.0 12.5
Traveltime (seconds)

0

1

2

3

4

5

N
um

be
r
of

ev
en
ts

(h) Absolute traveltime
residual histogram for the
2011 Tohoku earthquake

0 1 2 3
Traveltime (seconds)

0.0

0.5

1.0

1.5

2.0
N
um

be
r
of

ev
en
ts

(i) Absolute traveltime
residual histogram for the
2010 Chile earthquake

Figure 10.   Analysis of our PINN model’s extrapolation ability beyond the training domain. Three large 
earthquakes from regions around the globe are chosen to study the generalization ability of our neural network 
trained for the USArray stations. Traveltimes are obtained using the trained neural network from these 
earthquake sources to hypothetical receiver lines shown in (a–c) for each case (d–f). Despite the fact that the 
hypothetical receiver lines extend beyond the area covered by the USArray, both traveltimes match pretty 
well. Also shown are the observed traveltimes picked at seismic stations lying on the hypothetical receiver line 
(green). Absolute traveltime residual histograms (g–i) highlight the overall accuracy of the neural network 
traveltime prediction despite using it to extrapolate beyond the training domain.
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Discussion
We have developed a neural network based method to rapidly estimate global seismic traveltimes using advances 
in the field of physics-informed machine learning. By minimizing a loss function constructed from the eikonal 
equation (and its boundary conditions), a neural network is trained to compute the traveltime between any two 
points in a global mantle model. Once the model is trained, it can handle any number of source-receiver pairs 
efficiently ( ∼ 47 μs per pair). This marks a significant stride forward in computational seismology as conventional 
finite-difference based eikonal solvers, or even ray tracing methods, are unable to handle millions of receivers 
made available by emerging acquisition technologies such as distributed acoustic sensing. Through extensive 
numerical tests, we show that our method is capable of producing largely accurate traveltimes in a computation-
ally efficient manner and scales independently of the number of receivers. Our trained neural network can be 
used as an efficient forward modeling engine for speeding up seismic inversion algorithms at the global scale, 
potentially leading us into a new era of seismological discoveries.

The highlighted advantages are made possible thanks to the ability of neural networks to approximate any 
continuous, bounded function. Once trained, a neural network can produce a continuous function output with 
respect to its inputs. Therefore, we can produce seismic traveltime maps that are mesh-independent. Moreover, 
these traveltimes can be obtained on the fly and, unlike conventional methods, there is no need to store traveltime 
look up tables. The memory requirement, in this case, is dictated by the neural network architecture as only the 
network parameters need to be stored. Furthermore, the trained neural network may also be seen as an efficient 
storage mechanism of the global seismic velocity model as it learns the velocity representation during the training 
process. So we can extract the traveltime or velocity information from the network at any point. Thus, instead of 
using conventional interpolation techniques to overcome the first-order traveltime inaccuracy15, we utilize the 
neural network’s non-linear interpolation ability, optimized to fit the eikonal PDE. Another advantage of our 
method is that the traveltime solution is guaranteed to be differentiable with respect to the source or receiver 
locations. This allows the method to be used for a variety of seismological applications, such as earthquake 
source localization as it requires computation of gradients of an objective function with respect to source loca-
tions, which are readily available. Moreover, our approach enables a straightforward computation of high-order 
derivatives of traveltimes, which can be valuable in computing raypaths and amplitudes, and it also facilitates an 
efficient computation of seismograms for doubly-scattered waves. We also show the generalization capabilities 
of our approach by predicting accurate traveltimes beyond the region covered by the training process.

Our implementation is made efficient thanks to the state-of-the-art GPU hardware and modern deep learning 
libraries like PyTorch, allowing rapid calculation of gradients through automatic differentiation. The training of 
our neural network takes about 52 min per epoch on a single NVIDIA GeForce GTX TITAN GPU. However, 
once trained, the neural network can produce traveltimes rapidly through a single evaluation of the network, 
making the approach attractive particularly when a large number of sources and receivers are involved. Our 
approach is massively parallel and best suited for GPU hardware, taking only a fraction of a second to compute 
traveltimes at the global scale.

Apart from the mentioned training challenges, our method is driven by the eikonal formulation of traveltime, 
which is based on a high-frequency asymptotic approximation of the wave equation. Its numerical solution often 
admits the viscosity solution, which tracks the first-arrivals. Based on our tests, these traveltimes match well with 
picked first-arrival earthquake traveltime data often used for locating earthquakes and performing P-phase arrival 
tomography. Nevertheless, it is worth highlighting that the ability to predict first-arrival traveltimes can be a seri-
ous limitation for traveltime tomography in the upper mantle and transition zones where the use of multi arrivals 
are quite important53,54. While the issue of computing multiple arrival traveltimes using our approach remains 
an outstanding challenge, the concept of raylets55 can be used as first step towards addressing it. Moreover, the 
approximated traveltime gradients is assumed to be well behaved which may be inaccurate in the face of severe 
discontinuities (e.g., caustics). The other important consideration is that here we only model the P-phase; the 
proposed workflow can be used to obtain the S-phase by using the shear velocity in Eq. (1).

Going forward, the accuracy of our results can be further enhanced with the increasing computational capa-
bilities of GPUs and our increased understanding of the training dynamics for physics-informed neural networks 
(PINNs). Moreover, the traveltime computation can be made more accurate by considering more realistic physics 
of the Earth model, including the anisotropic and attenuation effects of seismic wave propagation. The transfer 
learning approach can be applied to compute traveltimes for a different velocity model (e.g., an updated version 
of the GLAD-M25 model). However, it is not obvious that the same network will be able to capture the higher 
wavenumber components of a different velocity model as that is determined by the expressivity of the current 
architecture. Neuron splitting offers an opportunity to expand the size of the network while utilizing the learned 
features56. It might provide a path for capturing higher resolution information introduced into the updated 
velocity model. In addition, the sensitivity matrix can be evaluated from the gradient of the additive traveltime 
field, which is obtained from the source and receiver pairs at all points in the domain38. The flexibility of the 
PINN framework allows embedding additional physics into the workflow by merely updating the loss function 
corresponding to the correct form of the eikonal equation.

Methods
We train a neural network model to learn a traveltime function using the global Earth velocity model. Once 
trained, the neural network can be used to instantly obtain the traveltime between any two points in a 3-D Earth 
model. Furthermore, the trained neural network can be used as an efficient storage mechanism for the global 
Earth velocity model that can be queried on the fly for seismological applications. Below, we summarize the key 
elements for achieving these objectives.
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The eikonal equation.  The eikonal equation for an isotropic medium can be written as

where T denotes the traveltime field and V denotes the medium velocity, both as a function of the position vector 
x . The eikonal equation simply states that the magnitude of the gradient of the arrival time surface is inversely 
proportional to the speed of the wavefront. The traveltime field is also constrained by location of the source, xs , 
in which we assume that T(xs) = 0.

Instead of solving the original form of the eikonal equation, we decompose the traveltime field into two 
multiplicative functions and obtain the factored form of the eikonal equation57:

where a scalar τ is introduced to map the background traveltime T0 to the actual traveltime T. We choose the 
background traveltime to be simply the distance between two points (source xS and location x in the domain of 
interest) divided by a background constant velocity V0 . Hence, Eq. (2) can be rewritten as

resulting in τ(xS , x) as the unknown to be solved for. The factored form allows us to absorb the point-source 
singularity in the analytical background traveltime T rendering the unknown function τ well behaved and smooth 
in the neighborhood of the point-source. This allows a neural network to approximate the function τ(xS , x) faster 
than T(xS , x) due to the well-known bias of neural network learning towards smooth functions45.

Physics‑informed neural network optimization.  Thanks to the universal approximation theorem42, 
we can approximate the functional solution of a PDE using a neural network. The traveltime factor τ is approxi-
mated via a neural network functional f, which is parameterized by its weights and biases, � , and has inputs as 
the source and receiver coordinate vectors xS and x , respectively. This can be formally expressed as:

The gradient of τ(xS , x) w.r.t. x can be evaluated directly using the chain rule and implemented through automatic 
differentiation43.

Once the traveltime field for a given point-source is known, the eikonal equation can be used to explicitly 
calculate the corresponding velocity. If we plug Eq. (2) into Eq. (1), for a particular source, we end up with

and by plugging in x = xS in search for the boundary condition (values of τ(xS) ), Eq. (5) yields

Therefore, using Eqs. (5) and (6), we construct a loss function to train our PINN model, which is given as

The first term of the loss function J corresponds to the minimization of the relative difference between the given 
target velocity V(x) and the recovered velocity V̂(x) . The latter is obtained by plugging the approximated spatial 
gradient ∇τ(xS , x) from the trained neural network into Eq. (5). The second term in Eq. (7) corresponds to the 
boundary condition. In other words, the neural network is encouraged to admit the true value of τ(xS , x) at the 
source, which can be easily obtained using Eq. (6). These two terms ensure that the governing eikonal equation 
is indeed satisfied (first term), and the necessary boundary condition (second term) is also honored during the 
minimization of the loss function. This optimization process is performed on a randomly chosen set of training 
points NxT.

Network architecture and workflow.  As shown in Fig. 1, we use a feed-forward neural network includ-
ing residual blocks. The network takes an input of two three-dimensional vectors (a total of six inputs) that 
correspond to the source and receiver coordinates in a 3-D Earth model. These input vectors may correspond 
to any coordinate system, but for a non-Cartesian system, a pre-processing step is needed to ensure the input 
vector values range between − 1 and 1. This can be achieved, for example, by performing a geodetic (spherical) 
to geocentric (Cartesian) coordinate transformation and scaling with its largest absolute value. The network 
consists of fully-connected layers as the first and the last hidden layer with a sequence of 20 residual blocks in 
the middle. In all of these layers, 512 neurons are used. The output of the network is the scalar factor τ , which 
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maps the background traveltime T0 to the actual traveltime field T. The backpropagation algorithm is then used 
to compute the gradient of τ w.r.t. the spatial coordinates x , which is required by the eikonal equation. We then 
train the neural network in a semi-supervised manner by incorporating the eikonal equation in the loss function 
J. The target velocity model at the receiver location V(x) is provided to compute the loss function.

Once the network is trained, we can compute traveltimes between chosen source and receiver coordinates 
(xS, x) through a single evaluation of the neural network and without the need for the global velocity model as it 
is embedded in the neural network parameters. This allows us also to access the global Earth velocity at any point 
(no interpolation between grid points needed) using Eq. (5). We will use this feature to compute the recovered 
velocity for validating the traveltime accuracy against the target (input) velocity.

Implementation details.  Below, we elaborate on the implementation details including the 3-D velocity 
model used, input pre-processing steps, and details of the training process.

Input velocity model.  We use the compression wave velocity from the second generation of the 3-D global 
adjoint tomography model, GLAD-M2544. The model is built to account for realistic effects due to 3-D anelastic 
behavior of the Earth, topographic and bathymetric variability, as well as Earth’s ellipticity, self-gravitation, and 
rotation. Using this model allows us to compute more accurate traveltimes compared to the standard 1-D veloc-
ity models used (e.g., the ek137 model from58) for simplicity.

The input coordinates for the neural network are sampled from the original points on the vertically-polarized 
P-wave velocity from the GLAD-M25 model. These points are sampled randomly from a coarser representation 
(four times larger than the initial sampling) of the GLAD-M25 model along the longitude and latitude dimen-
sions. Hence, the total points for the training and validation process are 21, 627, 871. Out of these points, we 
allocate 90% for training and 10% for validation.

Projection and normalization.  We perform a coordinate system projection and normalization to the input of 
the network to ensure stable training. A projection step transforms the input from a geodetic coordinate system 
( θ ,φ, r ) to a geocentric coordinate system (X, Y, Z). This step is introduced to make the eikonal formulation 
inline with the GLAD-M25 model, which is made on top of the SPECFEM3D GLOBE59 algorithm. This algo-
rithm internally uses the Cartesian coordinate for the numerical integration of the spectral-element method. 
Thus, although the input velocity uses a more natural geodetic coordinate system, a projection step appropriately 
accommodates the Earth’s first-order dependency on it’s radius. Finally, a division by the the values of the aver-
age radius of the Earth (6371 km) is performed to the projection output. This completes the normalization step 
and warrants the inputs to the network to be in the range of [−1, 1].

Training details.  The neural network architecture details and hyper-parameter values are summarized in 
Table 1. We use skip connections for the regression problem in the form of residual blocks. The idea originated 
from the successful implementation of skip connections on image recognition problems60. Using the same idea, 
by introducing the skip connections, the model is expected to learn more complex features compared to only 
fully connected layers. Given a large number of training points, each epoch takes around 52.4 minutes on a sin-
gle NVIDIA GeForce GTX TITAN GPU. However, once the neural network is trained, the inference process is 
noticeably faster than even a standard eikonal solver (e.g., the fast-marching method (FMM)61).

Data availability
The data used in this study are publicly available at http://​ds.​iris.​edu/​ds/​produ​cts/​emc-​glad-​m25/. All the source 
codes to reproduce the results in this study are accessible through GitHub at https://​github.​com/​hatsy​im/​globe​nn.

Table 1.   Implementation details of the training process.

No. Hyperparameter Values/Type

1 Number of residual blocks 20

2 Number of neurons per layer 512

3 Activation function ELU

4 Optimization algorithm Adam

5 DL framework/wrapper PyTorch

6 Trainable parameters 16,554,039

7 Number of points in GLAD-M25 89,016,102

8 Learning rate 1e−6

9 Batch size 128

10 Number of training epochs 160

11 Number of training points 19,465,083

12 Weight initialization Xavier normal

http://ds.iris.edu/ds/products/emc-glad-m25/
https://github.com/hatsyim/globenn
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