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Predicting the need for intubation 
within 3 h in the neonatal intensive 
care unit using a multimodal deep 
neural network
Jueng‑Eun Im 1,3, Seung Park 1,3, Yoo‑Jin Kim 2, Shin Ae Yoon 2* & Ji Hyuk Lee 2

Respiratory distress is a common chief complaint in neonates admitted to the neonatal intensive care 
unit. Despite the increasing use of non-invasive ventilation in neonates with respiratory difficulty, 
some of them require advanced airway support. Delayed intubation is associated with increased 
morbidity, particularly in urgent unplanned cases. Early and accurate prediction of the need for 
intubation may provide more time for preparation and increase safety margins by avoiding the late 
intubation at high-risk infants. This study aimed to predict the need for intubation within 3 h in 
neonates initially managed with non-invasive ventilation for respiratory distress during the first 48 h 
of life using a multimodal deep neural network. We developed a multimodal deep neural network 
model to simultaneously analyze four time-series data collected at 1-h intervals and 19 variables 
including demographic, physiological and laboratory parameters. Evaluating the dataset of 128 
neonates with respiratory distress who underwent non-invasive ventilation, our model achieved 
an area under the curve of 0.917, sensitivity of 85.2%, and specificity of 89.2%. These findings 
demonstrate promising results for the multimodal model in predicting neonatal intubation within 3 h.

Respiratory distress is the most common indication for admission to the neonatal intensive care unit (NICU)1,2. 
Endotracheal intubation is the end-stage of respiratory support and is a critical procedure in neonates with res-
piratory difficulties. Recent non-invasive ventilator (NIV) strategies have reduced the incidence of endotracheal 
intubation and duration of mechanical ventilator support in NICU management3,4. While the increasing use 
of NIV includes high-flow nasal cannula (HFNC), nasal continuous positive airway pressure (NCPAP), bilevel 
positive airway pressure (BIPAP), and non-invasive positive pressure ventilation (NIPPV) in neonates with 
respiratory difficulties, a significant proportion fail on NIV support and require intubation within the first few 
days of birth, especially in preterm infants5–7.

Neonatal respiratory distress syndrome (RDS) is a major source of morbidity in NICU. Ordinary treatments 
include mechanical ventilation and surfactant replacement therapy8,9. Considering the lower incidence of RDS 
in late preterm and term neonates, it is difficult to distinguish RDS from other less severe respiratory diseases 
that do not require endotracheal intubation10. Although several risk factors for RDS have been established, 
such as prematurity, cesarean section, perinatal asphyxia, male sex, maternal diabetes mellitus, and multiple 
births11–13, intubation time is often delayed in late preterm and term neonates with respiratory distress receiving 
NIV support.

Recently, deep neural networks have been widely implemented in neonatal medicine. Examples include a 
predictive model of mortality during NICU hospitalization14 and prediction of long-term neurodevelopmental 
outcomes at the corrected age of 2 years15 using electronic medical records including demographics, vital signs, 
and images. Previous studies have proposed predictive models for RDS and NCPAP failure using clinical and 
laboratory parameters in both adult and neonatal medicine11,16–19. During the early neonatal period, according 
to the success of the adaptation to extra-uterine environments, neonates’ cardiopulmonary status is vulnerable 
and fluctuating. Because the NIV failure commonly occurred in the first-hour stabilization period20,21, short-
term prediction has practical use in NICU settings. In this study, we designed a multimodal deep neural network 
(MDNN) model to predict the need for intubation within the next 3 h in neonates with respiratory difficulty 
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who were admitted to the NICU within the first 48 h of life and initially received NIV support. This model is 
intended to support clinical decisions by providing diagnostic alternatives to physicians and proposing appropri-
ate treatments based on demographic, bedside clinical, and laboratory parameters at the time of NICU admission.

Methods and materials
Ethics statement.  Data collection was approved by the Institutional Review Board of the Chungbuk 
National University Hospital (IRB No. 2021-02-034). The review board waived the requirement for informed 
consent, owing to the retrospective design of this study. We confirm that all methods were performed in accord-
ance with the relevant guidelines and regulations.

Study population.  We retrospectively obtained datasets of all neonates who were admitted to the NICU 
within the first 48 h of life at Chungbuk National University Hospital between June 1, 2020, and November 
30, 2021. We excluded neonates without respiratory problems, those hospitalized after 48 h of life, and those 
intubated at the time of admission. To improve model performance, we excluded neonates intubated 12 h after 
admission and those with missing data, defined as more than two tabular data or ≥ 10% of time-series data.

Datasets.  Demographic data, physiological parameters, and laboratory data were collected. The datasets 
comprised 19 tabular and 4 time-series features. The tabular data in this study are defined as either categori-
cal or numerical variables. We collected data such as gestational age (GA), birth weight, Apgar scores at 1 and 
5 min, sex, delivery mode, antenatal steroid use, pregnancy-induced hypertension, gestational diabetes mellitus, 
premature membrane rupture, birth place, multiple births, initial body temperature, clinical risk index for babies 
(CRIB-II) score20, and parameters in the initial blood gas analysis, including pH, PO2, PCO2, base excess (BE), 
and lactate as the tabular features. Additionally, we analyzed four time-series features: heart rate (HR), respira-
tory rate (RR), fraction of inspired oxygen (FiO2), and pulse oximetry (SpO2). Time-series data were recorded 
at 1-h intervals until 12 h after admission. The missing values in the tabular data and time-series data were filled 
with the average values and the most recent data, respectively.

The time of intubation was defined as the first record of endotracheal intubation or ventilation data. We classi-
fied infants with intubation time ≤ 12 h of NICU admission as intubated patients and all others as non-intubated 
patients. Since the initial tabular data such as body temperature and blood gas analysis results (pH, PCO2, PO2, 
BE, and lactate) could gradually recover or worsen over time, it has limitations to provide long-term (> 12 h) 
predictions. Instead, we focused on alleviating the model’s complexity and improving its practical use by using 
tabular data, so our model was designed to predict the need for short-term (≤ 12 h) intubation.

Multiple samples were generated from each patient over time. To classify intubation cases 3 h in advance, the 
samples taken within the cutoff time (tc = 3 h) are labeled as “1” for intubated patients and “0” for non-intubated 
patients (Fig. 1). For the model training and test, the patients were first split into training and test sets as shown 
in Supplementary Table S1, multiple samples were then generated from each patient set over time. Therefore, the 
samples from one patient do not go to both training and test sets. It was inevitable to extract multiple samples 
from a patient, dividing the entire time sequence by a specific sequence length to balance negative and positive 
data. For positive data collected prior to intubation attempts, the overall time sequence range was varied from 
1 to 12, but the negative data included all time points during 12 h period after admission. We considered that 

Figure 1.   Detailed illustration of dataset generation. The records for individual patients were divided into 
training and test dataset, and intubated and non-intubated patients were labeled 1 and 0, respectively. Multiple 
samples were extracted with a random duration (1–3 h) containing the cutoff time ( tc ), which corresponded to 
the fixed time before the intubation time or last record time.
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the difference in sequence length could lead to biased results in the model training. In addition, most intuba-
tion occurred within 3 h (29/36), so we cut the entire time sequence into the same time sequence length of 3.

Since the aim of this study was to provide decision support for clinicians while assessing the need for 
intubation upon NICU admission, we limited our prediction time window to within the first 12 h of NICU 
hospitalization.

Models.  We designed an MDNN using three subnetworks to jointly analyze the tabular xn ∈ R
a and time-

series data xt ∈ R
b×l as shown in Fig. 2, where a and b are denoted as the feature numbers of tabular and time-

series data. Subscript l indicates the length of the time sequence. First, xt is flattened, then the flattened xt and 
xn are fed into the multilayer perceptron (MLP) blocks, consisting of a single fully connected layer with d (= 32) 
nodes, batch normalization, and rectified linear units, followed by a dropout to alleviate overfitting. The vectors 
from the MLP blocks are concatenated, and the concatenated vector xcat ∈ R

2d is analyzed using the last MLP 
block. Finally, the analyzed vector was used to calculate the intubation probability (0–1) by the fully connected 
layer with sigmoid activation. The proposed MDNN was implemented using TensorFlow 2.4 (https://​www.​tenso​
rflow.​org/).

To compare the MDNN with widely used machine learning (ML) methods, we further implemented linear 
regression (LR), support vector machine (SVM)21, and an extreme gradient boosting decision tree (XGBoost) 
regressor22. The SVM is a supervised machine learning algorithm based on kernel functions, and we employed 
the Gaussian radial basis function for model predictions. The XGBoost model is also considered a supervised 
technique that ensembles decision trees using the gradient boosting framework. The LR, SVM, and XGBoost 
are open-source library, and we programmed them using Python scikit-learn 1.0.2 (https://​scikit-​learn.​org/) and 
XGBoost 1.7.2 (https://​xgboo​st.​ai/) libraries.

Statistical analysis.  Continuous variables were compared using the Student’s t-test or the Mann–Whitney 
U test and are presented as the mean (95% confidence interval). Categorical variables were compared using the 
chi-square test or Fisher’s exact test and are presented as percentages and frequencies. SPSS version 25 (SPSS 
Inc., Chicago, IL, USA) was used for all statistical analyses, and P < 0.05 was considered statistically significant.

Model evaluation.  The models were internally validated using fourfold cross-validation to assess perfor-
mance and minimize overfitting (Supplementary Table  S1). The total datasets were split into training (75%) 
and test (25%) sets by maintaining the overall positive/negative ratio. The proportion of positive patients in the 
training and test datasets was set to approximately 30%, the same as in the overall dataset (36 positive patients 
out of 128 patients).

For each fold, we evaluated five quantitative measures, including the area under the receiver operating char-
acteristic curve (AUROC), F1-score, sensitivity, specificity, and accuracy. The AUROC and F1-score metrics were 
considered the highest priority because we need to use robust metrics against imbalanced dataset. The F1-score 
calculates the harmonized mean between precision and recall, and AUROC is calculated from the ROC graph that 

Figure 2.   Multimodal deep neural network architecture. The model utilizes two types of input data: tabular and 
time-series data. These data are analyzed by multilayer perceptron (MLP) blocks, and the outputs of these MLP 
blocks are concatenated into a feature vector to predict the need for intubation.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://scikit-learn.org/
https://xgboost.ai/
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visualizes the tradeoff between true positive rate and false positive rate. Statistical calculations were performed 
using the Scikit-learn library (https://​scikit-​learn.​org/)23.

Results
Baseline demographics.  Of the 577 neonates admitted to the NICU during the study period, we excluded 
449 who did not meet the inclusion criteria and 30 with missing data. The datasets included 128 eligible neonates 
with 36 intubated (positive) and 92 non-intubated patients (negative) (Fig. 3). The mean GA and birth weight 
were 35.8 ± 2.8 (30–42) weeks and 2.6 ± 0.8 (0.9–4.9) kg, respectively. Table 1 shows the clinical characteristics of 
the intubation and non-intubation groups.

In the initial blood analysis results of the intubated group, average pH was considerably lower (P = 0.004) and 
PCO2 was higher (P = 0.001) than those of the non-intubated group. Of the 128 neonates who initially received 
NIV support, 22 of 101 (22%) infants primarily supported by HFNC and 14 of 27 (52%) infants initially treated 
with NCPAP or BIPAP were intubated (P = 0.003). The average time to intubation was 124 (15–510) minutes in 
the intubated group. The mean time to intubation in neonates with HFNC was 159 ± 131 min and in neonates 
with NCPAP or BIPAP was 70 ± 78 min (P = 0.016).

Model evaluation.  Figure 4 shows the confusion matrices of the entire dataset for each model. The MDNN 
and conventional ML (LR, SVM, and XGBoost) models were evaluated regarding the mean AUROCs and confu-
sion matrices from fourfold validation (Fig. 5). The average AUROCs for these models were 0.917 for MDNN, 
0.890 for SVM, 0.886 for LR, and 0.853 for XGBoost. In addition, the MDNN outperformed the ML model with 
respect to four metrics (F1-score, sensitivity, specificity, and accuracy). Specifically, the MDNN showed the best 
performance with F1-score of 0.884, sensitivity of 85.2%, specificity of 89.2%, and accuracy of 88.2%, followed 
by the SVM model with an F1-score of 0.882, sensitivity of 82.7%, specificity of 89.7%, and accuracy of 88.0% 
(Table 2).

Model interpretation.  To interpret the proposed model prediction, we used Shapley Additive Explana-
tions (SHAP)24 and sensitivity analysis representing the contribution of each feature to the model outcome. A 
positive SHAP value indicates that the corresponding feature contributes to a higher probability of needing intu-
bation, whereas a negative value suggests that the corresponding feature leads to a lower probability of requiring 
intubation. The magnitude of the SHAP value represents the contribution of a feature to prediction performance.

Figure 6 shows a summary plot of the SHAP values used to visualize model interpretation. These results 
showed that GA, FiO2, SpO2, birth place, and HR were identified as the key features of the MDNN model. In 
addition, we performed additional SHAP analysis for the three machine learning models. In the LR model, the 
top five factors associated with intubation risk were GA, FiO2, birth place, BE in the initial blood gas analysis, 
and SpO2, and those of SVM were FiO2, SpO2, HR, and GA (Supplementary Fig. S1). The four important factors 
for these models were identical to those of the proposed model (GA, FiO2, SpO2, birth place, and HR). XGBoost 
showed that pH and BE in the initial blood gas analysis, birth place, SpO2, and GA were the important factors, 
which showed the greatest difference from the proposed model and the worst performance in AUROC and 
F1-score (Table 2).

The sensitivity analysis was also performed as follows: We held all the attributes at their mean value while 
varying just one of the inputs to evaluate how input parameters affect the output variation derived by the pro-
posed model. Five representative values (minimum, mean-to-minimum median, mean, mean-to-maximum 
median, and maximum) for each feature were used in this analysis. The baseline output was initially derived from 
the mean values of all features, and the changes in intubation risk (%) from baseline output were then calculated. 
The absolute values of the cumulative changes from the 23 features are plotted in Fig. 7. Figure 7 informed us 
that the GA causes the greatest change in the intubation risk (%), followed by SpO2, FiO2, HR, and birth place.

In both the sensitivity analysis and SHAP analysis, the top five factors were perfectly matched with slight 
differences in order. This result informed us that the GA causes the greatest change in the intubation risk (%), 

Figure 3.   Flow chart for data selection.

https://scikit-learn.org/)
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and the other key factors such as SpO2, FiO2, HR, and birth place also contributed significantly to the model 
prediction.

Discussion
We collected datasets of 128 neonates with respiratory difficulties who underwent initial NIV therapy and 
developed an MDNN model to identify neonates requiring endotracheal intubation and mechanical ventilation 
within the following 3 h. The proposed model should provide useful information to alert medical staff of a need 
for intubation occurring within a short time (< 3 h) and reduce persistent monitoring efforts.

There were several studies on adult intubation17,25,26. Varzaneh et al.25 predicted the intubation risk of hospital-
ized coronavirus disease 2019 (COVID-19) patients using a decision tree-based model and showed a reasonable 
level of accuracy (93%). Siu et al.17 also predicted intubation in adults using a random forest model with an open 
dataset (medical information mart for intensive care, MIMIC) and achieved an AUROC of 0.87. As a study target-
ing NICU patients, Clark et al.’ study27 was conducted on very low birth weight infants (birth weight < 1500 g). 
Vital sign and electrocardiogram data collected at 2-s intervals were used to predict intubation after 24 h using 
a logistic model and had an AUROC of 0.84.

The MDNN, based on a multimodal approach, has the advantage of accessing multivariate information 
simultaneously, resulting in the highest predictive performance with an AUROC of 0.917, sensitivity of 85.2%, 
and specificity of 89.2%. The ablation study was performed to compare the non-time series model (tabular data 
model). We input only 19 tabular data to the deep neural network (DNN), and the structure of the DNN was 
constructed by removing the first MLP block that analyzes time-series data. The DNN achieved an average of 
AUROC 0.680, which decreased by 0.237 compared to the MDNN model. The other performance metrics of the 
DNN model were as follows: F1-score, 0.718; sensitivity, 69.5%; specificity, 70.5%; accuracy, 68.0%. These results 
showed that multimodal analysis was essential for improving performance.

In addition, we computed SHAP values to characterize the clinical factors potentially contributing to intu-
bation in the MDNN model. SHAP values have been widely used to explain and clinically validate model 
outcomes28–32. The features with the highest SHAP values for the proposed model were GA, birth place, HR, 

Table 1.   Baseline characteristics and outcomes of cohort. CI 95% confidence intervals, HFNC high-flow 
nasal cannula, NCPAP continuous nasal cannula airway pressure, BIPAP bi-level positive airway pressure. 
*P-value < 0.05.

Variable Intubated (n = 36) Non-intubated (n = 92) P-value

Gestational age, mean (CI), week 35.2 (34.3‒36.1) 36.1 (35.5‒36.7) 0.127

Preterm, no. (%) 20 (56) 48 (52) 0.844

Birth weight, mean (CI), kg 2.6 (2.3‒2.8) 2.6 (2.4‒2.8) 0.736

Male sex, no. (%) 23 (64) 49 (53) 0.325

1-min Apgar score, mean (CI) 8.6 (8.2‒9.0) 8.8 (8.6‒9.0) 0.225

5-min Apgar score, mean (CI) 9.5 (9.2‒9.8) 9.7 (9.6‒9.8) 0.201

Cesarean delivery, no. (%) 26 (72) 62 (67) 0.675

Inborn, no. (%) 22 (61) 66 (72) 0.290

Multiple birth, no. (%) 9 (25) 19 (21) 0.637

Antenatal steroids use, no. (%) 11 (31) 33 (38) 0.539

Premature membrane rupture, no. (%) 9 (25) 20 (22) 0.823

Maternal hypertension, no. (%) 3 (8) 6 (7) 0.710

Maternal diabetes mellitus, no. (%) 4 (11) 9 (10) 0.757

CRIB II score, mean (CI) 3.1 (2.7‒3.5) 2.9 (2.6‒3.1) 0.382

NIV type

 HFNC, no. (%) 22 (61) 79 (86)
0.003*

 NCPAP or BIPAP, no. (%) 14 (39) 13 (14)

Initial blood gas analysis

 pH, mean (CI) 7.2 (7.2‒7.2) 7.3 (7.2‒7.3) 0.004*

 PCO2, mean (CI), mmHg 63.4 (59.5‒67.4) 57.2 (55.4‒59.1) 0.001*

 PO2, mean (CI), mmHg 37.1 (33.7‒40.5) 40.5 (36.9‒44.2) 0.273

 Base excess, mean (CI), mmol/L −5.3 (−6.1 to −4.6) −4.4 (−5.0 to −3.9) 0.075

 Lactate, mean (CI), mmol/L 2.7 (2.24‒3.21) 3.4 (3.0‒3.8) 0.081

Heart rate at admission, mean (CI), bpm 143.5 (140.3‒146.6) 133.9 (133.04‒134.7)  <0.001*

Respiratory rate at admission, mean (CI), breath/min 50.8 (46.9‒54.7) 51.7 (50.6‒52.9) 0.651

Fraction of inspired oxygen at admission, mean (CI), % 27.3 (25.8‒29.0) 22.6 (22.5‒22.8)  < 0.001*

Pulse oximetry at admission, mean (CI), % 93.3 (91.9‒94.8) 97.2 (97.0‒97.4)  < 0.001*

Body temperature at admission, mean (CI), °C 36.2 (36.0‒36.3) 36.1 (36.0‒36.2) 0.470

Time to intubation, mean (CI), min 124 (120) – –
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FiO2, and SpO2. Lower GA and high fractional oxygen requirements have been considered clinically significant 
factors for RDS in previous studies12,17,19,33–36. For the machine learning models, the four key factors of SVM (GA, 
FiO2, SpO2, and birth place) and LR models (GA, FiO2, SpO2, and HR) were consistent with those of the proposed 
model. In addition, the XGBoost showed three important factors (GA, SpO2, and birth place), which showed 
the worst performance in AUROC and F1-score. From these results, it can be inferred that these five key factors 
(GA, FiO2, SpO2, birth place, and HR) from the MDNN model highly contribute to the model performance, 
and these factors were almost consistent across the study. The findings of this study suggest that by monitoring 
significant factors with the highest SHAP values, including time-series data like HR and SpO2, we would be able 
to predict a neonate who requires prompt endotracheal intubation. The findings of this study suggest that by 

Figure 4.   Confusion matrices for the entire dataset. (a) Linear regression (LR), (b) extreme gradient boosting 
decision tree regressor (XGBoost), (c) support vector machine (SVM), (d) multimodal deep neural network 
(MDNN) (0, non-intubation case; 1, intubation case).

Figure 5.   Area under the curve of receiver operating characteristics with fourfold cross validation. Linear 
regression (LR), extreme gradient boosting decision tree regressor (XGBoost), support vector machine (SVM), 
multimodal deep neural network (MDNN).
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monitoring significant factors with the highest SHAP values, including time-series data like HR and SpO2, we 
would be able to predict a neonate who requires prompt endotracheal intubation.

Our study was designed to predict intubation within 3 h using initial tabular data and time-series data col-
lected over 1–3 time points recorded at 1-h intervals. Longer time-series data with dense intervals can help sta-
bilize and improve model performance. However, among 36 neonates who underwent endotracheal intubation 

Table 2.   Comparison of model performances between the proposed model and the conventional machine 
learning models. LR linear regression, XGBoost extreme gradient boosting decision tree, SVM support vector 
machine, MDNN multimodal deep neural network, AUROC area under the curve of receiver operating 
characteristics.

Model

Mean (SD)

AUROC F1-score Sensitivity, % Specificity, % Accuracy, %

LR 0.886 (0.081) 0.839 (0.093) 83.4 (6.1) 83.2 (13.3) 83.3 (9.8)

XGBoost 0.853 (0.069) 0.810 (0.094) 79.5 (7.7) 80.5 (11.8) 80.5 (9.9)

SVM 0.890 (0.052) 0.882 (0.052) 82.7 (6.0) 89.7 (7.4) 88.0 (5.4)

MDNN 0.917 (0.042) 0.884 (0.048) 85.2 (9.3) 89.2 (6.8) 88.2 (5.0)

Figure 6.   Feature importance assessment with Shapley additive explanations (SHAP) values. The most crucial 
features associated with the predictive power of the model were gestational age, fraction of inspired oxygen, 
pulse oximetry, birthplace, and heart rate.
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within 12 h, 29 neonates required endotracheal intubation within 3 h of admission. Therefore, prompt decisions 
must be made using short-term records. Furthermore, our dataset targeted neonates who initially received NIV 
supports, and NIV failure commonly occurred in the first-hour stabilization period; therefore, the short-term 
prediction (≤ 3 h) is the most practical for use in the NICU. In addition, the interval between recording time-
series data varies from minutes to hours at each institute; therefore, this model can be practically applied to other 
situations. We used 23 clinical variables to predict the number of infants requiring endotracheal intubation and 
mechanical ventilation. Diverse data, such as radiologic images, could improve model performance. However, 
it is difficult to adjust radiologic image findings that require data labeling; therefore, we selected the minimum 
variables easily obtained at NICU admission as input variables. Furthermore, neonatal patients requiring intuba-
tion after 12 h were excluded. The tabular data included critical information such as body temperature and blood 
gas analysis results (pH, PCO2, PO2, BE, and lactate). Although these values could gradually recover or worsen 
over time, the initial data alone were collected, to alleviate the model’s complexity and improve its practical use. 
For long-term (> 12 h) predictions, we would try to input these data every hour.

RDS is the most common cause of respiratory distress in neonates who require endotracheal intubation within 
48 h of birth37–39. Of the 36 neonates in the intubated group, 30 neonates with RDS and 2 with meconium aspira-
tion syndrome received surfactant replacement therapy. In practice, the differential diagnosis of respiratory mor-
bidities should be made using a combination of FiO2 to maintain normal SpO2, RR, degree of respiratory distress, 
and aeration of the lung on radiologic images36,40. Less severe respiratory diseases such as transient tachypnea of 
the newborn and mild RDS spontaneously resolve with NIV support within 48 h of life37,38,41. Delayed diagnosis 
of moderate to severe RDS leads to several complications including air leaks and intraventricular hemorrhage9,42. 
Timely diagnosis of RDS and earlier surfactant replacement therapy will improve neonatal outcomes. Several 
observational studies have attempted to predict RDS and NCPAP failure using perinatal variables such as prenatal 
ultrasound measures43, biomarkers in gastric aspirate44,45, and a combination of maternal and neonatal data at 
birth46,47. In this study, we developed a model to predict the need for endotracheal intubation within the next 

Figure 7.   Sensitivity analysis for the intubation risk prediction of the multimodal deep neural network model. 
This chart showed the average changes in the intubation risk (%) due to varying each attribute individually while 
holding all others at their mean.
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3 h using 19 tabular data variables at birth and 4 time-series variables representing varying patient conditions 
before endotracheal intubation.

Since 2011, the insurance system in South Korea has covered early prophylactic surfactant administration in 
preterm neonates with a GA < 30 weeks or a birth weight < 1250 g within 2 h of birth8. In this study, 73 neonates 
who had already been intubated for prophylactic surfactant administration or for medical conditions requiring 
resuscitation within the delivery room were excluded. Therefore, most of the enrolled patients were late pre-
term or term neonates. During the study period, we implemented the conventional surfactant administration 
method (endotracheal intubation, bolus instillation with subsequent intermittent positive pressure ventilation 
for distribution, followed by mechanical ventilator support) instead of an intubation-surfactant-extubation 
(INSURE) strategy48 or a less invasive surfactant administration (LISA) technique49. Among the enrolled neo-
nates, GA was still one of the significant factors predicting intubation within the following 3 h, although GA 
did not differ between the intubated and non-intubated groups. The intubated group showed significantly more 
severe respiratory acidosis than the non-intubated group. De Bernardo et al. have reported that low umbilical 
cord blood arterial pH (< 7.12) was correlated with RDS in full-term neonates50. Blood gas analysis is a useful 
tool for evaluating in patients with respiratory failure and severe respiratory acidosis is a definite indication for 
endotracheal intubation. Because endotracheal intubation is one of the most invasive procedures in the NICU, 
clinicians are reluctant to perform intubation in unclear cases. Moreover, pH and PCO2 were not considered 
among the top five factors in both SHAP and sensitivity analyses and were thus not included as key factors in 
our study. FiO2 and SpO2 were included in the five key factors and were already associated with RDS and CPAP 
failure according to the previous studies, even in the era of the LISA technique51–54. HR variability is known as 
a key factor for predicting mortality and sepsis in adults55,56 and neonatal medicine14,57,58.

The number of neonates assigned to NCPAP or BIPAP support was significantly higher in the intubated group 
than in the non-intubated group. The NIV failure rate in neonates receiving NCPAP or BIPAP was significantly 
higher than that in those receiving HFNC support. Additionally, the time to intubation was significantly shorter 
in the NCPAP and BIPAP groups than in the HFNC group. There could be a potential bias that physicians 
assigned neonates with more severe respiratory distress to NCPAP or BIPAP3,59. Artificial intelligence has recently 
expanded its clinical scope in modern medicine, especially for critically ill patients. With the aid of this artificial 
intelligence model, physicians’ performance can be more accurate and refined.

Limitations.  Despite the benefits of the artificial intelligence techniques applied here, our study had some 
limitations. First, the time-series variables were collected at 1-h intervals; therefore, data may be insufficient to 
capture all relevant clinical changes. Second, the model was evaluated using single-center data. Since we have no 
documented protocol defining when to intubate infants with respiratory difficulty, decision-making occurred 
on a case-by-case basis when NIV support was deemed insufficient. Third, there is limited open dataset for 
neonatal patients who experienced respiratory distress. The specific protocol for data collection makes it more 
difficult to find an equivalent dataset for comparison, and we could not perform model validation due to the 
insufficient number of positive cases (intubation) during training and testing. Therefore, our model requires 
external validation in other cohorts. Additionally, this study was designed to predict the need for short-term 
(≤ 12 h) endotracheal intubation in neonatal patients. For mid- to long-term predictions, we could technically 
improve the model architecture and reduce the time interval for clinical data after NICU admission. Further-
more, this model could be expanded and applied to the subacute and chronic hospitalization in the NICU. To 
our knowledge, our model is the first MDNN model to predict the need for intubation within the next 3 h in 
neonates with respiratory distress.

During the study period, all the world have experienced the pandemic era, fortunately, there were no COVID-
19 related effects in this study. All pregnant women and newborns who were admitted to our institute underwent 
severe acute respiratory syndrome coronavirus 2 reverse transcription-polymerase chain reaction testing. None 
of the enrolled infants had COVID-19 infection.

Conclusions
The integration of clinical data and time-series variables using MDNN predicted the need for intubation within 
the next 3 h in neonates with respiratory distress with 88.2% accuracy. The proposed model could help in the 
decision-making for neonates with respiratory distress who require endotracheal intubation. Further investiga-
tion is required to apply continuous time-series variables to the model and integrate the software into clinical 
practice.

Data availability
The data that support the findings of this study are available from the corresponding author (dalen@hanmail.
net, dalen@chungbuk.ac.kr) upon reasonable request.
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