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Estimating observables from conditioned dynamics is typically computationally hard. While obtaining
independent samples efficiently from unconditioned dynamics is usually feasible, most of them do
not satisfy the imposed conditions and must be discarded. On the other hand, conditioning breaks the
causal properties of the dynamics, which ultimately renders the sampling of the conditioned dynamics
non-trivial and inefficient. In this work, a Causal Variational Approach is proposed, as an approximate
method to generate independent samples from a conditioned distribution. The procedure relies on
learning the parameters of a generalized dynamical model that optimally describes the conditioned
distribution in a variational sense. The outcome is an effective and unconditioned dynamical model
from which one can trivially obtain independent samples, effectively restoring the causality of the
conditioned dynamics. The consequences are twofold: the method allows one to efficiently compute
observables from the conditioned dynamics by averaging over independent samples; moreover, it
provides an effective unconditioned distribution that is easy to interpret. This approximation can be
applied virtually to any dynamics. The application of the method to epidemic inference is discussed in
detail. The results of direct comparison with state-of-the-art inference methods, including the soft-
margin approach and mean-field methods, are promising.

The method we will present is rather general and applies to a wide family of stochastic processes. We will thus first
describe it below in complete generality, and delay its description for a specific important application (namely
the risk assessment problem in epidemic spreading processes) to the following section.

Let us denote by P[x] = P[x(0),...,x(kAt)] the probability distribution of trajectories x of a (known)
dynamical model. Given a (hidden) realization x*, consider a set of observations ¢ = (Oy, ..., Oy ) sampled
from a (known) conditional distribution P[(ﬁ |x*] The scope of this work is to devise an efficient method to
infer information about x* given (), in particular, to be able to estimate averages over the posterior distribution

P[x|0 | = PxIP[¢ |x]P[0 ]7". (1)

Although it might be generally feasible to sample efficiently from the prior P[x], sampling from P'[x|¢ |is nor-
mally difficult. A naive approach is given by importance sampling'?, that consists in evaluating the average of a
function fby first generating M independent samples x', . . .,x™ from P[x] and then computing

S Pl W]
<f> fo:l P[@ |X”‘} .

2)

Unfortunately, this method is impractical when observations deviate significantly from the typical case, as for
the case in which P[¢ |x*]becomes very small (or even zero), rendering the convergence of (f ) to the true
average value inefficient.

One reason for which sampling from P[x] is usually feasible is that the causal structure induced by the
dynamical nature of the stochastic process can be exploited to efficiently generate trajectories. The causal prop-
erty of the stochastic dynamics lies in the fact that the state of the system at a given time depends naturally (in
a stochastic way) on states at previous times. When considering discrete time-steps or epochs 0, At,2At¢, . ..
(in the following discussion, for simplicity of notation, we will assume At = 1), this property implies that the
distribution of trajectories of the stochastic dynamics assumes the following factorized form:
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T
Px(0),...,x(D)] = [[Plx®)lx(t — 1),...,x(0)], 3)

t=0

where in thet = 0 term the conditioning part is empty and thus the probability is unconditioned. In most models,
it is computationally simple (or at least feasible) to sample x(¢) from P[x(¢)|x(t — 1),...,x(0)], implying that (3)
can be exploited to generate trajectories by sequentially sampling x(0), then x(1), etc.

The intrinsic difficulty associated with sampling from the conditioned distribution P[x|) ]is a consequence
of causality breaking’ induced by the addition of the extra information in (. In general, P[x(¢)|x(t — 1), ...,x(0)]
and P [x(t) |x(t —1),...,x(0),0 } are very different objects. For example, even if the former is time and space
invariant, the latter is generally not, because this symmetry is typically broken by the observations. This difference
ultimately implies that we cannot sample from the posterior distribution sequentially as in the unconditioned
case (3). Although we can write an exact expression similar to (3),

T
Plx|0 | = [[Px@)x¢—1),...,x0),0 ], (4)

t=0

sampling from (4) is unfortunately still problematic. Indeed, the expression for P [x(t) |x(t —1),...,x(0),0 } is
in general extremely difficult to compute and involves a marginalization over times ¢’ > t (with an exponential
number of terms):

T
Px(D)lx(t — 1),...,x(0),0 ] o Z HIP’[x(t’)lx(t’—1),‘..,x(0)}IP’[(§‘ x(T),...,x(0)]. (5)

x(t41),....x(T) t'=0

This dependence on future times is in our opinion the real source of the causality breaking phenomenon.
When dynamics are unconditioned, i.e. causality applies, information is intuitively flowing from past to
future. Although it is a very intuitive concept, the study of information flow is actually rather involved and it
opens to interesting insights into the collective interactions among agents in agent-based systems. We refer the
interested reader to**. The approach proposed here, called Causal Variational Approach (CVA), aims at providing
a variational approximation of the posterior distribution P[x|¢ ], for which causality features are restored and,
therefore, independent samples can be efficiently generated from it. In particular, we propose to approximate
P[x|(0 ] ~ Q(x), where Q(x(0),...,x(T)) = H,TZO qr(x(t)|x(t — 1),...x(0)). This approach is formally exact.
Indeed, if we set each g; (x(¢)|x(t — 1),...x(0)) = P[x(t)lx(t —1),...,x(0),0 ], we would recover the exact
posterior, due to equation (4). However, this is in practice unfeasible, because it would require g; to depend on
a huge (i.e. exponential in the size of the system) number of parameters. The general idea of CVA method is to
restrict the functional space of Q assuming the g; (x(¢)|x(t — 1),...,x(0)) to have the same broad functional form
of the unconstrained prior distribution P[x(t)|x(t — 1), ..., x(0)], retaining then the ability to efficiently compute
it and sample from it, but generalizing it by the addition of extra parameters. This generalization will naturally
allow for the spatial and/or time heterogeneity that is present in the corresponding terms in the posterior, and
will be explained in detail for the specific models in the next sections. In particular, we chose in the approxi-
mating distribution of CVA to maintain the following properties (if they are present) of the prior distribution:

1. Spatial Independence. In agent-based models® on N agents, x(t) = (x1(¢), ..., xn(t)) and most dynamical
processes satisfy a spatial conditional independence property’, namely that:

N
Plx(®)|x(t = 1),...,x(0)] = HIF’[xi(t)lx(t —1),...,x(0)], (6)

i=1

As this property is often crucial for efficient sampling from P[x], CVA maintains it on the approximating g;
ie g (x(H)|x(t —1),...,x(0)) = Hi g (' () |x(t —1),...,x(0)).

2. Local interactions. Each variable of the prior process, moreover, might depend only on a restricted (local) set
of variables on a given contact network; we choose to preserve this dependence in g;. Note that this property
is in general not present in the posterior.

3. Markovianity. If the prior distribution defines a memory-less stochastic process®, namely

Plx(®)|x(t — 1),...,x(0)] = Plx(®)|x(t — 1)], (7)

CVA extends this property to the approximating factors as well,
qi (xi(t)lx(t —1),... ,x(O)) = qi (xi(t)|x(t — l)) . Note that if additionally the observa-
tions are time-factorized, namely P[0 |x] = HtT:o P[O;|x(t)], then it can be shown (See Sec-
tion IX of the Supplementary Information) that Markovianity extends to the posterior distribution,
Plx(®)|x(t — 1),...,x(0), 0 1=Plx(®)|x(t —1),0 1.
There are simple but instructive examples where CVA leads to the exact posterior, see for example the SI epidemic
model for N = 2 individuals in Section I of the Supplementary Information.

CVA can be used to tackle some difficult problems emerging in the field of epidemic inference, such as
epidemic risk assessment from partial and time-scattered observations of cases, or the detection of the sources
of infection. These problems have been recently addressed within a Bayesian probabilistic framework using
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computational methods inspired by statistical physics’!, and generative neural networks'?. With respect to exist-

ing similar approaches based on variational autoencoders (e.g.'>'?), the CVA ansatz for the posterior distribution
does not employ neural networks, has comparatively a much smaller set of parameters and allows for much
simpler physical interpretations. In particular, risk assessment from contact tracing data is of major importance
for epidemic containment, because having access to an accurate measure of the individual risk can pave the way
to effective targeted quarantine plans based on contact tracing devices'*"'°. Moreover, in epidemic problems,
there are quantities of interest that are not known a priori. An example is the infection rate of the disease. Our
method can be used to compute such quantities, treated as hyperparameters of the CVA distribution. Being
able to find the prior parameters of a distribution gives also the possibility to simplify the inference problem by
adopting a simpler model. For example, in the context of epidemic inference, CVA allows one to study inference
problems related to the SEIR model (introduced later) with an effective ST model, which is simpler than SEIR.
This part, which we call model reduction is illustrated in detail in the Results section. After presenting the CVA in
a general setting, its main features will be discussed by exploiting a conditioned random walk'’"" as a toy model.
Then, an application to the important problem of epidemic inference and risk assessment on dynamic contact
networks is developed and analyzed in detail. We stress that the two reference cases, i.e. the epidemic inference
and the conditioned random walk, represent two very different dynamical processes, the former continuous in
time while the latter advances in discrete time-steps.

Methods
The method is based on approximating the original constrained process by introducing an effective unconstrained
causal process that is naturally consistent with the observations.

Let Qp (x) be the probability distribution of a generalized dynamics, parametrized by the vector 6 of param-
eters. The best approximation to P[x|¢/ | (in a precise variational sense) can be obtained by observing that Eq. (1)
can be interpreted as a Boltzmann distribution Z~! exp [—H (x)] with H(x) = — log P [x, O } andZ =P [(9‘ } and
by minimizing the corresponding variational free energy®, i.e.

7 (@)= [ axQumtog gy )
B Q(x)
= <10g 71?[}(,@ ] > . )
Qo

This quantity can be estimated efficiently by sampling the distribution Q. Note that
F (Qp) = Dgg, (Q@HIP[xlCO ]) — logIP[@“ } where Dgy is the Kullback-Leibler divergence?'. To optimize #, a
gradient descent method can be employed (see Section V of the Supplementary Information), where the gradient
can be also estimated by means of sampling, indeed

o~ Qo (x)
VoF (Qp) = <V9 10ng(X)10gP[X’(Q ]> . (10)
Qy

The crucial point in this estimation is that both Qg and P [x, O } = Px]P [(ﬁ |x} have explicit expressions
that, due to their causal structure, can be efficiently computed using rejection-free sampling, at difference with
P [x|(0 ] and P [(9 }which do not benefit from this property. The fact that the samples are independent allows for
trivial parallelism in implementation. For a detailed description of the gradient descent optimization adopted in
this work, we refer the reader to Section V of the Supplementary Information.

When a fixed point is reached, the corresponding distribution Qp (x) is the argument that (locally) minimizes
the free energy in (9) therefore providing an approximation of the posterior distribution P[x|@ |. Finally, the
result can be used to generate samples satisfying the constraints given by (V and to compute interesting observables
from them by efficiently computing sample averages.

A toy model application: conditioned random walk. Before introducing the main scenario where
CVA is employed—i.e. on epidemic spreading models -, we first discuss a simple but instructive application of
the method, that consists in generating an approximate probabilistic description for a conditioned random walk.
A simple realization of the latter is a one-dimensional random walk, starting at site x(0) = 0. If the generating
process is spatially homogeneous, the probability of every feasible trajectory x of length T is P[x] = 2~T. Note
that every possible trajectory can be directly sampled by means of a causal generative process, namely a dis-
crete-time Markov chain in which the conditional probability of a jump is P[x(t + 1) = x(¢) £ 1 |x(¢)] = 1/2.
Fig. 1(a) displays a space-time representation for a set of realizations of such an unbiased random walk (black
paths). For this process, let us imagine a procedure that, given a time instant t* and position x in space, can
test if the trajectory was at time t* to the left or right of position x*, and denote the corresponding half-line as
WH C 7Z. Assume that for a given unknown trajectory, we have M observations of this kind @ = (t#*, WH),,
with u = 1,..., M. The posterior probability of a trajectory x can be written as

M
Plxic | = i D € W

- 2y 1_[;11/[=1 M[y(th) € Wr] (11)
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Figure 1. Panel (a) Unconditioned homogeneous random walk on a one-dimensional lattice. Time is reported
on the vertical axis (up to T = 40) and the spatial coordinate x is on the horizontal axis. Panel (b) Some
trajectories are sampled from the unconditioned homogeneous distribution. The black (red) ones (do not)
satisfy the constraints, i.e. they (do not) avoid the black horizontal barriers. The fraction of feasible trajectories
among a given pool can be numerically estimated, and it approaches 107°. In other words, only one of a million
trajectories sampled from the unconditioned distribution satisfies the constraint. Panel (c) The distribution

of the trajectories sampled from the CVA distribution. The color of each pixel indicates the probability for a
trajectory to visit the corresponding state at a specific time.

where the numerator is 1 only if the trajectory x satisfies all observations, and zero otherwise. The denomina-
tor is the sum over all trajectories (so the variable y runs over the space of all the possible trajectories) of the
numerator and plays the role of a normalization term for the posterior. The effect of () is to select (or constrain
to) a subset of the trajectories of a free random walk, i.e. those compatible with the observations. One could
naively sample trajectories from the free dynamics and then select only those compatible with (0. However, as
depicted in Fig. 1, the fraction of trajectories compatible with the constraints might be very small to allow for
a feasible computation: in the example of Fig. 1(b), where it is assumed that three regions at specific time steps
(black horizontal barriers) cannot be crossed, several realizations of the unconstrained dynamics are discarded
(red paths), while only a small fraction is kept (black paths). In this regard, the CVA provides an efficient way of
generating trajectories compatible with the constraints by building up an effective probability distribution that
is - by construction - compatible with the former. Within the framework provided by CVA, the following causal
ansatz can be introduced for the conditioned random walk problem:

T-1

Qo (x) = 3x(0),0 H [ Sx+ D41 + Lo x4 D .x(r—1]»
t=0

(12)

with 6 = {rl };:ziTT ; being the set of site-dependent and time-dependent rates to jump to the right, and

lf((t) =1- rfc(t) the associated probabilities to jump to the left. We remark that Eq. (12) has the same functional
form as the unconstrained distribution, i.e. it still represents the probability distribution of a random walk, but
with heterogeneous (in general, both in space and time) jump rates. The distribution Qp requires T (2T + 1)
parameters, where 2T + 1is the total number of sites that can be visited by the realizations of the random walk.
These parameters are sought by minimizing the KL distance between Qp and the posterior distribution Eq. (11).
The resulting probability Qg (x) obtained using the CVA is characterized by heterogeneous rates . whose depend-
ence in time and space perfectly mirrors the constraints introduced by the barriers. The marginal distributions
of the trajectories sampled from Qg (x) are represented in Fig. 1(c), where the color gradient is associated with
the marginal probability of occurrence of each step.

Epidemic models and observations. From now on, we will consider a class of individual-based epi-
demic models describing a spreading process in a community of N individuals, interacting through a (possibly
dynamic) contact network. The overall state of the system at time ¢ (consisting of the state of each individual)
is described by a vector x(¢) € X N where X is a finite set of possible health conditions (called compartments).
The simplest, but already non-trivial, model of epidemic spreading is the discrete-time Susceptible-Infected (SI)
model®, in which X = {S,1} (corresponding to an individual being “susceptible” and “infected’, respectively)
where the only allowed transition occurs from state S to state I. More precisely, each time ¢, if an infected indi-
vidual j is in contact with a susceptible individual i, the former can infect the latter (which moves into state I)
with a transmission probability /;;(t), sometimes called transmissivity. Since transmissions are independent, the
individual transition probabilities are

Pli(t + A = SIx(0)] = s || (1= Zi®85001)

j#i
and Plx;(t + At) = I|x(t)] = 1 — P[x;(t + At) = S|x(#)]. A simple assumption is that time dependence only
enters to describe the dynamic nature of the contact network (with 4;;(t) = 0 if there is no contact between j

(13)

Scientific Reports |

(2023) 13:7350 |

https://doi.org/10.1038/s41598-023-33770-3 nature portfolio



www.nature.com/scientificreports/

and i at epoch t). More realistically, the transmission probability 4;;(¢) should also depend on the current stage
of infection of the infector j (e.g. presence/absence of symptoms) and thus mainly on the time elapsed since her
own infection, making the epidemic dynamics non-Markovian.

Assuming transmission probabilities proportional to At in Eq. (13) and defining transmission rates as
Aij(t) = lima,_, o+ Aij(t)/At, a continuous-time version of the SI model is obtained. Both for the discrete-
time and continuous-time SI models, the history of the epidemic process can be fully specified by the “infec-
tion times” {#;}Y, of all individuals; we conventionally set t; = 0 if individual i is already infected at the initial
time and t; = 400 if i is never infected during the whole epidemic process. In terms of the trajectory vector
t := (f1,...,tN), the probability pseudo-density of an epidemic history can be generally written as

Pit] =[S vét) + A=A D 1t < t] 4ot | ¢ (14)
i i

where y denotes the probability of each individual to be a patient zero, and A (f ), b) =f(be” Pt is the

first-success distribution density of an event with rate f(¢). Hence, the quantity A (ZJ 2l [tj < t] 24ji(£)s t,-) is the
probability density associated with the infection, at time #;, of individual i by one of its infectious contacts at
previous times. Notice that when f_b I\ (f ) t) dt < 1, it means that there is a non-zero probability of the indi-

vidual remaining susceptible. In that case, we will formally assign the defect mass1 — | f  A(fst)dttot = oc.
In addition to the epidemic model, a set of observations has to be defined. In real epidemics, observations mirror
the outcomes of medical tests, namely the state of an individual i at time ¢. For the sake of simplicity, an auxiliary
variabler € {4.—} representing positive or negative tests, respectively, is defined, such that each observation can
be encoded as a triplet (i, £, ). Given the stochastic nature of clinical tests, it is assumed that the outcome r of a
test performed on individual i at time ¢ obeys a known conditional distribution law P[r|t;] where t; represents
the infection time of individual i. When medical tests are affected by uncertainty, i.e. there exist non-zero false
positive and false negative rates of the diagnostic tests, the conditional probability states

Plr = +It] = (1 — pexg) It < t] + prer I[t; > t] (15a)

Plr = —|t;] = penr L[t < 1] + (1 — prer) I[t; > 1] (15b)

For a population undergoing M individual test events, the set () of observations is then identified with the set
of triplets (", t#, r*) for u = 1,..., M. As in the random walk example, each observation constrains the dynam-
ics: in the noise-less case (i.e. ppnr = prpr = 0) the posterior distribution gives zero measure to all the epidemic
trajectories that violate the observations. Given a realization of an epidemic model defined on a contact network,
and the (possibly noisy) observation of the states of a subset of the individuals (at possibly different times), the
epidemic risk assessment problem consists of estimating the epidemic risk, i.e. the risk of being infected, of the
unobserved individuals at some specific time. In practice, it amounts to computing marginal probabilities from
the posterior distribution

Plxi(t) =110 | = /dt]I[ti <tP[t|O | (16)

where [ dt denotes the integral over all infections times i, . . ., tn.

A richer epidemic model, that is often used as a testing ground for more realistic scenarios (see e.g. Refs.
is the SEIR model?®, which includes also the Exposed (E) and Recovered (R) states, i.e. X = {S, E, I, R}. The only
allowed transitions are S — E (representing the contagion event), E — I, and I — R; the latter ones occur for
each individual independently of the others, with latency and recovery rates v; and i, respectively. The previ-
ous representation in terms of transmission times can be straightforwardly generalized to the SEIR model (by
introducing individual-wise infective and recovery times) as well as the definition of observations from clinical
tests and the measure of the individual risk (see Supplementary Information online for additional details).

The choice of the parameters 6 of the CVA ansatz reflects and somehow generalizes the features of the genera-
tive model IP[t]: in the SI case for instance, for each individual i, heterogeneous infection rates 4;(t), zero-patient
probabilities y;, and self-infection rates w;(t) are defined. Since 4;(¢) and w;(¢) are time-dependent quantities,
an additional parametrization is introduced for computational purposes. Then, the trial distribution Qg (t) is
optimized with respect to the full set of parameters. The total number of parameters for the inference in the SI
model in a population of N individuals is 7N, while for the SEIR model is 13N. We refer to Section III of the
Supplementary Information for a more detailed discussion of the parameter choice and of the implementation
of the gradient descent.

23,24)’

Results on epidemic inference

Performances on synthetic networks. The performance of the CVA in reconstructing epidemic trajec-
tories can be tested by measuring its ability in classifying the state of the unobserved individuals based on their
predicted risk. The results are directly compared with those obtained using other inference techniques previ-
ously proposed in the literature, such as Belief Propagation® as implemented in’ (sib), a Monte Carlo method
(MC), a Soft Margin method (soft) adapted from?, and simple heuristic methods based on Mean Field equations

Scientific Reports |

(2023) 13:7350 | https://doi.org/10.1038/s41598-023-33770-3 nature portfolio



www.nature.com/scientificreports/

(MF)° or on sampling (heu). A description of the implementation of the several methods used for comparison is
provided in the Supplementary Information (Section VII) online.

For the sake of simplicity, we considered SI epidemic processes on proximity graphs®, i.e. random graphs
generated by proximity relationships between N = 50 individuals randomly drawn from a uniform distribution
on a two-dimensional square region (a definition of proximity graphs is given in Section VIII of the Supplemen-
tary Information). Each instance corresponds to a different realization of both the dynamical network and the
forward epidemic propagation. Observations () are noiseless, i.e. ppnr = 0, and performed on a randomly chosen
fraction of the population at a fixed time t,ps = T. The comparison among the different inference methods is
performed by ranking the individual marginal probabilities of being in state I at a chosen time ¢* and building
the corresponding receiving operating characteristic (ROC) curve®. The AUC (area under the ROC curve) at a
time ¢* is an indicator of the accuracy of the method in reconstructing the state of the individuals at that time.
The AUC at initial time (t* = 0, patient-zero problem) and at the final time (t* = T, risk assessment) are shown
in Fig. 2 as function of the number of observations available.

As one may expect, in both cases the average performances of all methods improve when the number of
observations increases. In particular, the Soft Margin method is expected to converge to the exact results for
this type of experiment when the number N of individuals is small. The results obtained with CVA are very close
(and closer than any other technique) to those obtained by means of Soft Margin (soft), even in the interesting
and challenging regime with only a few observations.

To further investigate the performances of CVA against other state-of-the-art techniques, the AUC associ-
ated with the prediction of individual risk is quantified as a function of time, with two different observation
protocols: (i) the states of a fraction of individuals are observed at observation times scattered over the dura-
tion of the simulation or (ii) observations are performed at the last time ¢,,s = T. More precisely, in the first
protocol observation times are randomly drawn a priori with uniform distribution in the interval [1, T], and
observations are biased towards tested-positive outcomes to mimic a realistic scenario where symptomatic, i.e.
infected individuals, are more likely tested than susceptible ones. For these experiments, two realistic dynamic
contact network instances are considered, one generated using the Spatio-temporal Epidemic Model (StEM) in
continuous-time in Ref.** and the other using the discrete-time OpenABM model in Ref." (see Section VIII of
the Supplementary Information for a brief description of StEM and OpenABM models). For sake of simplicity,
instead of adopting the complex epidemic dynamics described in Ref.!* and Ref.?°, epidemic realizations are
generated using a continuous-time SI model on these contact graphs.

A measure of the individual risk is computed according to all different methods (CVA, sib, soft, and MC),
and the corresponding AUCs are shown as functions of time (in days), in Fig. 3(a, c) and (b, d) for OpenABM
and the StEM respectively. For the latter only, we also consider different MC parameterizations, in particular
when using § € {12, 24,48, 96} hours; a further increase of § does not carry any improvement of the results. The
quantity § is associated with the MC move’s proposal (see Section VII of the Supplementary Information for a
detailed description). Panels (a) and (b) are associated with the observations scattered in time, while panels (c)
and (d) use observations at the last time only. In panel (a) simulations are run for N = 2000, while in panel (c) we
set N = 1000. It is easy to see that, in panels (a) and (c), CVA (blue dots) is the best-performing method in terms
of AUG; only MC (pink triangles) reaches comparable AUC for t ~ T. The results achieved by Belief Propaga-
tion are similar to those produced by CVA when the size of the graph is N = 1000 (panel (c)), and significantly

(b)

-*-CVA
& sib
r-emc
*- soft
< heu
H><MF
@]
-]
< -
0.6 | @ MC 0.6
¥ soft o
< heu
0.5 XMF 0.5 3
1 1 1 1 1 1 1 1 1
2 4 2 4 6 8 10 12 14
Number of observations Number of observations

Figure 2. Area under the ROC (AUC) as a function of the number of observations for the risk assessment
problem, i.e. t* = T, in panel (a), and for the patient-zero problem, t* = 0, panel (b). The simulated contact
graph is a proximity network with average connectivity 2.2/N. For both simulations in panels (a) and (b), the
total number of individuals is N = 50, the probability of being the zero patient is set to y = 1/N, and the
infection rate is A = 0.1. For each epidemic realization, the inference is performed for an increasing number of
noiseless observations (here ppnr = 0) at time ¢, = T. Thick lines and shaded areas indicate the averages and
the standard errors computed over 40 different instances.
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AUC

time

Figure 3. AUC associated with the prediction of the infected individuals, for the Causal Variational Approach
(CVA), Belief Propagation (sib) and SoftMargin (soft), and MCMC (MC) as a function of time during the
epidemic propagation of a ST model on several instances of dynamic contact network generated using the
OpenABM model' (in panel (a) N = 2000, in (¢) N = 1000) and the StEM in Ref.*® (panels (b) and (d))

for N = 904. The infection rate is set to 4 = 0.15 for the latter and A = 0.02 for the former; observations are
noiseless in both cases. For panels (c) and (d), observations are performed at the last time of the dynamics, i.e.
tobs = T. For the results in panels (a) and (b) observation times are extracted uniformly in the range[1, T; at
each observation time f,,, infected nodes are observed with a biased probability equal to 1.1 x Ny (tobs)/N
where Nj(t,ps) is the number of infected individuals at time ¢, and N is the total number of individuals. The
total number of observations is 71ops = N - 0.1 for OpenABM and n1,,s = 100 for the StEM.

deteriorate for N = 2000 (panel (a)). For the instances generated according to StEM in panels (b) and (d), the
comparison reveals that CVA achieves the largest values of the AUC at all times and only Belief Propagation (sib,
orange squares) performs comparably to CVA for the risk assessment problem, i.e. the inference at the last time
of the dynamics. MC for § € {48, 96}, approaches CVA performances in the last days while is not able to predict
the zero patient. Indeed, the AUC associated with MC predictions for all parametrizations is slightly larger than
0.5 fort < 5when observations are performed at the last time of the dynamics.

Hyperparameters inference. In the previous numerical experiments, the parameters of the generative
SI model, i.e. the (homogeneous) infection rate 4 and the probability of being the zero patient y, are assumed
to be known. These quantities enter the CVA formalism as hyperparameters of the prior distribution which
are often inaccessible in realistic applications, but can be estimated as those realizing the minimum of the free-
energy F = —1logIP[© ]. This can be achieved by gradient descent if the number n,} of available observations
is sufficiently large (see Section VI of the Supplementary Information for details). An example of the quality of
the parameter inference is provided by the following experiment. For a SI model with #,},s and true parameters
(y*,A*) = (1/N,0.1) (see the caption of Fig. 4 for further details), Fig. 4(a) shows a heatmap of F computed at
the convergence of CVA as function of the pair of values (y, 1) used as the hyperparameters of the correspond-
ing prior distribution. The region attaining the lowest values also contains the true values (y*, A*). The oriented
paths (white arrows) in Fig. 4(a) represent the sequences of intermediate values of 4 and y obtained during the
convergence process of CVA, starting from three different initial conditions. These traces show that trajectories
end up in the same region, very close to where the true values are located (green star). Similar experiments,
where the value of the zero patient probability is set toy = 1/N and the infection probability varies in the range
[0.05, 0.20] are performed. Similarly to the previous set-up, CVA is applied to infer the parameter 4. Figure 4(b)
displays a scatter plot of the inferred values against the true ones. Results suggest a good agreement between the
result of the inference and the generative process.

Model reduction. For viral diseases with sufficiently known transmission mechanisms, agent-based mod-
eling using discrete-state stochastic processes has proven useful to build large-scale simulators of epidemic out-
breaks and design containment strategies®**’. Such mathematical models are much more complex than the SI
model analyzed previously, as they need to include additional specific features of real-world diseases. In particu-
lar, models may assume different infected states, characterized by a different capability of transmitting the virus
and diverse sensitivity to diagnostic tests. Another important feature that can emerge from realistic transmis-
sions is that individuals can stop being infectious, even before recovering from the infected state, because of the
decay of their viral load. These ingredients may be effectively included in the SI and SEIR models by introduc-
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Figure 4. Panel (a) Heat map of the free energy (F := —logP(¢ )) computed at the convergence of CVA

as a function of the assumed hyperparameters of the generative SI model. The experiment is performed on a
proximity graph with N = 50 individuals and density o = 2/Nj; the epidemic model is characterized by the
zero-patient probability y* = 1/N and the infection rate A* = 0.1, shown here as a green star. We perform a
large number of observations (#1,,s = 2N) at uniformly randomly distributed times. As expected, the lowest
values of this free energy are concentrated around the exact value (y*, 2*). The oriented paths (white arrows)
represent the convergence towards the minimum of —log P[@ ] obtained by performing a gradient descent
algorithm over the hyperparameters starting from three different initial points in the plane (y, A). Panel (b)
Scatter plot of inferred values for the infection probability against the ground truth. In these experiments, we fix
and assume to know the zero patient probability y = 1/N while the infection parameter / is varied. For each 4
an epidemic simulation is performed and n,,s = 10N observations are taken at uniformly randomly distributed
times.

ing time-dependent infection rates, which is a natural assumption in the framework of the Causal Variational
Approach (see Section II-III of the Supplementary Information). This property makes the latter a very suitable
inference method to approximate unknown and possibly complex generative epidemic processes using classes
of simpler probabilistic models. A simple test of such a potentiality is provided by the following example. Several
epidemic realizations are generated with an SEIR prior model and the quality of the inference obtained by the
Causal Variational Approach is evaluated when (i) the SEIR model is also used as an ansatz for the posterior dis-
tribution and (ii) when the posterior distribution is approximated with a simpler probabilistic model, such as the
SI model. If the parameters of the generative SEIR model are known, the hyperparameters of the SEIR posterior
are also known. The corresponding results (green diamonds) for the AUC as a function of time on a proximity
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Figure 5. Effects of model reduction on inferential performances and generative capabilities. The numerical
experiments are performed on a proximity graph with N = 100 individuals and density 2.2/N. The observed
epidemic realizations are generated using an SEIR model withy = 1/N, A = 0.3 (panels (a) and (b)) and 0.15
(panel (c)), latency delay v = 0.5 and recovery delay &+ = 0.1. Panel (a) Values of the AUC as a function of
time obtained using the CVA in two observation regimes (when the number of observations is 71,,s = N /10
and n,ps = N/2), with the three different inferred posterior distributions: an SEIR model with known
hyperparameters (green diamonds), an SEIR model with unknown hyperparameters (blue circles), and a SI
model with unknown hyperparameters (red squares). Shaded areas represent the error around the average
value, computed using 22 instances. Panels (b) and (c) The average fraction of infected individuals as a function
of time estimated using the correct SEIR prior model (green diamonds), an SEIR prior with the inferred
hyperparameters (blue circles), and a SI prior model with the inferred hyperparameters (red squares). The
regimes shown correspond to unbiased observations (center, for 4 = 0.3), and to observations preferentially
sampled from large outbreaks (right, for 2 = 0.15). The black curves represent the same quantity computed
from the observed epidemic realizations. Shaded areas represent the standard error computed from 40
realizations of the dynamics.
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graph are displayed in Fig. 5(a). Otherwise, the hyperparameters of the SEIR posterior can be inferred by means
of the CVA (blue circles). Finally, the ansatz for the posterior distribution can be simplified to a SI model, and
the corresponding hyperparameters can be inferred as well within the CVA (red squares). The overall quality of
the inference depends on the possibly different regimes of information contained in the observations. Strikingly,
when the generative model is not known, the results from SEIR-based and SI-based inference are always very
close to each other. For a sufficiently large number of observations, such results are also close to those obtained
with the SEIR posterior and known hyperparameters.

From a generative perspective, the inferred hyperparameters can be also interpreted as the epidemic param-
eters of some prior model, from which epidemic realizations can be sampled. It is natural to ask what are the
statistical properties of such generative processes compared to the original one, from which the observations
were sampled. Figure 5 also shows, in two different regimes, as a function of time the average number of infected
individuals estimated from the original SEIR prior model (green diamond), the SEIR prior model with inferred
hyperparameters (blue circles) and the SI prior model with inferred hyperparameters (red squares). The aver-
age number of infected individuals computed over the realizations from which the observations are sampled
is also displayed (black line). The regimes shown in Fig. 5 correspond to unbiased observations (panel (b), for
A = 0.3), and to observations preferentially sampled from large outbreaks (panel (c), for A = 0.15). Although the
discrepancy between the different curves is significant, the moderate difference between predictions obtained
using SEIR and SI prior models with inferred hyperparameters suggests that model reduction is only a minor
source of information bias.

Conclusions

Sampling from the posterior distribution of a conditioned dynamical process can be computationally hard. In
this work, a novel computational method to accomplish this task, called the Causal Variational Approach, was
put forward. The Causal Variational Approach is based on the idea of inferring the posterior with an effective,
unconditioned, dynamical model, whose parameters can be learned by minimizing a corresponding free energy
functional. An insight into the potential of the method is obtained by analyzing a one-dimensional conditioned
random walk in which some regions of space are forbidden. The CVA produces a generalized random walk
process, with space-dependent and time-dependent jump rates, whose unconditioned realizations satisfy the
imposed constraints. An application of greater practical interest concerns epidemic inference, in particular the
risk assessment from partial and time-scattered observations. For simple stochastic epidemic models, such as
SI and SEIR, taking place on contact networks of moderately small size, the CVA performs better or as well as
the best methods currently available. Moreover, the variational nature of the method allows one to estimate the
parameters of the original epidemic model that generated the observations, which enter the CVA in the form of
hyperparameters. Since the CVA approximates the posterior distribution of the epidemic process by learning a
set of generalized individual-based, time-dependent parameters, even with a rather simple ansatz for the epi-
demic model, such as an SI model, inference from observations coming from more complex epidemic processes
can be performed. In fact, a generalized SI model with time-dependent infection rates and self-infection rates
allows one to accommodate many features of real-world epidemic diseases, such as time-varying viral load and
transmissivity, incubation, and recovery. The performances of the Causal Variational Approach do not seem to
suffer from model reduction from SEIR to SI, suggesting that simplified epidemic models could be effective for
inference also in real-world cases. The Causal Variational Approach is very flexible and, employing sampling to
perform estimates, it can be applied virtually to any dynamics for which the latter can be carried out efficiently. In
particular, the method can thus be applied to inference problems involving recurrent epidemic processes, such as
the SIS model®! or other models (e.g.**) where immunity decays over time. There are, however, some limitations.
The CVA relies on the fact that the functional form of the posterior should be similar to the one of the prior.
This is not true in general. For example, let us take an epidemic SI model in which the zero-patient probability
y is infinitesimally small. If one individual is tested positive at a certain time, then the posterior distribution
is substantially different from the prior. In particular, in the prior process each individual is the patient zero
independently with probability y, while in the posterior there is a strong (anti)correlation: indeed the measure
will concentrate on trajectories with exactly one infected individual (and this is impossible to reproduce with
independent patient zero probabilities). Of course, this example is extremely contrived, as the probability that
infection occurs at all in this system, and thus such a test result can be obtained, is infinitesimally small as well.
Moreover, in this case the problem can be simply solved by adopting a more natural distribution for the initial
state (either by using a non-infinitesimal initial infection probability in the prior, or by adopting a single initial
infection in the test distribution g, see also Supplementary Information). Nevertheless, it is a simple example in
which the prior functional form is substantially different from the one of the posterior.

Data availability

All data is generated using simulations and can be reproduced by following the prescriptions provided in the
main text and in Supplementary Information online. A public GitHub repository containing a Julia implemen-
tation of the algorithm and notebooks to reproduce the results of this work is available at https://github.com/
abraunst/Causality.git.
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