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Revealing the immune cell 
subtype reconstitution profile 
in patients from the CLARITY study 
using deconvolution algorithms 
after cladribine tablets treatment
Irina Kalatskaya  1*, Gavin Giovannoni  2, Thomas Leist  3, Joseph Cerra 1,5, 
Ursula Boschert  4 & P. Alexander Rolfe  1

Immune Cell Deconvolution methods utilizing gene expression profiling to quantify immune cells in 
tissues and blood are an appealing alternative to flow cytometry. Our objective was to investigate 
the applicability of deconvolution approaches in clinical trial settings to better investigate the 
mode of action of drugs for autoimmune diseases. Popular deconvolution methods CIBERSORT 
and xCell were validated using gene expression from the publicly available GSE93777 dataset that 
has comprehensive matching flow cytometry. As shown in the online tool, ~ 50% of signatures show 
strong correlation (r > 0.5) with the remainder showing moderate correlation, or in a few cases, no 
correlation. Deconvolution methods were then applied to gene expression data from the phase III 
CLARITY study (NCT00213135) to evaluate the immune cell profile of relapsing multiple sclerosis 
patients treated with cladribine tablets. At 96 weeks after treatment, deconvolution scores showed 
the following changes vs placebo: naïve, mature, memory CD4+ and CD8+ T cells, non-class switched, 
and class switched memory B cells and plasmablasts were significantly reduced, naïve B cells and 
M2 macrophages were more abundant. Results confirm previously described changes in immune cell 
composition following cladribine tablets treatment and reveal immune homeostasis of pro- vs anti-
inflammatory immune cell subtypes, potentially supporting long-term efficacy.

Abbreviations
DC	� Dendritic cells
CLARITY	� CLAdRIbine tablets treating multiple sclerosis
CyTOF	� Cytometry by time of flight
GEO	� Gene expression omnibus
MS	� Multiple sclerosis
ssGSEA	� Single sample gene set enrichment analysis
SVR	� Support vector regression

Peripheral whole blood is an accessible source of transcriptomic immune cell information for pharmacogenomic 
studies of human diseases, and is increasingly being incorporated into clinical studies.

Historically, methods such as flow cytometry1, and more recently, cytometry by time of flight (CyTOF)2 have 
been used for immune cell analysis. However, they have some limitations as they are costly, labour intensive, 
difficult to scale, and typically require fresh samples for analysis of some cell subtypes. In addition, a limited 
number of cell types can be detected, and it may not be possible for retrospective analysis of stored samples unless 
specifically prepared at the time of collection.
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Immune cell deconvolution is an appealing alternative to flow cytometry for immune cell analysis that uses 
gene expression profiling such as microarray or RNA sequencing to quantify immune cells in blood and bulk 
tissue3–7. There are many well-described deconvolution methods that have been used for immune profiling in 
areas such as cancer and lupus8,9. Compared with flow cytometry, deconvolution methods provide additional 
details of underlying biological processes and gene expression data can be retrospectively analyzed. Flow cytom-
etry datasets can be used to validate deconvolution outputs generated on gene expression data.

Multiple sclerosis (MS) is a complex disease with a dynamic variety of immune cells involved in its patho-
genesis. Analyzing immune cells is important in understanding not only the pathogenesis of MS but also the 
mechanistic basis of drugs used to treat MS. Immune reconstitution therapies for MS result in transient immune 
reduction followed by immune repopulation, and the deconvolution method represents a tool for the investiga-
tion of these dynamics in the peripheral blood.

The phase III CLARITY study (CLAdRIbine Tablets treating multiple sclerosis orally; NCT00213135) was 
a 2-year, placebo-controlled study of cladribine tablets in relapsing MS10 that was successfully completed over 
10 years ago. Cladribine tablets are an immune reconstitution therapy that acts via a selective, transient reduc-
tion of B and T cells followed by repopulation and corresponding immune reconstitution. Gene expression data 
from CLARITY are available for a subset of patients 96 weeks after the start of treatment (48 weeks after initia-
tion of the second annual treatment cycle) for the two cladribine tablets doses in the study (cumulative dose of 
3.5 mg/kg or 5.25 mg/kg over 2 years, henceforth referred to as cladribine tablets 3.5 mg/kg or cladribine tablets 
5.25 mg/kg). Along with existing flow cytometry data these provide an opportunity to not only validate the 
deconvolution approach in the clinical setting but also to study the effect of cladribine tablets on reconstituting 
immune cell subsets11,12 not specifically studied in the original flow cytometry analysis (e.g. B cell and monocyte 
subtypes). Indeed, naïve B cell increases during the post-treatment phase could provide evidence of resetting of 
the immune system, contributing to immune homeostasis of pro- vs anti-inflammatory immune cell subtypes 
that potentially underscore the long-term efficacy of cladribine tablets.

The aim of the current analysis, therefore, was an initial validation of the popular deconvolution methods 
xCell6 and CIBERSORT7 with subsequent application to the CLARITY dataset. These two algorithms were 
selected as they are conceptually very different from each other. CIBERSORT is based on support vector regres-
sion model, and xCell is a signature based method that uses ssGSEA approach to score each sample (see meth-
ods). The validation was performed using flow cytometry and matched gene expression data from the publicly 
available rheumatoid arthritis GSE93777 dataset13. This dataset aids initial validation of the deconvolution 
method as it contains an unprecedented collection of publicly available flow cytometry data (26 cell types in total), 
includes patients using different treatment regimens, and gene expression from matching samples is assessed 
using the same GeneChip™ Human Genome U133 Plus 2.0 Arrays as the CLARITY data. This combination 
gives a unique opportunity to validate two immune cell deconvolution approaches. The validation was followed 
by application of the deconvolution methods to characterize the immune cell population dynamics during the 
immune reconstitution phase following treatment with cladribine tablets in the CLARITY study.

Methods
GSE93777 validation dataset.  The GSE93777 dataset (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​
acc=​GSE93​777) includes microarray gene expression profiling of whole blood and sorted immune cells from 
rheumatoid arthritis patients, some of whom had received drug treatment (methotrexate, infliximab, and tocili-
zumab). The GSE93777 dataset also includes healthy volunteers (Table S1). Extensive flow cytometry data for 26 
immune cell types was retrieved from the dataset for use in this analysis14.

CLARITY data subset.  CLARITY was a phase III, double-blind, placebo-controlled study, the findings of 
which have been previously published10. Briefly, 1326 patients with relapsing MS were randomized (1:1:1) to 
receive cladribine tablets 3.5 mg/kg (n = 433) or 5.25 mg/kg (n = 456) or placebo (n = 437) over two treatments 
of 8–10 days per 48-week treatment cycle. Gene expression data (GeneChip™ Human Genome U133 Plus 2.0 
Array, Affymetrix, California, US) in stored whole blood samples at 96 weeks were available for 189 patients 
(cladribine tablets 3.5 mg/kg, n = 62; cladribine tablets 5.25 mg/kg, n = 70; placebo, n = 57), and prepared accord-
ing to standard protocols15. Microarray .cel files are available from the Gene Expression Omnibus (GEO) under 
accession GSE18577316.

Flow cytometry was performed at various time points, as described previously17, and was available for nine cell 
types: natural killer cells (CD16+/CD56+), B cells (CD19+), pan T cells (CD3+), T helper cells (CD4+), cytotoxic T 
cells (CD8+), naïve T cells (CD4+/CD45RA+), memory T cells (CD4+/CD45RO+), naïve cytotoxic T cells (CD8+/
CD45RA+), and memory cytotoxic T cells (CD8+/CD45RO+). Myeloid and B-cell subtypes were not included 
other than the mature B cell marker, CD19. The 96-week flow cytometry data were used for the deconvolution 
CLARITY study validation.

Gene expression data: deconvolution methods (Fig. 1).  Deconvolution methods comprise a sys-
tem of equations that describe the expression of each gene in a heterogeneous sample as a combination of the 
expression levels of that gene across the different cell subsets present in the sample, weighted by their relative 
cell fractions. The purpose of deconvolution is to use the system of equations as a model to determine the most 
likely abundance or fraction of each cell type in a given sample. Different deconvolution methods are trained 
on different datasets (typically datasets of cells sorted by flow cytometry and then profiled using microarrays or 
RNA sequencing) and different algorithms are used to estimate the immune cell quantities.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93777
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93777
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CIBERSORT.  CIBERSORT deconvolution provides quantification for 22 immune cell subtypes. It is a widely 
used tool that requires an input matrix of reference gene expression signatures, collectively used to estimate 
the relative proportions of each cell type of interest6. To deconvolve the mixture, CIBERSORT uses a linear 
v-support vector regression model to find f in m = f x B, where m is a vector consisting of gene expression values 
from the mixture (e.g. bulk tumor or whole blood), f—a vector of fraction for each cell type, and B is a ‘signature 
matrix’ containing signature genes for each cell type6 A original leukocyte gene signature matrix, termed LM22, 
was used in this study as i contains 547 genes that distinguish 22 human immune cell subtypes. The CIBERSORT 
algorithm descripted in the Newman et al.6 paper was reimplemented using the svm method from the e1071 R 
package and original LM22 matrix. The term fraction is defined for each sample as the sum of values across the 
22 cell subtypes with a total of 1 and should reflect the true fraction of cells in the sample of a given type. In this 
analysis, the CIBERSORT deconvolution method was performed on all 22 immune cell subtypes.

xCell7.  xCell deconvolution is a computational method that uses gene signatures to infer the abundance of 
64 cell types including immune cell types. It is based on a single sample gene set enrichment analysis (ssGSEA) 
of ~ 10,000 genes and 489 gene signatures extracted from large-scale expression data from six projects (FAN-
TOM, BluePrint, ENCODE, IRIS, HPCA, and Noverstern). This approach is based on ranking of each gene 
signature in the bulk tissue, then calculation of the enrichment score and spillover compensation to distinguish 
closely related cell types7.

For the present analysis, 20 unrelated signatures that represent cell types outside of the blood stream were 
identified and excluded as per the user manual (chondrocytes, osteoblasts, myocytes, keratinocytes, hepato-
cytes, endothelial cells, astrocytes, adipocytes, epithelial cells, mv and ly endothelial cells, neurons, pericytes, 
preadipocytes, skeletal muscle, sebocytes, mesangial cells, melanocytes, ly endothelial cells, smooth muscle, and 
fibroblasts). xCell was performed using the remaining set of 44 cell type signatures. Immune cell scoring was 
done using xCell R package v.1.1.

GSE93777 dataset validation of deconvolution methods vs flow cytometry.  The GSE93777 
dataset13 was used for the initial validation of the deconvolution methods. Each sample was analyzed by 
xCell and CIBERSORT. Spearman’s rank correlation coefficient test was used to estimate the correlation (r) 
between deconvolution outputs and corresponding flow cytometry cell counts18. For this analysis we considered 
r > 0.5 = strong correlation, 0.3 < r < 0.5 = moderate correlation, r < 0.3 [false discovery rate (FDR) < 0.1] = weak 
correlation, and FDR > 0.1 = no correlation. Only relative estimates (% of total) for every cell type were used for 
the correlation studies. For all GSE93777 and CLARITY deconvolution signatures see Table S2.

Online deconvolution and flow cytometry visualization tool (Rshiny app).  We designed an inter-
active web-based framework using Rshiny technology providing full access to all anonymized data and visualiza-
tion material for the deconvolution cell signature and flow cytometry validation described in this article, availa-
ble here: https://​emdse​rono1.​shiny​apps.​io/​Immune_​Cell_​Decon​volut​ion_​Valid​ation/). The framework includes 
an introduction to the publicly available dataset used for validation (GSE93777), a frequently asked questions 
section, and CIBERSORT and xCell outputs to allow the deconvolution findings of interest and corresponding 
flow cytometry data to be interactively selected and plotted. In addition, full access to numeric signature scoring 
is provided through interactive tables for user convenience as well as summary tables. In all cases, Spearman cor-
relation is calculated, but the Pearson correlation coefficient approach can also be used. This tool can potentially 

Figure 1.   Schema of the overall study design. High level description of study design. The deconvolution 
method was validated using publicly available gene expression and flow cytometry data, then applied to 96 week 
samples from the CLARITY study.

https://emdserono1.shinyapps.io/Immune_Cell_Deconvolution_Validation/
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be used by the broader scientific community for determining whether a specific immune cell signature could be 
reliably used for immune cell deconvolution in other patient subpopulation studies.

CLARITY subset data validation of deconvolution methods vs flow cytometry.  Spearman’s rank 
correlation coefficient test was used to estimate the correlation between deconvolution cell signatures and cor-
responding flow cytometry counts. Deconvolution cell signatures that did not map to corresponding or related 
immune cell subtypes assessed by flow cytometry were removed from this analysis. P-values were adjusted for 
multiple testing using the Bonferroni correction. All data visualization and statistical analyses were done in R.

Deconvolution cell signature alterations after treatment with cladribine tablets in CLARITY 
data.  Immune cell analysis of the CLARITY subset using the deconvolution cell signatures was undertaken 
for the cladribine tablets 3.5 mg/kg and 5.25 mg/kg treatment groups, separately and combined, and placebo. A 
multivariate linear regression model was built for each cell type to test whether the treatment arm is significantly 
related to the deconvolution score. Patients’ age and gender were used as covariates in the model. The p value 
from F-statistics was used to determine whether the relationship wa still significant when the model ccounted 
for covariates. Cell types for which both the adjusted p-values for the treatment coefficient and overall f-test 
p-value were < 0.1 were considered significant. lm() in R was used for linear regression modeling.

Ethics approval and consent to participate.  This retrospective study used data from the CLARITY 
study (NCT00213135), which was undertaken in compliance with the Declaration of Helsinki and standards of 
Good Clinical Practice according to the International Conference on Harmonisation of Technical Requirements 
for Registration of Pharmaceuticals for Human Use. At each centre, the relevant institutional review board or 
independent ethics committee reviewed and approved the trial protocol, patient information leaflet, informed 
consent forms, and investigator brochure (Table S6). All patients provided written informed consent to partici-
pate in the trials.

Results
GSE93777 dataset validation of deconvolution methods vs flow cytometry.  All GSE93777 sam-
ples were used in the validation (rheumatoid arthritis patients with or without drug treatment and healthy 
volunteers). Treated rheumatoid arthritis patients received either methotrexate, infliximab, or tocilizumab in 
roughly equal parts. The majority of individuals in the GSE93777 dataset were female (226/255; 88.6%). The 
mean age was 54.9 years (Table S1).

CIBERSORT and xCell deconvolution cell signatures were mapped to the available flow cytometry data in 
order that deconvolution cell signatures could be compared to the flow cytometry results (Tables 1 and 2). Not 
every deconvolution cell signature was mapped precisely to the corresponding flow cytometry immune cell 
subtype (demonstrating the broad collection of signatures in the GSE93777 dataset); in addition, not all flow 
cytometry data were used for validation as some cell types (e.g. Bregs) are not yet provided by the deconvolu-
tion methods.

CIBERSORT.  Fourteen of 22 CIBERSORT cell signatures were mapped to corresponding or related immune 
cell subtypes assessed by flow cytometry from the GSE93777 dataset. Deconvolution cell signatures for neu-

Table 1.   Pairwise comparison between flow cytometry data from GSE93777 and corresponding CIBERSORT 
deconvolution cell signatures. r > 0.5 = strong correlation, 0.3 < r < 0.5 = moderate correlation, r < 0.3 [false 
discovery rate (FDR) < 0.1] = weak correlation, and FDR > 0.1 = no correlation. Remaining cell types were not 
tested due to the lack of the corresponding flow cytometry data.

Cell signature Flow cytometry cell phenotype Spearman correlation (r) P-value FDR Assessment

cibersort.B.cells.memory B.CELL.rWBC 0.519 < 0.001 0.000 Strong correlation

cibersort.B.cells.naive B.CELL.rWBC 0.164 0.011 0.017 Weak correlation

cibersort.Dendritic.cells.resting DC.rWBC 0.188 0.003 0.006 Weak correlation

cibersort.Eosinophils EOSINOPHIL.rWBC 0.146 0.024 0.031 Weak correlation

cibersort.Mast.cells.resting BASOPHIL.rWBC 0.148 0.022 0.031 Weak correlation

cibersort.Monocytes MONOCYTE.rWBC 0.604 < 0.001 0.000 Strong correlation

cibersort.Neutrophils NEUTROPHIL.rWBC 0.798 < 0.001 0.000 Strong correlation

cibersort.NK.cells.resting NK.rWBC 0.583 < 0.001 0.000 Strong correlation

cibersort.Plasma.cells PLASMABLAST.rWBC 0.610 < 0.001 0.000 Strong correlation

cibersort.T.cells.CD4.memory.
resting MEMORY.CD4.rWBC 0.079 0.222 0.247 No correlation

cibersort.T.cells.CD4.naive NAIVE.CD4.rWBC 0.691 < 0.001 0.000 Strong correlation

cibersort.T.cells.CD8 CD8.T.rWBC 0.776 < 0.001 0.000 Strong correlation

cibersort.T.cells.gamma.delta GAMMA.DELTA.T.rWBC − 0.078 0.229 0.247 No correlation

cibersort.T.cells.regulatory.Tregs TREG.rWBC − 0.021 0.744 0.744 No correlation
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trophils, monocytes, natural killer cells, CD8+ T cells, and memory B cells showed the strongest correlation 
with flow cytometry cell counts (r > 0.5). Deconvolution cell signatures for memory B cells showed a higher 
correlation (r = 0.519) than for naïve B cells (r = 0.164), although the comparisons were to total flow cytometry 
B cell counts and therefore suboptimal. Naïve CD4+ T cell deconvolution cell signatures correlated with naïve 
CD4+ flow cytometry cell counts (r = 0.691), but memory CD4+ had no correlation with corresponding memory 
CD4 cell counts (r = 0.079). Resting dendritic deconvolution cell signatures had a poor (r = 0.188), albeit statisti-
cally significant (p = 0.003), correlation with the corresponding flow cytometry cell count. No correlation was 
found between gamma delta T cells or Treg deconvolution cell signatures and corresponding flow cytometry 
cell counts, possibly because CIBERSORT estimated abundance at 0. No suitable flow cytometry counterparts 
were found for M0/M1/M2 macrophages or for follicular helper T cell deconvolution signatures. Plasma cells are 
rarely found in blood and flow cytometry data did not include such cell counts. However, we did observe that 
the plasma deconvolution cell signature had a good correlation with plasmablast cell counts (r = 0.610). While 
not a precise match, the deconvolution cell signature for resting mast cells showed no correlation or significance 
compared with basophil counts.

There are four CIBERSORT ‘activated’ signatures in the collection, generated by activating (lipopolysaccharide 
for dendritic cells, IL2 or IL15 for natural killer, etc.) parent cell types and gene expression assessment. ‘Activated’ 
cell types were not validated as there was no match in the flow cytometry dataset.

In summary, 7 of 14 (50%) validated CIBERSORT deconvolution cell signatures showed strong Spearman 
correlation (r > 0.5) with corresponding flow cytometry data; 4 of 14 (28%) showed weak but significant correla-
tion; and 3 of 14 (21%) showed no correlation (FDR > 0.1). Eight CIBERSORT signatures were not tested (Table 1 
and online correlation tool [visualisation of analyses described in this article]: https://​emdse​rono1.​shiny​apps.​
io/​Immune_​Cell_​Decon​volut​ion_​Valid​ation/ [Fig. S1]).

xCell.  Twenty-five of 44 xCell signatures were mapped to corresponding or related immune cell subtypes 
assessed by flow cytometry from the GSE93777 dataset.

B-cell, neutrophil, pan CD8+, plasmablasts, eosinophil, and natural killer deconvolution cell signatures showed 
significant, positive, and moderate/strong correlation (r > 0.4) with corresponding flow cytometry cell counts. 

Table 2.   Pairwise comparison between flow cytometry data from GSE93777 and corresponding xCell 
deconvolution cell signatures. r > 0.5 = strong correlation, 0.3 < r < 0.5 = moderate correlation, r < 0.3 [false 
discovery rate (FDR) < 0.1] = weak correlation, and FDR > 0.1 = no correlation. Remaining cell types were not 
tested due to the lack of the corresponding flow cytometry data.

Cell signature
Flow cytometry cell 
phenotype Spearman correlation (r) P-value FDR Assessment

xcell.B.cells B.CELL.rWBC 0.768 < 0.001 0.000 Strong correlation

xcell.Basophils BASOPHIL.rWBC 0.016 0.802 0.802 No or negative correlation

xcell.CD4.memory.T.cells MEMORY.CD4.rWBC 0.434 < 0.001 0.000 Moderate correlation

xcell.CD4.naive.T.cells NAIVE.CD4.rWBC 0.786 < 0.001 0.000 Strong correlation

xcell.CD4.T.cells CD4.T.rWBC 0.789 < 0.001 0.000 Strong correlation

xcell.CD4.Tcm MEMORY.CD4.rWBC 0.466 < 0.001 0.000 Moderate correlation

xcell.CD4.Tem MEMORY.CD4.rWBC 0.523 < 0.001 0.000 Strong correlation

xcell.CD8.naive.T.cells NAIVE.CD8.rWBC − 0.141 0.029 0.035 No or negative correlation

xcell.CD8.T.cells CD8.T.rWBC 0.850 < 0.001 0.000 Strong correlation

xcell.CD8.Tcm MEMORY.CD8.rWBC 0.488 < 0.001 0.000 Moderate correlation

xcell.CD8.Tem CD45RA.MEMORY.CD8.
rWBC 0.450 < 0.001 0.000 Moderate correlation

xcell.cDC MDC.rWBC 0.289 < 0.001 0.000 Weak correlation

xcell.Class.switched.
memory.B.cells B.CELL.rWBC 0.738 < 0.001 0.000 Strong correlation

xcell.DC DC.rWBC 0.062 0.340 0.370 No or negative correlation

xcell.Eosinophils EOSINOPHIL.rWBC 0.479 < 0.001 0.000 Moderate correlation

xcell.Memory.B.cells B.CELL.rWBC 0.731 < 0.001 0.000 Strong correlation

xcell.Monocytes MONOCYTE.rWBC 0.259 < 0.001 0.000 Weak correlation

xcell.Naive.B.cells B.CELL.rWBC 0.786 < 0.001 0.000 Strong correlation

xcell.Neutrophils NEUTROPHIL.rWBC 0.797 < 0.001 0.000 Strong correlation

xcell.NK.cells NK.rWBC 0.411 < 0.001 0.000 Moderate correlation

xcell.NKT NKT.rWBC − 0.252 < 0.001 0.000 No or negative correlation

xcell.pDC PDC.rWBC 0.086 0.187 0.213 No or negative correlation

xcell.Plasma.cells PLASMABLAST.rWBC 0.520 < 0.001 0.000 Strong correlation

xcell.Tgd.cells GAMMA.DELTA.T.rWBC 0.329 < 0.001 0.000 Moderate correlation

xcell.Tregs TREG.rWBC 0.048 0.461 0.480 No or negative correlation

https://emdserono1.shinyapps.io/Immune_Cell_Deconvolution_Validation/
https://emdserono1.shinyapps.io/Immune_Cell_Deconvolution_Validation/
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All CD4+ subtypes for deconvolution cell signatures and cell count correlated well, with correlation ranging from 
r = 0.434 to r = 0.789. Monocyte deconvolution cell signatures correlation with corresponding flow cytometry 
cell counts was positive (r = 0.604) and statistically significant (p < 0.001). Deconvolution cell signatures showed 
poor correlation with flow cytometry cell counts for basophils (r = 0.148) and Tregs (r = − 0.021). Both the xCell 
deconvolution cell signature collection and the GSE93777 flow cytometry dataset contain a variety of dendritic 
cells, including DC, aDC, iDC, cDC, and pDC. The xCell deconvolution cell signature for cDC was mapped to 
mDC cell counts and showed a moderate but positive correlation (r = 0.289). Neither pan DC (r = 0.062) or pDC 
(r = 0.086) deconvolution cell signatures showed significant correlation with flow cytometry cell counts. Tgd 
deconvolution cell signatures showed a moderate correlation with flow cytometry cell counts (r = 0.329). Stem 
cell, progenitor, macrophage, platelet, and erythrocyte signatures (M0/M1/M2) were not validated as there was 
no match in the flow cytometry dataset.

In summary, 17 of 25 (68%) xCell validated deconvolution cell signatures showed moderate to strong Spear-
man correlation (r > 0.3) with corresponding flow cytometry data; 2 of 25 (8%) showed weak but significant 
correlation, and 6 of 25 (24%) showed no correlation (FDR > 0.1). Nineteen xCell deconvolution signatures were 
not tested (Table 2 and online correlation tool [visualisation of analyses described in this article]: https://​emdse​
rono1.​shiny​apps.​io/​Immune_​Cell_​Decon​volut​ion_​Valid​ation/ [Fig. S2]).

CLARITY data subset.  The demographic and clinical characteristics of the 1326 patients in the CLARITY 
study have been previously described10. The subset of 189 CLARITY patients in this analysis was broadly similar 
(Table S3). Gene expression data (GeneChip™ Human Genome U133 Plus 2.0 Array) in whole blood samples at 
96 weeks were available from patients randomized to placebo (n = 57), cladribine tablets 3.5 mg/kg (n = 62), and 
cladribine tablets 5.25 mg/kg (n = 70).

CLARITY subset data validation of deconvolution methods vs flow cytometry.  Twenty-six out 
of 66 deconvolution cell signatures (9 CIBERSORT and 17 xCell) were matched to 1 of the 9 flow cytometry cell 
data at week 96 of the CLARITY study (Fig. 2, Table S4, Fig. S1). In contrast to the validation study, using the 
GSE93777 dataset, generic cell flow data were mapped to all related deconvolution signatures including activated 
forms (for example, there were no deconvolution cell signatures that represented pan T cells in human blood, 
so CD3+ flow cytometry cell counts were mapped to 17 deconvolution cell signatures including memory CD4+ 
T, Tregs, Tgd etc.).

Fourteen of 52 comparisons showed adjusted p-values > 0.1. Three of the 14 comparisons represented an 
‘activated’ form of the deconvolution cell signature, counts that are rarely detected by basic flow cytometry. The 
CD3+ flow cytometry cell counts had some correlation with the majority of deconvolution T cell signatures; how-
ever, cibersort.T.cells.regulatory.Tregs, xCell.Th1.cells, xCell.CD8 + .naive T-cells, cibersort.T.cells.CD4.memory.
resting, and cibersort.T.cells.CD4.memory.activated are very specialized T cell subtypes. xCell deconvolution 
cell signature scores were strongly correlated with corresponding flow cytometry cell counts for CD19+, CD4+, 
and CD8+ T cells (Fig. 3).

The final dataset consisted of 63 deconvolution cell signatures generated for all 189 patients in this subset of 
the CLARITY study cohort: 19 from CIBERSORT and 44 from xCell. Over 99% of values in Mast.cells.activated, 
T.cells.follicular.helper and T.cells.gamma.delta signatures from CIBERSORT were estimated at 0, and therefore 
these signatures were excluded.

Deconvolution cell signature alterations after treatment with cladribine tablets in CLAR-
ITY.  Three comparisons were undertaken vs placebo: cladribine tablets 3.5  mg/kg dose, cladribine tablets 
5.25 mg/kg dose, and combined dose. Patient’s age and gender are clinical factors that might affect immune cell 
abundance along with the treatment. That’s why Multivariate Linear Regression model was generated for every 
cell type using treatment arm, gender and age as independent variables. Cell types for which adjusted p-values 
from the treatment coefficient and overall adjusted significance from F-statistics <  = 0.1 were considered signifi-
cant. This set up helped us to prioritize a list of the cell types affected by cladribine treatment but not patient’s 

Figure 2.   xCell deconvolution cell signature scores vs flow cytometry for major lymphocyte subtypes from 
CLARITY data. Spearman correlation is indicated.

https://emdserono1.shinyapps.io/Immune_Cell_Deconvolution_Validation/
https://emdserono1.shinyapps.io/Immune_Cell_Deconvolution_Validation/
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gender or patient’s age attributes. Nine of 19 CIBERSORT and 24 of 44 xCell deconvolution cell signatures 
were altered in cladribine tablets treated patients vs placebo. There were significant alterations in 25 cell types 
for 3.5 mg/kg cladribine tablets vs placebo, and significant alterations in 31 cell types for 5.25 mg/kg cladribine 
tablets vs placebo (Table S5).

T cells.  Deconvolution cell signature scores for CD4+, CD4+ central memory, and CD4+ effector memory T 
cells were significantly decreased for both doses of cladribine tablets vs placebo at 96 weeks of the CLARITY 
study (Fig. 3). Deconvolution cell signature scores for CD8+ and CD8+ central memory cells were also signifi-
cantly decreased for both doses of cladribine tablets vs placebo at 96 weeks. The changes in CD8+ effector cells 
were not significant (Fig. 4).

B cells.  Deconvolution cell signature scores for class-switched memory, memory and plasmablasts were sig-
nificantly decreased for both doses of cladribine tablets vs placebo at 96 weeks of the CLARITY study. Decon-
volution cell signature scores for naïve B cells were significantly increased for 5.25 mg/kg cladribine tablets vs 
placebo using CIBERSORT deconvolution cell signatures (Fig. 5) and this trend stays significant if all treated 
samples are compared vs placebo (Table S5). It is interesting to note that naïve B cell signature derived using 
xCell method was also upregulated after high dose cladribine treatment (Fig. 5, lower panel), but only in the 
simple linear model with treatment arm as a covariate. If gender and age were taken into account, this signifi-
cance is faded.

Macrophages.  M2 macrophage scores from xCell and monocyte from CIBERSORT deconvolution cell sig-
nature significantly increased for those treated with high cladribine tablets (or all treated samples merged) vs 
placebo (Fig. 6, Table S5), whereas M1 macrophage signature from CIBERSORT was significantly depleted after 
low dose cladribine.

Discussion
The speed of development of computational biology and bioinformatics provides additional opportunities to use 
mathematical algorithms to study complex human systems such as blood, with its heterogeneous mixture of mul-
tiple cell types. Immune cell deconvolution has been successfully used in multiple fields including cancer9,14,19–21 

Figure 3.   CD4+ T-cell signature score distribution generated by xCell between treatment arms in CLARITY. 
A multivariate linear regression model was built for each cell type to test whether treatment arm is significantly 
related to the deconvolution score. P-value from F-statistics was used to determine whether the relationship is 
still significant when model is accounted for patient’s age and gender. Cell types for which either the adjusted 
p-values for the treatment coefficient or overall F-test adjusted p-value were > 0.1 were considered not significant 
and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear model where 
only treatment arm was used as a covariate (upper row) are marked as asterisks * < 0.1, ** < 0.01, *** < 0.001. cm 
central memory; em effector memory



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8067  | https://doi.org/10.1038/s41598-023-34384-5

www.nature.com/scientificreports/

and immunity; for example, to analyse immune cells of the knee in osteoarthritis22 and the blood cell composition 
of patients with systemic lupus erythematosus23. Immune cell deconvolution methods, however, have not thus 
far been used to study blood samples from patients with MS.

In this analysis, the deconvolution methods xCell6 and CIBERSORT7 were successfully validated using exist-
ing flow cytometry and matched gene expression data from both the publicly available rheumatoid arthritis 
GSE93777 dataset13 and the CLARITY study10 dataset. Deconvolution methods were then applied to character-
ize the immune cell population dynamics from a subset of 189 patients from the CLARITY study with gene 
expression data at 96 weeks after the start of treatment. In line with previously described changes in immune 
cell composition, T cells and B cells were less abundant with cladribine tablets than with placebo. New results 
included that naïve B cells and macrophage M2 cells were more abundant whilst macrophage M1 cells showed 
signs of depletion compared with placebo, revealing immune homeostasis of pro- vs anti-inflammatory immune 
cell subtypes and potentially supporting long-term efficacy of cladribine tablets.

There are a variety of methods available for deconvolution, however, CIBERSORT and xCell methods were 
chosen for this analysis as they have previously performed with high effectiveness6,7. The aim of this validation 
was not to benchmark these methods versus other deconvolution methods, but because they were considered 
potentially effective for immunophenotyping MS disease. To validate such methods for use in this analysis, a 
publicly available dataset (rheumatoid arthritis GSE93777)13 was used to compare levels of immune cell sig-
natures with corresponding flow cytometry. Good concordance of cell signatures between the CIBERSORT 
and xCell deconvolution methods were observed, similar to previous analyses describing immune cell levels 
in healthy liver and hepatocellular carcinoma24. Both CIBERSORT and xCell deconvolution methods showed 
significant, positive, and strong correlation for B cell, neutrophil, pan CD8+, plasmablasts, and natural killer cell 
deconvolution signatures (but poor correlation for basophils and Tregs) with corresponding flow cytometry cell 
counts. One reason the basophil deconvolution signatures were not as well correlated with flow cytometry may 
be because six of the nine basophil samples used for deconvolution cell signature generation6 were isolated from 
umbilical cord blood (Novershterm dataset: GSM609632, GSM609633, GSM609634, GSM609635, GSM609636, 
GSM609637), and may represent younger or otherwise different cells than those assessed in the flow cytometry 
data. While CIBERSORT and xCell deconvolution findings aligned for most cell types there were some differences 
that can partially be explained by the perspective of the mathematical method. Initially, both methods select the 
most representative sets of genes for each tissue type called gene signatures. Then, CIBERSORT deconvolution 
uses a linear v-support vector regression model6 and xCell uses s sSEA analysis7. Other differences include that 
CIBERSORT provides 22 immune cell subtypes and xCell provides 44 immune cell subtypes detected in whole 

Figure 4.   CD8 + T-cell signature score distribution generated by xCell between treatment arms in CLARITY. 
A multivariate linear regression model was built for each cell type to test whether treatment arm is significantly 
related to the deconvolution score. P-value from F-statistics was used to determine whether the relationship is 
still significant when model is accounted for patient’s age and gender. Cell types for which either the adjusted 
p-values for the treatment coefficient or overall F-test adjusted p-value were > 0.1 were considered not significant 
and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear model where only 
treatment arm was used as a covariate (upper row) are marked as asterisks * < 0.1, ** < 0.01, *** < 0.001.
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blood. Other reasons for lack of correlation could have been because of an insufficient match in the flow cytom-
etry collection. For example, for the CIBERSORT method, the match for resting mast cells (cibersort.Mast.cells.
resting) was basophils. As well, some T cell-related signatures (cibersort.t.cells.regulatory and cibersort.t.cells.
gamma.delta) produced zero values because of low sensitivity to rare cell subtypes and/or low counts for these 
cells in the peripheral blood (although it should be noted that this is not always the case, plasma cells were well 
correlated despite less than 1% in whole blood). General reasons for lack of correlation with either method, may 
also be due to the origin of the cells that were used for signature generation (in vivo vs in vitro; blood vs organ 
origin isolation). For example, dendritic cells used for CIBERSORT signature construction were generated by 
in vitro monocyte differentiation with IL4 + GMCSF stimulation, but not through direct isolation from the whole 
blood. As with basophils, eosinophil samples used for deconvolution cell signature generation were isolated 
from umbilical cord blood. None of the stem cell, progenitor, macrophage, platelet, or erythrocyte signatures 
(M0/M1/M2) were validated with either deconvolution method, as no matches were found in the GSE93777 
flow cytometry dataset.

The deconvolution methods were used to evaluate immune cell types from stored blood samples of 189 
patients with MS, a subset of the cohort of patients enrolled in the phase III efficacy study of cladribine tablets 
in MS (CLARITY). Strengths of using the GSE93777 and CLARITY datasets in the same analysis include that 
the majority of rheumatoid arthritis patients within the GSE93777 dataset were treated with highly efficacious 
drugs (methotrexate, infliximab, and tocilizumab) that may have shifted/altered their gene expression profiles. 
This highlights that deconvolution methods yield accurate results even after treatment with immunomodulatory 
drugs, increasing confidence in the results from the CLARITY subset analysis of patients having received two 
annual treatment cycles of cladribine tablets. In addition, the initial validation using the GSE93777 dataset was 
on the same sample type (whole blood) and microarray type (GeneChip™ Human Genome U133 Plus 2.0 Arrays) 
as the CLARITY data. Limitations of these analyses include that signatures generated on RNA sequencing rather 
than microarray gene expression analysis may reveal different results and would need to be validated and matched 
with flow cytometry in order to apply CIBERSORT or xCell deconvolution methods with full confidence. There 
were also some minor discrepancies, including lack of expected correction between the cibersort.T.Cells.CD4.
memory.resting cell signature and CD4+/CD45RA flow cytometry cell count (similar results were observed with 

Figure 5.   B cell signature score distribution generated by CIBERSORT and xCell between treatment arms in 
CLARITY. A multivariate linear regression model was built for each cell type to test whether treatment arm is 
significantly related to the deconvolution score. P-value from F-statistics was used to determine whether the 
relationship is significant when patient’s age and gender are used as covariates. Cell types for which either the 
adjusted p-values for the treatment coefficient or overall F-test adjusted p-value were > 0.1 were considered 
not significant and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear 
model where only treatment arm was used as a covariate (upper row) are marked as asterisks * < 0.1, ** < 0.01, 
*** < 0.001.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8067  | https://doi.org/10.1038/s41598-023-34384-5

www.nature.com/scientificreports/

the GSE93777 validation). In addition, of the validated cell types, 21% (3 out of 14) of xCell and 24% (6 out of 
25) of CIBERSORT deconvolution signatures showed no correlation with flow cytometry. In the future, these 
signatures will be used with caution or excluded from consideration.

Cladribine tablets in MS lead to immune reconstitution by a selective reduction in B and T cell counts, fol-
lowed by a period of reconstitution, with clinical efficacy sustained beyond total lymphocyte recovery17,25,26. 
Available flow cytometry data has given valuable insight into B and T cells levels11,12, and early findings from 
ongoing studies in MS patients with high disease activity have shown a specific pattern of peripheral blood 
mononuclear cell subtype dynamics that coincide with the pattern of clinical efficacy in terms of early onset of 
action and sustained effect25,27. Thus far, immune cell levels at the two-year time point following cladribine tablets 
treatment has not been investigated in detail. The present study, therefore, represented an opportunity to not 
only validate the deconvolution approach but build upon the understanding of immune cell dynamics following 
completion of two cycles of cladribine tablets and after initial immune reconstitution, as well as compare differ-
ences between the 3.5 and 5.25 mg/kg doses analyzed in the CLARITY study. Using the validated deconvolution 
methods, consistent levels of cells were observed between doses (the 5.25 mg/kg dose did not show lower levels 
of immune cells than the 3.5 mg/kg dose) in line with previous observations from the CLARITY and CLAR-
ITY Extension studies and the clinical observation that the higher dose is not more effective10,26. In addition 
to immune cell levels previously evaluated by flow cytometry for those treated with cladribine tablets28,29, class 
switched and non-class switched memory B cells, naïve B cells, plasmablasts, and M1/M2 macrophages were 
analyzed in the present study. As with the GSE93777 dataset, deconvolution cell signatures from the CLARITY 
study were well correlated with flow cytometry data and are consistent with previous flow cytometry findings17. 
This supports the interpretation via deconvolution of levels of cell types not previously analyzed by flow cytom-
etry and highlights the future research utility of this method for MS and other data. In this analysis, memory B 
cells, plasmablasts, total and memory CD4+ and CD8+ T cells and M1 macrophages were significantly reduced 
with cladribine tablets vs placebo, while naïve B cells and M2 macrophages were significantly increased. This 
positive change in M2 macrophages has not been previously reported, and may reflect a switch from M1 to M2 
through the nuclear factor kappa B (NF-κB) or Nrf2 pathways30,31; in vitro studies also indicate that cladribine 

Figure 6.   Monocyte and macrophage signature score distribution generated by CIBERSORT and xCell between 
treatment arms in CLARITY. A multivariate linear regression model was built for each cell type to test whether 
treatment arm is significantly related to the deconvolution score. P-value from F-statistics was used to determine 
whether the relationship is still significant when model is accounted for patient’s age and gender. Cell types for 
which either the adjusted p-values for the treatment coefficient or overall F-test adjusted p-value were > 0.1 were 
considered not significant and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value 
from linear model where only treatment arm was used as a covariate (upper row) are marked as asterisks * < 0.1, 
** < 0.01, *** < 0.001.
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decreases the secretion of IL-6 and TNF-α32. Most of the reduced signatures were from T-/B-cell types and 
enhanced myeloid types. Thus, neutrophil signatures assessed by both methods showed upregulation, indicat-
ing that neutrophils to some extent replace the reduced lymphocytes. Stem and progenitor cells are not altered 
by cladribine tablets other than common lymphoid progenitor (CLP) cells. In addition, naïve B cells increased 
during the post-treatment phase, which could suggest a resetting of the immune system. Such findings warrant 
further validation in the clinical trial setting, including evaluation of the effect on immune cells for example 3 or 
4 years after cladribine tablets initiation. A detailed analysis of immune cell subsets in patients with high disease 
activity could also yield useful comparisons.

The use of some disease-modifying therapies (DMTs) for MS may alter vaccine efficacy33,34, such as a reduced 
humoral response to inactivated vaccines35,36. However, cladribine tablets treatment has not been found to impair 
humoral response to COVID-19 vaccination37,38. The reconstitution of naïve B cell counts, as validated in the 
current analysis, may therefore serve to explain this finding.

Conclusion
In summary, this study validates immune cell deconvolution as a reliable method for immune cell subtype 
assessment and shows new applicability in the analysis of immune cell data within the setting of relapsing MS, 
using data from the CLARITY study. The results confirm previously described changes in immune cell composi-
tion following treatment with cladribine tablets, and reveal immune homeostasis of pro- vs anti-inflammatory 
immune cell subtypes that potentially support long-term efficacy. In addition, first time gene expression profiling 
of cladribine-treated MS patients, along with placebo control, is made available for the broad scientific com-
munity through a GEO portal.

Data availability
Any requests for data by qualified scientific and medical researchers for legitimate research purposes will be 
subject to Merck’s Data Sharing Policy. All requests should be submitted in writing to Merck’s data-sharing 
portal https://​www.​merck​group.​com/​en/​resea​rch/​our-​appro​ach-​to-​resea​rch-​and-​devel​opment/​healt​hcare/​clini​
cal-​trials/​commi​tment-​respo​nsible-​data-​shari​ng.​html. When Merck has a co-research, co-development, or co-
marketing or co-promotion agreement, or when the product has been out-licensed, the responsibility for disclo-
sure might be dependent on the agreement between parties. Under these circumstances, Merck will endeavour to 
gain agreement to share data in response to requests. The datasets generated and/or analysed during the current 
study are available in the Gene Expression Omnibus (GEO) repository, accession number: GSE185773 [https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE18​5773].

Received: 6 September 2022; Accepted: 28 April 2023

References
	 1.	 McKinnon, K. M. Flow cytometry: An overview. Curr. Protoc. Immunol. 120, 511–5111. https://​doi.​org/​10.​1002/​cpim.​40 (2018).
	 2.	 Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic con-

tinuum. Science 332, 687–696. https://​doi.​org/​10.​1126/​scien​ce.​11987​04 (2011).
	 3.	 Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. 

Curr. Opin. Immunol. 25, 571–578. https://​doi.​org/​10.​1016/j.​coi.​2013.​09.​015 (2013).
	 4.	 Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood microarray data identifies cellular 

activation patterns in systemic lupus erythematosus. PLoS One 4, e6098. https://​doi.​org/​10.​1371/​journ​al.​pone.​00060​98 (2009).
	 5.	 Gong, T. et al. Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex 

clinical blood samples. PLoS One 6, e27156. https://​doi.​org/​10.​1371/​journ​al.​pone.​00271​56 (2011).
	 6.	 Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457. https://​doi.​

org/​10.​1038/​nmeth.​3337 (2015).
	 7.	 Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220. https://​

doi.​org/​10.​1186/​s13059-​017-​1349-1 (2017).
	 8.	 Bandyopadhyay, S. et al. Identification of biomarkers of response to abatacept in patients with SLE using deconvolution of whole 

blood transcriptomic data from a phase IIb clinical trial. Lupus Sci. Med. 4, e000206. https://​doi.​org/​10.​1136/​lupus-​2017-​000206 
(2017).

	 9.	 Oshi, M. et al. Plasmacytoid dendritic cell (PDC) infiltration correlate with tumor infiltrating lymphocytes, cancer immunity, and 
better survival in triple negative breast cancer (TNBC) more strongly than conventional dendritic cell (CDC). Cancers (Basel) 12, 
3342. https://​doi.​org/​10.​3390/​cance​rs121​13342 (2020).

	10.	 Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426. 
https://​doi.​org/​10.​1056/​NEJMo​a0902​533 (2010).

	11.	 Giovannoni, G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics 14, 874–887. https://​doi.​org/​10.​1007/​
s13311-​017-​0573-4 (2017).

	12.	 Wiendl, H. Cladribine—an old newcomer for pulsed immune reconstitution in MS. Nat. Rev. Neurol. 13, 573–574. https://​doi.​org/​
10.​1038/​nrneu​rol.​2017.​119 (2017).

	13.	 Tasaki, S. et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 
9, 2755. https://​doi.​org/​10.​1038/​s41467-​018-​05044-4 (2018).

	14.	 Wang, H. et al. Molecular and immune characteristics for lung adenocarcinoma patients with CMTM6 overexpression. Int. 
Immunopharmacol. 83, 106478. https://​doi.​org/​10.​1016/j.​intimp.​2020.​106478 (2020).

	15.	 Zolnoori, M. et al. The PsyTAR dataset: From patients generated narratives to a corpus of adverse drug events and effectiveness 
of psychiatric medications. Data Brief 24, 103838. https://​doi.​org/​10.​1016/j.​dib.​2019.​103838 (2019).

	16.	 Gavrielov-Yusim, N. et al. Comparison of text processing methods in social media-based signal detection. Pharmacoepidemiol. 
Drug Saf. 28, 1309–1317. https://​doi.​org/​10.​1002/​pds.​4857 (2019).

	17.	 Comi, G. et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple 
sclerosis. Mult. Scler. Relat. Disord. 29, 168–174. https://​doi.​org/​10.​1016/j.​msard.​2019.​01.​038 (2019).

	18.	 Evans, J. D. Straightforward Statistics for the Behavioral Sciences (Brooks/Cole Pub. Co., 1996).

https://www.merckgroup.com/en/research/our-approach-to-research-and-development/healthcare/clinical-trials/commitment-responsible-data-sharing.html
https://www.merckgroup.com/en/research/our-approach-to-research-and-development/healthcare/clinical-trials/commitment-responsible-data-sharing.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185773
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185773
https://doi.org/10.1002/cpim.40
https://doi.org/10.1126/science.1198704
https://doi.org/10.1016/j.coi.2013.09.015
https://doi.org/10.1371/journal.pone.0006098
https://doi.org/10.1371/journal.pone.0027156
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1136/lupus-2017-000206
https://doi.org/10.3390/cancers12113342
https://doi.org/10.1056/NEJMoa0902533
https://doi.org/10.1007/s13311-017-0573-4
https://doi.org/10.1007/s13311-017-0573-4
https://doi.org/10.1038/nrneurol.2017.119
https://doi.org/10.1038/nrneurol.2017.119
https://doi.org/10.1038/s41467-018-05044-4
https://doi.org/10.1016/j.intimp.2020.106478
https://doi.org/10.1016/j.dib.2019.103838
https://doi.org/10.1002/pds.4857
https://doi.org/10.1016/j.msard.2019.01.038


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8067  | https://doi.org/10.1038/s41598-023-34384-5

www.nature.com/scientificreports/

	19.	 Ju, M. et al. A five-mRNA signature associated with post-translational modifications can better predict recurrence and survival 
in cervical cancer. J. Cell Mol. Med. 24, 6283–6297. https://​doi.​org/​10.​1111/​jcmm.​15270 (2020).

	20.	 Yu, S. et al. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS One 
15, e0231003. https://​doi.​org/​10.​1371/​journ​al.​pone.​02310​03 (2020).

	21.	 Zheng, S. et al. Development and validation of a stromal immune phenotype classifier for predicting immune activity and prognosis 
in triple-negative breast cancer. Int. J. Cancer 147, 542–553. https://​doi.​org/​10.​1002/​ijc.​33009 (2020).

	22.	 Chen, Z. et al. The immune cell landscape in different anatomical structures of knee in osteoarthritis: A gene expression-based 
study. Biomed. Res. Int. 2020, 9647072. https://​doi.​org/​10.​1155/​2020/​96470​72 (2020).

	23.	 Wu, D. et al. Expression profiling and cell type classification analysis in periodontitis reveal dysregulation of multiple lncRNAs in 
plasma cells. Front. Genet. 11, 382. https://​doi.​org/​10.​3389/​fgene.​2020.​00382 (2020).

	24.	 Rohr-Udilova, N. et al. Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci. Rep. 8, 
6220. https://​doi.​org/​10.​1038/​s41598-​018-​24437-5 (2018).

	25.	 Baker, D. et al. Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol. Neuroimmunol. Neuroinflamm. 4, 
360. https://​doi.​org/​10.​1212/​nxi.​00000​00000​000360 (2017).

	26.	 Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–
1209. https://​doi.​org/​10.​1007/​s00415-​018-​8830-y (2018).

	27.	 Wiendl, H. et al. Characterization of peripheral immune cell dynamics and repopulation patterns in the first 12 months of cladribine 
tablets treatment: MAGNIFY-MS. In AAN Virtual Congress (2021).

	28.	 Baker, D., Pryce, G., Herrod, S. S. & Schmierer, K. Potential mechanisms of action related to the efficacy and safety of cladribine. 
Mult. Scler. Relat. Disord. 30, 176–186. https://​doi.​org/​10.​1016/j.​msard.​2019.​02.​018 (2019).

	29.	 Stuve, O. et al. Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: An extended analysis of 
surface markers. Ther. Adv. Neurol. Disord. 12, 1756286419854986. https://​doi.​org/​10.​1177/​17562​86419​854986 (2019).

	30.	 Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. 
Nat. Commun. 7, 11624. https://​doi.​org/​10.​1038/​ncomm​s11624 (2016).

	31.	 Zhu, H., Jia, Z. & Li, Y. R. Nrf2 signaling in macrophages. React. Oxyg. Species 2, 417–420 (2016).
	32.	 Mathiesen, C. B. K. et al. Cladribine inhibits secretion of pro-inflammatory cytokines and phagocytosis in human monocyte-

derived M1 macrophages in-vitro. Int. Immunopharmacol. 91, 107270. https://​doi.​org/​10.​1016/j.​intimp.​2020.​107270 (2021).
	33.	 Faustino, P. et al. Seroconversion rate following HBV vaccination in clinical practice: The role of age and DMT treatment. Mult. 

Scler. Relat. Disord. 50, 102859. https://​doi.​org/​10.​1016/j.​msard.​2021.​102859 (2021).
	34.	 Kappos, L. et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology 84, 872–879. 

https://​doi.​org/​10.​1212/​wnl.​00000​00000​001302 (2015).
	35.	 Baker, D., Pryce, G., James, L. K., Marta, M. & Schmierer, K. The ocrelizumab phase II extension trial suggests the potential to 

improve the risk: Benefit balance in multiple sclerosis. Mult. Scler. Relat. Disord. 44, 102279. https://​doi.​org/​10.​1016/j.​msard.​2020.​
102279 (2020).

	36.	 Bar-Or, A. et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology 95, 
e1999–e2008. https://​doi.​org/​10.​1212/​wnl.​00000​00000​010380 (2020).

	37.	 Achiron, A. et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-
efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord. 14, 17562864211012836. https://​doi.​org/​10.​1177/​17562​86421​10128​
35 (2021).

	38.	 Buttari, F. et al. COVID-19 vaccines in multiple sclerosis treated with cladribine or ocrelizumab. Mult. Scler. Relat. Disord. 52, 
102983. https://​doi.​org/​10.​1016/j.​msard.​2021.​102983 (2021).

Acknowledgements
The authors would like to thank Dimitri Guala for his participation in scientific discussions around the decon-
volution data. Medical writing assistance was provided by Ella Palmer of inScience Communications, Springer 
Healthcare Ltd, UK, and supported by Merck Healthcare KGaA, Darmstadt, Germany.

Author contributions
I.K., G.G., T.L., U.B. and P.A.R. contributed to the concept and design of the study. I.K. and J.C. acquired and 
analysed the data. I.K., G.G., T.L., U.B. and P.A.R. contributed to data interpretation. All authors reviewed and 
approved the manuscript for intellectual content prior to submission.

Funding
This analysis was supported by Merck (CrossRef Funder ID: 10.13039/100009945). The sponsor participated in 
the design of the study, collection, analysis, and interpretation of data and funded medical writing support for 
the manuscript.

Competing interests 
Irina Kalatskaya and P. Alexander Rolfe are employees of EMD Serono Research & Development Institute, Inc., 
Billerica, MA, USA (an affiliate of Merck KGaA). Gavin Giovannoni has received speaker honoraria and consult-
ing fees from AbbVie, Actelion (Janssen/J&J), Atara Bio, Almirall, Bayer, Biogen, Celgene (BMS), FivePrime, 
GlaxoSmithKline, GW Pharma, Ironwood, Merck, Novartis, Merck & Co., Pfizer Inc., Protein Discovery Labo-
ratories, Roche, Sanofi-Genzyme, Teva Pharmaceutical Industries Ltd, UCB, and Vertex Pharmaceuticals; and 
has received research support unrelated to this study from Biogen, Ironwood, Merck, Novartis, Merck & Co., 
and Takeda. Thomas Leist has received consultancy fees or clinical research grants from Acorda, Bayer, Biogen, 
Daiichi, EMD Serono, Inc. (an affiliate of Merck KGaA), Novartis, ONO, Pfizer, and Teva Neuroscience. Joseph 
Cerra was affiliated at the time of this analysis to EMD Serono Research & Development Institute, Inc., Billerica, 
MA, USA (an affiliate of Merck KGaA). Current affiliation: Northeastern University, Boston, MA, USA. Ursula 
Boschert is an employee of Ares Trading S.A., Eysins, Switzerland (an affiliate of Merck KGaA).

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​34384-5.

Correspondence and requests for materials should be addressed to I.K.

https://doi.org/10.1111/jcmm.15270
https://doi.org/10.1371/journal.pone.0231003
https://doi.org/10.1002/ijc.33009
https://doi.org/10.1155/2020/9647072
https://doi.org/10.3389/fgene.2020.00382
https://doi.org/10.1038/s41598-018-24437-5
https://doi.org/10.1212/nxi.0000000000000360
https://doi.org/10.1007/s00415-018-8830-y
https://doi.org/10.1016/j.msard.2019.02.018
https://doi.org/10.1177/1756286419854986
https://doi.org/10.1038/ncomms11624
https://doi.org/10.1016/j.intimp.2020.107270
https://doi.org/10.1016/j.msard.2021.102859
https://doi.org/10.1212/wnl.0000000000001302
https://doi.org/10.1016/j.msard.2020.102279
https://doi.org/10.1016/j.msard.2020.102279
https://doi.org/10.1212/wnl.0000000000010380
https://doi.org/10.1177/17562864211012835
https://doi.org/10.1177/17562864211012835
https://doi.org/10.1016/j.msard.2021.102983
https://doi.org/10.1038/s41598-023-34384-5
https://doi.org/10.1038/s41598-023-34384-5


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8067  | https://doi.org/10.1038/s41598-023-34384-5

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Revealing the immune cell subtype reconstitution profile in patients from the CLARITY study using deconvolution algorithms after cladribine tablets treatment
	Methods
	GSE93777 validation dataset. 
	CLARITY data subset. 
	Gene expression data: deconvolution methods (Fig. 1). 
	CIBERSORT. 
	xCell7. 
	GSE93777 dataset validation of deconvolution methods vs flow cytometry. 
	Online deconvolution and flow cytometry visualization tool (Rshiny app). 
	CLARITY subset data validation of deconvolution methods vs flow cytometry. 
	Deconvolution cell signature alterations after treatment with cladribine tablets in CLARITY data. 
	Ethics approval and consent to participate. 

	Results
	GSE93777 dataset validation of deconvolution methods vs flow cytometry. 
	CIBERSORT. 
	xCell. 
	CLARITY data subset. 
	CLARITY subset data validation of deconvolution methods vs flow cytometry. 
	Deconvolution cell signature alterations after treatment with cladribine tablets in CLARITY. 
	T cells. 
	B cells. 
	Macrophages. 

	Discussion
	Conclusion
	References
	Acknowledgements


