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Immune Cell Deconvolution methods utilizing gene expression profiling to quantify immune cells in
tissues and blood are an appealing alternative to flow cytometry. Our objective was to investigate
the applicability of deconvolution approaches in clinical trial settings to better investigate the

mode of action of drugs for autoimmune diseases. Popular deconvolution methods CIBERSORT

and xCell were validated using gene expression from the publicly available GSE93777 dataset that
has comprehensive matching flow cytometry. As shown in the online tool, ~ 50% of signatures show
strong correlation (r>0.5) with the remainder showing moderate correlation, or in a few cases, no
correlation. Deconvolution methods were then applied to gene expression data from the phase Ill
CLARITY study (NCT00213135) to evaluate the immune cell profile of relapsing multiple sclerosis
patients treated with cladribine tablets. At 96 weeks after treatment, deconvolution scores showed
the following changes vs placebo: naive, mature, memory CD4* and CD8* T cells, non-class switched,
and class switched memory B cells and plasmablasts were significantly reduced, naive B cells and
M2 macrophages were more abundant. Results confirm previously described changes in immune cell
composition following cladribine tablets treatment and reveal immune homeostasis of pro- vs anti-
inflammatory immune cell subtypes, potentially supporting long-term efficacy.

Abbreviations

DC Dendritic cells

CLARITY CLAdRIbine tablets treating multiple sclerosis
CyTOF Cytometry by time of flight

GEO Gene expression omnibus

MS Multiple sclerosis

ssGSEA Single sample gene set enrichment analysis
SVR Support vector regression

Peripheral whole blood is an accessible source of transcriptomic immune cell information for pharmacogenomic
studies of human diseases, and is increasingly being incorporated into clinical studies.

Historically, methods such as flow cytometry!, and more recently, cytometry by time of flight (CyTOF)? have
been used for immune cell analysis. However, they have some limitations as they are costly, labour intensive,
difficult to scale, and typically require fresh samples for analysis of some cell subtypes. In addition, a limited
number of cell types can be detected, and it may not be possible for retrospective analysis of stored samples unless
specifically prepared at the time of collection.
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Immune cell deconvolution is an appealing alternative to flow cytometry for immune cell analysis that uses
gene expression profiling such as microarray or RNA sequencing to quantify immune cells in blood and bulk
tissue®”’. There are many well-described deconvolution methods that have been used for immune profiling in
areas such as cancer and lupus®®. Compared with flow cytometry, deconvolution methods provide additional
details of underlying biological processes and gene expression data can be retrospectively analyzed. Flow cytom-
etry datasets can be used to validate deconvolution outputs generated on gene expression data.

Multiple sclerosis (MS) is a complex disease with a dynamic variety of immune cells involved in its patho-
genesis. Analyzing immune cells is important in understanding not only the pathogenesis of MS but also the
mechanistic basis of drugs used to treat MS. Immune reconstitution therapies for MS result in transient immune
reduction followed by immune repopulation, and the deconvolution method represents a tool for the investiga-
tion of these dynamics in the peripheral blood.

The phase IIT CLARITY study (CLAdRIbine Tablets treating multiple sclerosis orally; NCT00213135) was
a 2-year, placebo-controlled study of cladribine tablets in relapsing MS' that was successfully completed over
10 years ago. Cladribine tablets are an immune reconstitution therapy that acts via a selective, transient reduc-
tion of B and T cells followed by repopulation and corresponding immune reconstitution. Gene expression data
from CLARITY are available for a subset of patients 96 weeks after the start of treatment (48 weeks after initia-
tion of the second annual treatment cycle) for the two cladribine tablets doses in the study (cumulative dose of
3.5 mg/kg or 5.25 mg/kg over 2 years, henceforth referred to as cladribine tablets 3.5 mg/kg or cladribine tablets
5.25 mg/kg). Along with existing flow cytometry data these provide an opportunity to not only validate the
deconvolution approach in the clinical setting but also to study the effect of cladribine tablets on reconstituting
immune cell subsets''? not specifically studied in the original flow cytometry analysis (e.g. B cell and monocyte
subtypes). Indeed, naive B cell increases during the post-treatment phase could provide evidence of resetting of
the immune system, contributing to immune homeostasis of pro- vs anti-inflammatory immune cell subtypes
that potentially underscore the long-term efficacy of cladribine tablets.

The aim of the current analysis, therefore, was an initial validation of the popular deconvolution methods
xCell® and CIBERSORT” with subsequent application to the CLARITY dataset. These two algorithms were
selected as they are conceptually very different from each other. CIBERSORT is based on support vector regres-
sion model, and xCell is a signature based method that uses ssGSEA approach to score each sample (see meth-
ods). The validation was performed using flow cytometry and matched gene expression data from the publicly
available rheumatoid arthritis GSE93777 dataset'®. This dataset aids initial validation of the deconvolution
method as it contains an unprecedented collection of publicly available flow cytometry data (26 cell types in total),
includes patients using different treatment regimens, and gene expression from matching samples is assessed
using the same GeneChip™ Human Genome U133 Plus 2.0 Arrays as the CLARITY data. This combination
gives a unique opportunity to validate two immune cell deconvolution approaches. The validation was followed
by application of the deconvolution methods to characterize the immune cell population dynamics during the
immune reconstitution phase following treatment with cladribine tablets in the CLARITY study.

Methods

GSE93777 validation dataset. The GSE93777 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE93777) includes microarray gene expression profiling of whole blood and sorted immune cells from
rheumatoid arthritis patients, some of whom had received drug treatment (methotrexate, infliximab, and tocili-
zumab). The GSE93777 dataset also includes healthy volunteers (Table S1). Extensive flow cytometry data for 26
immune cell types was retrieved from the dataset for use in this analysis'.

CLARITY data subset. CLARITY was a phase III, double-blind, placebo-controlled study, the findings of
which have been previously published’. Briefly, 1326 patients with relapsing MS were randomized (1:1:1) to
receive cladribine tablets 3.5 mg/kg (n=433) or 5.25 mg/kg (n=456) or placebo (n=437) over two treatments
of 8-10 days per 48-week treatment cycle. Gene expression data (GeneChip™ Human Genome U133 Plus 2.0
Array, Affymetrix, California, US) in stored whole blood samples at 96 weeks were available for 189 patients
(cladribine tablets 3.5 mg/kg, n = 62; cladribine tablets 5.25 mg/kg, n=70; placebo, n=57), and prepared accord-
ing to standard protocols'. Microarray .cel files are available from the Gene Expression Omnibus (GEO) under
accession GSE185773'.

Flow cytometry was performed at various time points, as described previously'’, and was available for nine cell
types: natural killer cells (CD16*/CD56%), B cells (CD19*), pan T cells (CD3*), T helper cells (CD4"), cytotoxic T
cells (CD8*), naive T cells (CD4*/CD45RA"), memory T cells (CD4*/CD45R0O"), naive cytotoxic T cells (CD8*/
CD45RA"), and memory cytotoxic T cells (CD8"/CD45RO"). Myeloid and B-cell subtypes were not included
other than the mature B cell marker, CD19. The 96-week flow cytometry data were used for the deconvolution
CLARITY study validation.

Gene expression data: deconvolution methods (Fig. 1). Deconvolution methods comprise a sys-
tem of equations that describe the expression of each gene in a heterogeneous sample as a combination of the
expression levels of that gene across the different cell subsets present in the sample, weighted by their relative
cell fractions. The purpose of deconvolution is to use the system of equations as a model to determine the most
likely abundance or fraction of each cell type in a given sample. Different deconvolution methods are trained
on different datasets (typically datasets of cells sorted by flow cytometry and then profiled using microarrays or
RNA sequencing) and different algorithms are used to estimate the immune cell quantities.
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1. Validation of deconvolution method using publicly available gene expression and flow cytometry data!
2. Deconvolution method applied to 96-week samples from the CLARITY study

Patients randomized to placebo (n=57)
cladribine tablets 3.5mg/kg (n=62)
cladribine tablets 5.25mg/kg (n=70)
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Figure 1. Schema of the overall study design. High level description of study design. The deconvolution
method was validated using publicly available gene expression and flow cytometry data, then applied to 96 week
samples from the CLARITY study.

CIBERSORT. CIBERSORT deconvolution provides quantification for 22 immune cell subtypes. It is a widely
used tool that requires an input matrix of reference gene expression signatures, collectively used to estimate
the relative proportions of each cell type of interest®. To deconvolve the mixture, CIBERSORT uses a linear
v-support vector regression model to find f in m =f x B, where m is a vector consisting of gene expression values
from the mixture (e.g. bulk tumor or whole blood), f—a vector of fraction for each cell type, and B is a ‘signature
matrix’ containing signature genes for each cell type® A original leukocyte gene signature matrix, termed LM22,
was used in this study as i contains 547 genes that distinguish 22 human immune cell subtypes. The CIBERSORT
algorithm descripted in the Newman et al.® paper was reimplemented using the svm method from the 1071 R
package and original LM22 matrix. The term fraction is defined for each sample as the sum of values across the
22 cell subtypes with a total of 1 and should reflect the true fraction of cells in the sample of a given type. In this
analysis, the CIBERSORT deconvolution method was performed on all 22 immune cell subtypes.

xCell”.  xCell deconvolution is a computational method that uses gene signatures to infer the abundance of
64 cell types including immune cell types. It is based on a single sample gene set enrichment analysis (ssGSEA)
of ~10,000 genes and 489 gene signatures extracted from large-scale expression data from six projects (FAN-
TOM, BluePrint, ENCODE, IRIS, HPCA, and Noverstern). This approach is based on ranking of each gene
signature in the bulk tissue, then calculation of the enrichment score and spillover compensation to distinguish
closely related cell types’.

For the present analysis, 20 unrelated signatures that represent cell types outside of the blood stream were
identified and excluded as per the user manual (chondrocytes, osteoblasts, myocytes, keratinocytes, hepato-
cytes, endothelial cells, astrocytes, adipocytes, epithelial cells, mv and ly endothelial cells, neurons, pericytes,
preadipocytes, skeletal muscle, sebocytes, mesangial cells, melanocytes, ly endothelial cells, smooth muscle, and
fibroblasts). xCell was performed using the remaining set of 44 cell type signatures. Immune cell scoring was
done using xCell R package v.1.1.

GSE93777 dataset validation of deconvolution methods vs flow cytometry. The GSE93777
dataset'® was used for the initial validation of the deconvolution methods. Each sample was analyzed by
xCell and CIBERSORT. Spearman’s rank correlation coefficient test was used to estimate the correlation (r)
between deconvolution outputs and corresponding flow cytometry cell counts'®. For this analysis we considered
r>0.5=strong correlation, 0.3 <r<0.5=moderate correlation, r<0.3 [false discovery rate (FDR) <0.1] =weak
correlation, and FDR > 0.1 =no correlation. Only relative estimates (% of total) for every cell type were used for
the correlation studies. For all GSE93777 and CLARITY deconvolution signatures see Table S2.

Online deconvolution and flow cytometry visualization tool (Rshiny app). We designed an inter-
active web-based framework using Rshiny technology providing full access to all anonymized data and visualiza-
tion material for the deconvolution cell signature and flow cytometry validation described in this article, availa-
ble here: https://emdseronol.shinyapps.io/Immune_Cell_Deconvolution_Validation/). The framework includes
an introduction to the publicly available dataset used for validation (GSE93777), a frequently asked questions
section, and CIBERSORT and xCell outputs to allow the deconvolution findings of interest and corresponding
flow cytometry data to be interactively selected and plotted. In addition, full access to numeric signature scoring
is provided through interactive tables for user convenience as well as summary tables. In all cases, Spearman cor-
relation is calculated, but the Pearson correlation coefficient approach can also be used. This tool can potentially
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be used by the broader scientific community for determining whether a specific immune cell signature could be
reliably used for immune cell deconvolution in other patient subpopulation studies.

CLARITY subset data validation of deconvolution methods vs flow cytometry.  Spearman’s rank
correlation coefficient test was used to estimate the correlation between deconvolution cell signatures and cor-
responding flow cytometry counts. Deconvolution cell signatures that did not map to corresponding or related
immune cell subtypes assessed by flow cytometry were removed from this analysis. P-values were adjusted for
multiple testing using the Bonferroni correction. All data visualization and statistical analyses were done in R.

Deconvolution cell signature alterations after treatment with cladribine tablets in CLARITY
data. Immune cell analysis of the CLARITY subset using the deconvolution cell signatures was undertaken
for the cladribine tablets 3.5 mg/kg and 5.25 mg/kg treatment groups, separately and combined, and placebo. A
multivariate linear regression model was built for each cell type to test whether the treatment arm is significantly
related to the deconvolution score. Patients’ age and gender were used as covariates in the model. The p value
from F-statistics was used to determine whether the relationship wa still significant when the model ccounted
for covariates. Cell types for which both the adjusted p-values for the treatment coefficient and overall f-test
p-value were < 0.1 were considered significant. Im() in R was used for linear regression modeling.

Ethics approval and consent to participate. This retrospective study used data from the CLARITY
study (NCT00213135), which was undertaken in compliance with the Declaration of Helsinki and standards of
Good Clinical Practice according to the International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use. At each centre, the relevant institutional review board or
independent ethics committee reviewed and approved the trial protocol, patient information leaflet, informed
consent forms, and investigator brochure (Table S6). All patients provided written informed consent to partici-
pate in the trials.

Results

GSE93777 dataset validation of deconvolution methods vs flow cytometry.  All GSE93777 sam-
ples were used in the validation (rheumatoid arthritis patients with or without drug treatment and healthy
volunteers). Treated rheumatoid arthritis patients received either methotrexate, infliximab, or tocilizumab in
roughly equal parts. The majority of individuals in the GSE93777 dataset were female (226/255; 88.6%). The
mean age was 54.9 years (Table S1).

CIBERSORT and xCell deconvolution cell signatures were mapped to the available flow cytometry data in
order that deconvolution cell signatures could be compared to the flow cytometry results (Tables 1 and 2). Not
every deconvolution cell signature was mapped precisely to the corresponding flow cytometry immune cell
subtype (demonstrating the broad collection of signatures in the GSE93777 dataset); in addition, not all flow
cytometry data were used for validation as some cell types (e.g. Bregs) are not yet provided by the deconvolu-
tion methods.

CIBERSORT. Fourteen of 22 CIBERSORT cell signatures were mapped to corresponding or related immune
cell subtypes assessed by flow cytometry from the GSE93777 dataset. Deconvolution cell signatures for neu-

Cell signature Flow cytometry cell phenotype | Spearman correlation (r) | P-value | FDR | Assessment
cibersort.B.cells.memory B.CELLrWBC 0.519 <0.001 | 0.000 | Strong correlation
cibersort.B.cells.naive B.CELL.rWBC 0.164 0.011 |0.017 | Weak correlation
cibersort.Dendritic.cells.resting DC.rWBC 0.188 0.003 | 0.006 | Weak correlation
cibersort.Eosinophils EOSINOPHIL.rWBC 0.146 0.024 | 0.031 | Weak correlation
cibersort.Mast.cells.resting BASOPHIL.rfWBC 0.148 0.022 | 0.031 | Weak correlation
cibersort.Monocytes MONOCYTE.rWBC 0.604 <0.001 | 0.000 | Strong correlation
cibersort.Neutrophils NEUTROPHIL.rWBC 0.798 <0.001 | 0.000 | Strong correlation
cibersort.NK.cells.resting NK.rWBC 0.583 <0.001 | 0.000 | Strong correlation
cibersort.Plasma.cells PLASMABLAST.rWBC 0.610 <0.001 | 0.000 | Strong correlation
f:fiﬁgn'T'ce“S'CD 4memory. | MEMORY.CD4.rWBC 0.079 0222 | 0247 | No correlation
cibersort.T.cells.CD4.naive NAIVE.CD4.rWBC 0.691 <0.001 | 0.000 | Strong correlation
cibersort.T.cells.CD8 CD8.T.rWBC 0.776 <0.001 | 0.000 | Strong correlation
cibersort.T.cells.gamma.delta GAMMA.DELTA.T.*WBC -0.078 0.229 | 0.247 | No correlation
cibersort.T.cells.regulatory.Tregs | TREG.rWBC -0.021 0.744 | 0.744 | No correlation

Table 1. Pairwise comparison between flow cytometry data from GSE93777 and corresponding CIBERSORT
deconvolution cell signatures. r>0.5 = strong correlation, 0.3 <r <0.5=moderate correlation, r<0.3 [false
discovery rate (FDR) <0.1] =weak correlation, and FDR > 0.1 =no correlation. Remaining cell types were not
tested due to the lack of the corresponding flow cytometry data.
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Flow cytometry cell
Cell signature phenotype Spearman correlation (r) | P-value | FDR | Assessment
xcell. B.cells B.CELLrWBC 0.768 <0.001 | 0.000 | Strong correlation
xcell. Basophils BASOPHIL.rWBC 0.016 0.802 | 0.802 | No or negative correlation
xcell.CD4.memory.T.cells MEMORY.CD4.rWBC 0.434 <0.001 | 0.000 | Moderate correlation
xcell.CD4.naive.T.cells NAIVE.CD4.rWBC 0.786 <0.001 | 0.000 | Strong correlation
xcell.CD4.T.cells CD4.TrWBC 0.789 <0.001 | 0.000 | Strong correlation
xcell.CD4.Tem MEMORY.CD4.rWBC 0.466 <0.001 |0.000 | Moderate correlation
xcell.CD4.Tem MEMORY.CD4.rWBC 0.523 <0.001 | 0.000 | Strong correlation
xcell.CD8.naive.T.cells NAIVE.CD8.rWBC -0.141 0.029 | 0.035 | No or negative correlation
xcell.CD8.T.cells CD8.T.rWBC 0.850 <0.001 | 0.000 | Strong correlation
xcell.CD8.Tcm MEMORY.CD8.rWBC 0.488 <0.001 | 0.000 | Moderate correlation
xcell.CD8.Tem S‘BESCRA'MEMORY'CDS' 0.450 <0.001 | 0.000 | Moderate correlation
xcell.cDC MDC.rWBC 0.289 <0.001 | 0.000 | Weak correlation
xell.Class.switched. B.CELLrWBC 0.738 <0.001 |0.000 | Strong correlation
memory.B.cells
xcell.DC DC.rWBC 0.062 0.340 | 0.370 | No or negative correlation
xcell. Eosinophils EOSINOPHIL.rWBC 0.479 <0.001 | 0.000 | Moderate correlation
xcell. Memory.B.cells B.CELLrWBC 0.731 <0.001 | 0.000 | Strong correlation
xcell. Monocytes MONOCYTE.rWBC 0.259 <0.001 | 0.000 | Weak correlation
xcell.Naive.B.cells B.CELLrWBC 0.786 <0.001 | 0.000 | Strong correlation
xcell.Neutrophils NEUTROPHIL.rWBC 0.797 <0.001 | 0.000 | Strong correlation
xcell. NK.cells NK.rWBC 0.411 <0.001 | 0.000 | Moderate correlation
xcelLNKT NKT.rWBC -0.252 <0.001 | 0.000 | No or negative correlation
xcell.pDC PDCrWBC 0.086 0.187 | 0.213 | No or negative correlation
xcell.Plasma.cells PLASMABLAST.rWBC 0.520 <0.001 | 0.000 | Strong correlation
xcell. Tgd.cells GAMMA.DELTA.TXWBC 0.329 <0.001 | 0.000 | Moderate correlation
xcell. Tregs TREG.rWBC 0.048 0.461 | 0.480 | No or negative correlation

Table 2. Pairwise comparison between flow cytometry data from GSE93777 and corresponding xCell
deconvolution cell signatures. r> 0.5 = strong correlation, 0.3 <r <0.5=moderate correlation, r < 0.3 [false
discovery rate (FDR) <0.1] = weak correlation, and FDR > 0.1 =no correlation. Remaining cell types were not
tested due to the lack of the corresponding flow cytometry data.

trophils, monocytes, natural killer cells, CD8" T cells, and memory B cells showed the strongest correlation
with flow cytometry cell counts (r>0.5). Deconvolution cell signatures for memory B cells showed a higher
correlation (r=0.519) than for naive B cells (r=0.164), although the comparisons were to total flow cytometry
B cell counts and therefore suboptimal. Naive CD4* T cell deconvolution cell signatures correlated with naive
CD4* flow cytometry cell counts (r=0.691), but memory CD4" had no correlation with corresponding memory
CD#4 cell counts (r=0.079). Resting dendritic deconvolution cell signatures had a poor (r=0.188), albeit statisti-
cally significant (p=0.003), correlation with the corresponding flow cytometry cell count. No correlation was
found between gamma delta T cells or Treg deconvolution cell signatures and corresponding flow cytometry
cell counts, possibly because CIBERSORT estimated abundance at 0. No suitable flow cytometry counterparts
were found for MO/M1/M2 macrophages or for follicular helper T cell deconvolution signatures. Plasma cells are
rarely found in blood and flow cytometry data did not include such cell counts. However, we did observe that
the plasma deconvolution cell signature had a good correlation with plasmablast cell counts (r=0.610). While
not a precise match, the deconvolution cell signature for resting mast cells showed no correlation or significance
compared with basophil counts.

There are four CIBERSORT ‘activated’ signatures in the collection, generated by activating (lipopolysaccharide
for dendritic cells, IL2 or IL15 for natural killer, etc.) parent cell types and gene expression assessment. ‘Activated’
cell types were not validated as there was no match in the flow cytometry dataset.

In summary, 7 of 14 (50%) validated CIBERSORT deconvolution cell signatures showed strong Spearman
correlation (r>0.5) with corresponding flow cytometry data; 4 of 14 (28%) showed weak but significant correla-
tion; and 3 of 14 (21%) showed no correlation (FDR>0.1). Eight CIBERSORT signatures were not tested (Table 1
and online correlation tool [visualisation of analyses described in this article]: https://emdseronol.shinyapps.
io/Immune_Cell_Deconvolution_Validation/ [Fig. S1]).

xCell. Twenty-five of 44 xCell signatures were mapped to corresponding or related immune cell subtypes
assessed by flow cytometry from the GSE93777 dataset.

B-cell, neutrophil, pan CD8", plasmablasts, eosinophil, and natural killer deconvolution cell signatures showed
significant, positive, and moderate/strong correlation (r>0.4) with corresponding flow cytometry cell counts.
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All CD4* subtypes for deconvolution cell signatures and cell count correlated well, with correlation ranging from
r=0.434 to r=0.789. Monocyte deconvolution cell signatures correlation with corresponding flow cytometry
cell counts was positive (r=0.604) and statistically significant (p <0.001). Deconvolution cell signatures showed
poor correlation with flow cytometry cell counts for basophils (r=0.148) and Tregs (r=—0.021). Both the xCell
deconvolution cell signature collection and the GSE93777 flow cytometry dataset contain a variety of dendritic
cells, including DC, aDC, iDC, ¢DC, and pDC. The xCell deconvolution cell signature for cDC was mapped to
mDC cell counts and showed a moderate but positive correlation (r=0.289). Neither pan DC (r=0.062) or pDC
(r=0.086) deconvolution cell signatures showed significant correlation with flow cytometry cell counts. Tgd
deconvolution cell signatures showed a moderate correlation with flow cytometry cell counts (r=0.329). Stem
cell, progenitor, macrophage, platelet, and erythrocyte signatures (M0/M1/M2) were not validated as there was
no match in the flow cytometry dataset.

In summary, 17 of 25 (68%) xCell validated deconvolution cell signatures showed moderate to strong Spear-
man correlation (r>0.3) with corresponding flow cytometry data; 2 of 25 (8%) showed weak but significant
correlation, and 6 of 25 (24%) showed no correlation (FDR > 0.1). Nineteen xCell deconvolution signatures were
not tested (Table 2 and online correlation tool [visualisation of analyses described in this article]: https://emdse
ronol.shinyapps.io/Immune_Cell_Deconvolution_Validation/ [Fig. S2]).

CLARITY data subset. The demographic and clinical characteristics of the 1326 patients in the CLARITY
study have been previously described'’. The subset of 189 CLARITY patients in this analysis was broadly similar
(Table S3). Gene expression data (GeneChip™ Human Genome U133 Plus 2.0 Array) in whole blood samples at
96 weeks were available from patients randomized to placebo (n=57), cladribine tablets 3.5 mg/kg (n=62), and
cladribine tablets 5.25 mg/kg (n="70).

CLARITY subset data validation of deconvolution methods vs flow cytometry. Twenty-six out
of 66 deconvolution cell signatures (9 CIBERSORT and 17 xCell) were matched to 1 of the 9 flow cytometry cell
data at week 96 of the CLARITY study (Fig. 2, Table S4, Fig. S1). In contrast to the validation study, using the
GSE93777 dataset, generic cell flow data were mapped to all related deconvolution signatures including activated
forms (for example, there were no deconvolution cell signatures that represented pan T cells in human blood,
so CD3* flow cytometry cell counts were mapped to 17 deconvolution cell signatures including memory CD4*
T, Tregs, Tgd etc.).

Fourteen of 52 comparisons showed adjusted p-values>0.1. Three of the 14 comparisons represented an
‘activated’ form of the deconvolution cell signature, counts that are rarely detected by basic flow cytometry. The
CD3* flow cytometry cell counts had some correlation with the majority of deconvolution T cell signatures; how-
ever, cibersort.T.cells.regulatory. Tregs, xCell. Th1.cells, xCell. CD8 + .naive T-cells, cibersort.T.cells.CD4.memory.
resting, and cibersort.T.cells.CD4.memory.activated are very specialized T cell subtypes. xCell deconvolution
cell signature scores were strongly correlated with corresponding flow cytometry cell counts for CD19*, CD4*,
and CD8* T cells (Fig. 3).

The final dataset consisted of 63 deconvolution cell signatures generated for all 189 patients in this subset of
the CLARITY study cohort: 19 from CIBERSORT and 44 from xCell. Over 99% of values in Mast.cells.activated,
T.cells.follicular.helper and T.cells.gamma.delta signatures from CIBERSORT were estimated at 0, and therefore
these signatures were excluded.

Deconvolution cell signature alterations after treatment with cladribine tablets in CLAR-
ITY. Three comparisons were undertaken vs placebo: cladribine tablets 3.5 mg/kg dose, cladribine tablets
5.25 mg/kg dose, and combined dose. Patient’s age and gender are clinical factors that might affect immune cell
abundance along with the treatment. That'’s why Multivariate Linear Regression model was generated for every
cell type using treatment arm, gender and age as independent variables. Cell types for which adjusted p-values
from the treatment coefficient and overall adjusted significance from F-statistics < =0.1 were considered signifi-
cant. This set up helped us to prioritize a list of the cell types affected by cladribine treatment but not patient’s
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Figure 2. xCell deconvolution cell signature scores vs flow cytometry for major lymphocyte subtypes from
CLARITY data. Spearman correlation is indicated.
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Figure 3. CD4" T-cell signature score distribution generated by xCell between treatment arms in CLARITY.

A multivariate linear regression model was built for each cell type to test whether treatment arm is significantly
related to the deconvolution score. P-value from F-statistics was used to determine whether the relationship is
still significant when model is accounted for patient’s age and gender. Cell types for which either the adjusted
p-values for the treatment coefficient or overall F-test adjusted p-value were>0.1 were considered not significant
and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear model where

only treatment arm was used as a covariate (upper row) are marked as asterisks *<0.1, ** <0.01, **<0.001. cm
central memory; em effector memory

gender or patients age attributes. Nine of 19 CIBERSORT and 24 of 44 xCell deconvolution cell signatures
were altered in cladribine tablets treated patients vs placebo. There were significant alterations in 25 cell types
for 3.5 mg/kg cladribine tablets vs placebo, and significant alterations in 31 cell types for 5.25 mg/kg cladribine
tablets vs placebo (Table S5).

T cells. Deconvolution cell signature scores for CD4*, CD4* central memory, and CD4* effector memory T
cells were significantly decreased for both doses of cladribine tablets vs placebo at 96 weeks of the CLARITY
study (Fig. 3). Deconvolution cell signature scores for CD8* and CD8* central memory cells were also signifi-
cantly decreased for both doses of cladribine tablets vs placebo at 96 weeks. The changes in CD8" effector cells
were not significant (Fig. 4).

B cells. Deconvolution cell signature scores for class-switched memory, memory and plasmablasts were sig-
nificantly decreased for both doses of cladribine tablets vs placebo at 96 weeks of the CLARITY study. Decon-
volution cell signature scores for naive B cells were significantly increased for 5.25 mg/kg cladribine tablets vs
placebo using CIBERSORT deconvolution cell signatures (Fig. 5) and this trend stays significant if all treated
samples are compared vs placebo (Table S5). It is interesting to note that naive B cell signature derived using
xCell method was also upregulated after high dose cladribine treatment (Fig. 5, lower panel), but only in the
simple linear model with treatment arm as a covariate. If gender and age were taken into account, this signifi-
cance is faded.

Macrophages. M2 macrophage scores from xCell and monocyte from CIBERSORT deconvolution cell sig-
nature significantly increased for those treated with high cladribine tablets (or all treated samples merged) vs
placebo (Fig. 6, Table S5), whereas M1 macrophage signature from CIBERSORT was significantly depleted after
low dose cladribine.

Discussion

The speed of development of computational biology and bioinformatics provides additional opportunities to use
mathematical algorithms to study complex human systems such as blood, with its heterogeneous mixture of mul-
tiple cell types. Immune cell deconvolution has been successfully used in multiple fields including cancer®!*19-2!
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Figure 4. CD8+T-cell signature score distribution generated by xCell between treatment arms in CLARITY.

A multivariate linear regression model was built for each cell type to test whether treatment arm is significantly
related to the deconvolution score. P-value from F-statistics was used to determine whether the relationship is
still significant when model is accounted for patient’s age and gender. Cell types for which either the adjusted
p-values for the treatment coefficient or overall F-test adjusted p-value were >0.1 were considered not significant
and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear model where only
treatment arm was used as a covariate (upper row) are marked as asterisks * <0.1, **<0.01, ***<0.001.

and immunity; for example, to analyse immune cells of the knee in osteoarthritis*? and the blood cell composition
of patients with systemic lupus erythematosus?. Immune cell deconvolution methods, however, have not thus
far been used to study blood samples from patients with MS.

In this analysis, the deconvolution methods xCell® and CIBERSORT” were successfully validated using exist-
ing flow cytometry and matched gene expression data from both the publicly available rheumatoid arthritis
GSE93777 dataset"® and the CLARITY study'® dataset. Deconvolution methods were then applied to character-
ize the immune cell population dynamics from a subset of 189 patients from the CLARITY study with gene
expression data at 96 weeks after the start of treatment. In line with previously described changes in immune
cell composition, T cells and B cells were less abundant with cladribine tablets than with placebo. New results
included that naive B cells and macrophage M2 cells were more abundant whilst macrophage M1 cells showed
signs of depletion compared with placebo, revealing immune homeostasis of pro- vs anti-inflammatory immune
cell subtypes and potentially supporting long-term efficacy of cladribine tablets.

There are a variety of methods available for deconvolution, however, CIBERSORT and xCell methods were
chosen for this analysis as they have previously performed with high effectiveness®’. The aim of this validation
was not to benchmark these methods versus other deconvolution methods, but because they were considered
potentially effective for immunophenotyping MS disease. To validate such methods for use in this analysis, a
publicly available dataset (rheumatoid arthritis GSE93777)"* was used to compare levels of immune cell sig-
natures with corresponding flow cytometry. Good concordance of cell signatures between the CIBERSORT
and xCell deconvolution methods were observed, similar to previous analyses describing immune cell levels
in healthy liver and hepatocellular carcinoma?®. Both CIBERSORT and xCell deconvolution methods showed
significant, positive, and strong correlation for B cell, neutrophil, pan CD8", plasmablasts, and natural killer cell
deconvolution signatures (but poor correlation for basophils and Tregs) with corresponding flow cytometry cell
counts. One reason the basophil deconvolution signatures were not as well correlated with flow cytometry may
be because six of the nine basophil samples used for deconvolution cell signature generation® were isolated from
umbilical cord blood (Novershterm dataset: GSM609632, GSM609633, GSM609634, GSM609635, GSM609636,
GSM609637), and may represent younger or otherwise different cells than those assessed in the flow cytometry
data. While CIBERSORT and xCell deconvolution findings aligned for most cell types there were some differences
that can partially be explained by the perspective of the mathematical method. Initially, both methods select the
most representative sets of genes for each tissue type called gene signatures. Then, CIBERSORT deconvolution
uses a linear v-support vector regression model® and xCell uses s sSEA analysis’. Other differences include that
CIBERSORT provides 22 immune cell subtypes and xCell provides 44 immune cell subtypes detected in whole
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Figure 5. B cell signature score distribution generated by CIBERSORT and xCell between treatment arms in
CLARITY. A multivariate linear regression model was built for each cell type to test whether treatment arm is
significantly related to the deconvolution score. P-value from F-statistics was used to determine whether the
relationship is significant when patient’s age and gender are used as covariates. Cell types for which either the
adjusted p-values for the treatment coeflicient or overall F-test adjusted p-value were > 0.1 were considered
not significant and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value from linear
model where only treatment arm was used as a covariate (upper row) are marked as asterisks *<0.1, **<0.01,
P <0.001.

blood. Other reasons for lack of correlation could have been because of an insufficient match in the flow cytom-
etry collection. For example, for the CIBERSORT method, the match for resting mast cells (cibersort.Mast.cells.
resting) was basophils. As well, some T cell-related signatures (cibersort.t.cells.regulatory and cibersort.t.cells.
gamma.delta) produced zero values because of low sensitivity to rare cell subtypes and/or low counts for these
cells in the peripheral blood (although it should be noted that this is not always the case, plasma cells were well
correlated despite less than 1% in whole blood). General reasons for lack of correlation with either method, may
also be due to the origin of the cells that were used for signature generation (in vivo vs in vitro; blood vs organ
origin isolation). For example, dendritic cells used for CIBERSORT signature construction were generated by
in vitro monocyte differentiation with IL4 + GMCSEF stimulation, but not through direct isolation from the whole
blood. As with basophils, eosinophil samples used for deconvolution cell signature generation were isolated
from umbilical cord blood. None of the stem cell, progenitor, macrophage, platelet, or erythrocyte signatures
(M0/M1/M2) were validated with either deconvolution method, as no matches were found in the GSE93777
flow cytometry dataset.

The deconvolution methods were used to evaluate immune cell types from stored blood samples of 189
patients with MS, a subset of the cohort of patients enrolled in the phase III efficacy study of cladribine tablets
in MS (CLARITY). Strengths of using the GSE93777 and CLARITY datasets in the same analysis include that
the majority of rheumatoid arthritis patients within the GSE93777 dataset were treated with highly efficacious
drugs (methotrexate, infliximab, and tocilizumab) that may have shifted/altered their gene expression profiles.
This highlights that deconvolution methods yield accurate results even after treatment with immunomodulatory
drugs, increasing confidence in the results from the CLARITY subset analysis of patients having received two
annual treatment cycles of cladribine tablets. In addition, the initial validation using the GSE93777 dataset was
on the same sample type (whole blood) and microarray type (GeneChip™ Human Genome U133 Plus 2.0 Arrays)
as the CLARITY data. Limitations of these analyses include that signatures generated on RNA sequencing rather
than microarray gene expression analysis may reveal different results and would need to be validated and matched
with flow cytometry in order to apply CIBERSORT or xCell deconvolution methods with full confidence. There
were also some minor discrepancies, including lack of expected correction between the cibersort.T.Cells.CD4.
memory.resting cell signature and CD4*/CD45RA flow cytometry cell count (similar results were observed with
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Figure 6. Monocyte and macrophage signature score distribution generated by CIBERSORT and xCell between
treatment arms in CLARITY. A multivariate linear regression model was built for each cell type to test whether
treatment arm is significantly related to the deconvolution score. P-value from F-statistics was used to determine
whether the relationship is still significant when model is accounted for patient’s age and gender. Cell types for
which either the adjusted p-values for the treatment coefficient or overall F-test adjusted p-value were>0.1 were
considered not significant and marked as ns. Adjusted p-value from F-test (lower row) and adjusted p-value
from linear model where only treatment arm was used as a covariate (upper row) are marked as asterisks *<0.1,
**<0.01, **<0.001.

the GSE93777 validation). In addition, of the validated cell types, 21% (3 out of 14) of xCell and 24% (6 out of
25) of CIBERSORT deconvolution signatures showed no correlation with flow cytometry. In the future, these
signatures will be used with caution or excluded from consideration.

Cladribine tablets in MS lead to immune reconstitution by a selective reduction in B and T cell counts, fol-
lowed by a period of reconstitution, with clinical efficacy sustained beyond total lymphocyte recovery'”-?>2¢,
Available flow cytometry data has given valuable insight into B and T cells levels'"'?, and early findings from
ongoing studies in MS patients with high disease activity have shown a specific pattern of peripheral blood
mononuclear cell subtype dynamics that coincide with the pattern of clinical efficacy in terms of early onset of
action and sustained effect?>?. Thus far, immune cell levels at the two-year time point following cladribine tablets
treatment has not been investigated in detail. The present study, therefore, represented an opportunity to not
only validate the deconvolution approach but build upon the understanding of immune cell dynamics following
completion of two cycles of cladribine tablets and after initial immune reconstitution, as well as compare differ-
ences between the 3.5 and 5.25 mg/kg doses analyzed in the CLARITY study. Using the validated deconvolution
methods, consistent levels of cells were observed between doses (the 5.25 mg/kg dose did not show lower levels
of immune cells than the 3.5 mg/kg dose) in line with previous observations from the CLARITY and CLAR-
ITY Extension studies and the clinical observation that the higher dose is not more effective!®*. In addition
to immune cell levels previously evaluated by flow cytometry for those treated with cladribine tablets?®%, class
switched and non-class switched memory B cells, naive B cells, plasmablasts, and M1/M2 macrophages were
analyzed in the present study. As with the GSE93777 dataset, deconvolution cell signatures from the CLARITY
study were well correlated with flow cytometry data and are consistent with previous flow cytometry findings'”.
This supports the interpretation via deconvolution of levels of cell types not previously analyzed by flow cytom-
etry and highlights the future research utility of this method for MS and other data. In this analysis, memory B
cells, plasmablasts, total and memory CD4* and CD8" T cells and M1 macrophages were significantly reduced
with cladribine tablets vs placebo, while naive B cells and M2 macrophages were significantly increased. This
positive change in M2 macrophages has not been previously reported, and may reflect a switch from M1 to M2

through the nuclear factor kappa B (NF-xB) or Nrf2 pathways®**!; in vitro studies also indicate that cladribine
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decreases the secretion of IL-6 and TNF-a*%. Most of the reduced signatures were from T-/B-cell types and
enhanced myeloid types. Thus, neutrophil signatures assessed by both methods showed upregulation, indicat-
ing that neutrophils to some extent replace the reduced lymphocytes. Stem and progenitor cells are not altered
by cladribine tablets other than common lymphoid progenitor (CLP) cells. In addition, naive B cells increased
during the post-treatment phase, which could suggest a resetting of the immune system. Such findings warrant
further validation in the clinical trial setting, including evaluation of the effect on immune cells for example 3 or
4 years after cladribine tablets initiation. A detailed analysis of immune cell subsets in patients with high disease
activity could also yield useful comparisons.

The use of some disease-modifying therapies (DMTs) for MS may alter vaccine efficacy’>**, such as a reduced
humoral response to inactivated vaccines*>*®. However, cladribine tablets treatment has not been found to impair
humoral response to COVID-19 vaccination®”*%. The reconstitution of naive B cell counts, as validated in the
current analysis, may therefore serve to explain this finding.

33,34

Conclusion

In summary, this study validates immune cell deconvolution as a reliable method for immune cell subtype
assessment and shows new applicability in the analysis of immune cell data within the setting of relapsing MS,
using data from the CLARITY study. The results confirm previously described changes in immune cell composi-
tion following treatment with cladribine tablets, and reveal immune homeostasis of pro- vs anti-inflammatory
immune cell subtypes that potentially support long-term efficacy. In addition, first time gene expression profiling
of cladribine-treated MS patients, along with placebo control, is made available for the broad scientific com-
munity through a GEO portal.

Data availability

Any requests for data by qualified scientific and medical researchers for legitimate research purposes will be
subject to Merck’s Data Sharing Policy. All requests should be submitted in writing to MercK’s data-sharing
portal https://www.merckgroup.com/en/research/our-approach-to-research-and-development/healthcare/clini
cal-trials/commitment-responsible-data-sharing.html. When Merck has a co-research, co-development, or co-
marketing or co-promotion agreement, or when the product has been out-licensed, the responsibility for disclo-
sure might be dependent on the agreement between parties. Under these circumstances, Merck will endeavour to
gain agreement to share data in response to requests. The datasets generated and/or analysed during the current
study are available in the Gene Expression Omnibus (GEO) repository, accession number: GSE185773 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185773].
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