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Self‑organizing neural network 
for reproducing human postural 
mode alternation through deep 
reinforcement learning
Keli Shen 1,3, Guanda Li 1,3, Ahmed Chemori 2 & Mitsuhiro Hayashibe 1*

A self-organized phenomenon in postural coordination is essential for understanding the auto-
switching mechanism of in-phase and anti-phase postural coordination modes during standing and 
related supra-postural activities. Previously, a model-based approach was proposed to reproduce 
such self-organized phenomenon. However, if we set this problem including the process of how we 
establish the internal predictive model in our central nervous system, the learning process is critical to 
be considered for establishing a neural network for managing adaptive postural control. Particularly 
when body characteristics may change due to growth or aging or are initially unknown for infants, a 
learning capability can improve the hyper-adaptivity of human motor control for maintaining postural 
stability and saving energy in daily living. This study attempted to generate a self-organizing neural 
network that can adaptively coordinate the postural mode without assuming a prior body model 
regarding body dynamics and kinematics. Postural coordination modes are reproduced in head-
target tracking tasks through a deep reinforcement learning algorithm. The transitions between the 
postural coordination types, i.e. in-phase and anti-phase coordination modes, could be reproduced by 
changing the task condition of the head tracking target, by changing the frequencies of the moving 
target. These modes are considered emergent phenomena existing in human head tracking tasks. 
Various evaluation indices, such as correlation, and relative phase of hip and ankle joint, are analyzed 
to verify the self-organizing neural network performance to produce the postural coordination 
transition between the in-phase and anti-phase modes. In addition, after learning, the neural network 
can also adapt to continuous task condition changes and even to unlearned body mass conditions 
keeping consistent in-phase and anti-phase mode alternation.

Understanding human postural coordination is essential to design rehabilitation exercises to improve the life 
quality of the elderly and persons with motor impairments or with brain disorders such as stroke. Exploring 
adaptive and synergetic posture control mechanisms is important for promoting balance recovery through 
effective physical training design.

Human balance control studies have been widely conducted to understand human motor learning skills 
in daily standing tasks1,2. Basic human balance control strategies such as ankle strategy, and hip strategy have 
been well studied through human experiments3–5 and computational modeling simulations6–10. These strate-
gies, including the kinematic and kinetic constraints of body motors, would help us to understand the existing 
functional mode switch of postural coordination in balance control under various external perturbations or in 
related supra-postural activities.

Postural control patterns over hip and ankle joints3 and the relative phases, such as in-phase and anti-phase, 
have been defined for assessing coordination patterns. Their strengths and limitations were discussed in a 
study11 for hip-ankle postural coordination in various reaching tasks. As motion coordination units12, move-
ments between the hip and ankle joints are necessary for postural control in stance13. The coordination of ankle 
and hip during the quiet standing strategy14, for two conditions: eyes open and close, was observed with the 
corresponding phase portraits of the angular displacement, velocity, and acceleration of the hip and ankle. The 
contributions of the ankle and hip joints were distinguished for multi-segment control in human experiments 
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on healthy and Parkinson’s participants as well as computational model simulations15. Similarly, inter-segment 
movement coordination between hip and ankle joints influenced by the sway frequencies with regard to balance 
control strategies, such as ankle and hip-ankle strategy, were utilized to assess the sensory and motor impairments 
in incomplete spinal cord injury (iSCI)16. Regarding the self-organizing phenomenon of postural coordination, 
Bardy group works are well known that the self-organizing mode naturally emerges with two modes, “in-phase 
or anti-phase”, of hip and ankle joints in the human head-tracking experiments17–19. Depending on the target 
frequency in the given task to the subject, the in-phase mode was employed for low frequencies and the anti-
phase mode was employed for high frequencies.

It is worth noting that optimization algorithms can be applied to implementing human-like postural motion 
reproduction. For instance, the transition between in-phase and anti-phase postural coordination modes was 
predicted by the dynamic optimization model in the previous studies20,21, and the influence of constraints on 
the selection of posture strategies was evaluated for understanding the ability of postural control. A constrained 
optimization process, based on the minimization of an energetic criterion with an equilibrium constraint, was 
proposed21 but this model only considered steady-state behavior. The transient dynamical behavior could be 
reproduced20 with Jacobian pseudoinverse to provide a minimum norm solution. However, the above models 
require body kinematics or dynamics knowledge for the model optimization approach.

However, to the best of our knowledge, there is no literature about a model-free approach that can reproduce 
self-organized postural coordination modes reproduction for head-tracking tasks. Particularly when body char-
acteristics may change due to growth or aging or are initially unknown for infants, a learning capability can be 
essential for the hyper-adaptivity of human postural control. Thus, in this study, we propose and verify if we can 
reproduce a self-organizing neural network trained with a model-free learning algorithm for the human-like 
’hip-ankle’ phase transition depending on the task conditions.

Therefore, we develop the learning-based method to study emergent mechanisms of the postural coordination 
modes in various situations. The main contributions of our study are summarized as follows. 

A)	 A deep reinforcement learning (DRL) application has been proposed to form neural networks reproducing 
self-organizing postural coordination modes during head-tracking tasks.

B)	 The task-based constraints, and frequencies of the target point, have been taken into account and their influ-
ence on the switch of postural coordination modes is studied.

C)	 Different evaluation indices, such as correlation and relative phase of ankle and hip, have been used to dis-
tinguish the postural phases during head-tracking tasks, and the transient behavior between in-phase and 
anti-phase was reproduced with the learned neural network by a continuous alternation of the task condition.

D)	 The learned neural network also demonstrated in-phase and anti-phase alternation for unlearned different 
upper body mass conditions for transferable capability. Anti-phase was employed for the higher upper mass 
conditions to manage the increased inertia effect while keeping the balance.

We chose to use deep reinforcement learning in this study because it is a suitable algorithm for investigating 
control solution under redundancy, and with the condition of an inaccessible body dynamics for multi-objective 
optimization22.

The next of the paper is organized as follows. “Model and methodology” section introduces the model and 
methodology, including simulation setting, algorithm, target and reward function, and the experiment design. 
The adaptive motor learning results with different experimental settings are analyzed in “Motor learning results 
on postural tasks” section. In “Further discussion” section, the relation between influential factors and phase 
coordination is further discussed. The conclusions and perspectives of this study are summarized in “Conclu-
sion and perspective” section.

Model and methodology
Simulation setting. 
Training neural networks using deep reinforcement learning requires collecting data generated during the 
humanoid agent’s interaction with the external physical environment under gravity. We conducted our experi-
ments in the simulation environment with the physics engine provided by Isaac Gym23.

Isaac Gym is a high-performance GPU-based physics simulation engine designed for robot learning by 
NVIDIA company23. With end-to-end GPU acceleration and parallel processing of thousands of simulation 
environments, Isaac gym can greatly increase the training speed when performing reinforcement learning tasks 
compared to other simulation software environments.

The simulation model we used for the experiment is modified based on the humanoid agent in Isaac Gym, as 
illustrated in Fig. 1. The original version of the humanoid robot has 21 degrees of freedom. In order to exclude 
irrelevant variables, we kept only the hip and ankle joints on both body sides and fixed the other joints in our 
simulations. The distance between two feet was the shoulder width. By giving the mirrored input to the same 
joints, we reduce the humanoid’s range of motion to a 2D space. Then the robot has four degrees of freedom: hip 
and ankle for the right and left leg. The other physical parameters of the simulation model are shown in Table 1.

Algorithm.  We use Proximal Policy Optimization (PPO)22 to train the robot in our experiment, which is 
one of the state-of-the-art deep reinforcement learning algorithms based on the actor-critic framework. PPO 
can simultaneously collect training data from multiple agents based on a parallel architecture with synchronous 
updates. This allows it to take full advantage of Isaac gym parallel simulation on GPU to accurate the training 
process.
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As shown in Fig. 1b, in the training framework of PPO, there are two neural networks, one is the actor network 
πθ (at | st) and the other is critic network Vφ(st) . The actor network πθ is used to sample action at , according to 
the input state st at each control timestep. The critic network Vφ(st) is the value function that can estimate the 
expected average return starting from state st.

PPO updates the actor network and critic network based on the experience collected from the interaction 
between the agent and the environment. The loss function used to update the actor-network πθ is expressed as 
follows:

in which Ât is the estimated advantage at time t. The advantage At is used to evaluate how good or bad the action 
at taken in state st is. At greater than zero indicates that the action currently taken can get more reward than 
expectation and vice versa.

PPO uses a method called “clipping” to limit the magnitude of the updates, which helps improve the stabil-
ity of training. The likelihood ratio ωt is used to measure the difference between the new policy πθ and the old 
policy πθ old

.

If ωt beyond the range of (1− ε, 1+ ε) , the clip function clip(ωt(θ), 1− ε, 1+ ε) will sets the gradient to zero. 
Then the minimum function will select a lower bound for LCLIP(θ) between the clipped and unclipped advantages.

The loss function for the critic network is denoted as:

in which Vθ is the estimated value and V target
t  is the real value. The hyper-parameters of PPO, used in our experi-

ments, are listed in Table 2.
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Figure 1.   (a) Simulation model of a humanoid in Isaac Gym. (b) The training framework of PPO, which is one 
type of deep reinforcement learning with actor critic structure.

Table 1.   Model parameters of a humanoid agent in Isaac Gym.

Weight 40.15 kg

Height 1.57 m

Position of CoM [0.006, 0, 0.814] m

Constrained range of hips (-120, 45) deg on y-axis

Constrained range of ankles (-50, 50) deg on y-axis

Maximum output torques of joints (-100, 100) Nm

Position of target [x, 0, 1.7] m
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Target and reward functions.  Our target is to let the humanoid’s head track a periodic reciprocal motion 
in the X-axis direction in the sagittal plane. We use the red ball above the humanoid’s head to indicate the loca-
tion of the target point for better visualization. The motion equation of the trajectory for the head-tracking target 
is formulated as:

where A is the amplitude, such that the target point moves along the X-axis in the range [0, 2A]. f denotes the 
movement frequency of the target point. This target setting is identical to the human head-tracking experiment 
employed in the study19 as they performed anteroposterior directional target tracking with the head for the 
standing participants.

Reward function Rtotal is expressed as follows:

where Rstay is used to limit the movement of the humanoid’s foot relative to the ground, where Pf 0 is the initial 
position of the humanoid foot and Pft is the position of the humanoid foot at time t. Rtarget is used to encourage 
the humanoid to track the target, where Ptargetx is the position of the target point at the x-axis and Pheadx is the 
position of the humanoid head at x-axis. Renergy and Rtorque are used to limit the robot’s energy consumption, 
where τj is the torque of the joint j, ωj is the angular velocity of the joint j and �t is the time interval between 
sampling simulation data. If the height of the center of mass of the humanoid torso is less than 1m, the humanoid 
is judged to have fallen, and Rtotal will be set to -1. The weights for adjusting each reward term are the α , β , and γ.

Experiment design.  There are many factors that may affect the humanoid’s postural motion coordination. 
In our experiments, we analyzed the effects of the motion frequency of the target point, the energy consump-
tion weight in the reward of the learning process, and after learning unlearned upper body mass condition was 
changed to check also for a new task.

The energy consumption is adjusted by tuning the variable γ in Eq. (6). The frequency of the target point is 
adjusted through the variables f in Eq. (5).

Motor learning results on postural tasks
This section studies the influence of task-based constraints on the self-organization of postural modes between 
in-phase and anti-phase during tracking-balancing tasks. The impact of energy consumption penalization on 
head-tracking tasks has also been studied. Energy consumption has been verified as an essential factor for upright 
standing tasks in human experiments24 and simulations7,20,21,25. This is reasonable since our human body tries 
to save energy consumption with an energy-optimal policy when completing specific motion tasks in our daily 
activities.

These task constraints are considered in tracking-balancing simulations implemented through a model-free 
learning method, and their influence mechanism is explored in this study. The task-based constraints, and 
frequency of head-tracking target point, have been studied for the influence on hip and ankle coordination in 
human experiments17,19,26, and simulation of the double inverted pendulum model with feedback20. However, 
their work did not study the learning-based adaptivity of motor coordination. Therefore, verifying if model-free 

(5)x = −A cos(2π ft)+ A,

(6)Rtotal =αRstay + βRtarget + γRenergy + γRtorque

(7)Rstay =(1+ �Pf 0 − Pft�
2
2)

−1

(8)Rtarget =(1+ �Ptargetx − Pheadx�
2
2)

−1

(9)Renergy =−
∑

J

∣

∣τjωj

∣

∣�t

(10)Rtorque =−
∑

J

(τj)
2

Table 2.   Hyper-parameters for training humanoid agent by PPO.

Environments 8192

KL threshold 0.002

Mini-batch size 8192

Horizon length 32

PPO epochs 5

Hidden layers [256, 256]

Training steps 5,000,000
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learning methods can establish a neural network to create adaptive self-organizing behavior, is important, to 
study further the effectiveness of in-phase and anti-phase coordination modes between hip and ankle joints.

Although the head tracking task is not a common activity in daily life, it is equivalent to maintaining head 
stability when the floor is accelerating or decelerating. For small disturbances, in-phase balancing is sufficient, 
but for larger disturbances, anti-phase balancing is required. This situation often occurs when we ride a bus or 
train in daily life. By adjusting head speed, we can alter the disturbance intensity.

Experiment 1: effect of the frequency of tracking target.  This section demonstrates how the track-
ing frequency affects self-organized postural coordination mode. The change in frequency of the tracking target 
can determine the movement speed of the head for the humanoid model to complete the target-tracking tasks. 
Furthermore, the motion speed change can influence the joint coordination modes keeping balance perfor-
mance stability. Thus, the in-phase and anti-phase patterns can be recruited with regard to the tracking fre-
quency. The ten different tracking frequencies are set as: 0.15,  0.30,  0.45,  0.60,  0.75,  0.90, 1.05, 1.20, 1.35 and 
1.50 [Hz]. Screenshots of learning tracking-balancing tasks at motion tracking frequency f of target point in Eq. 
(5) with regard to 0.15 [Hz] and 1.5 [Hz] are depicted in Fig. 2. In the case that energy consumption penalization 
parameter γ in Eq. (6) is 20. The motion amplitude A of target point in Eq. (5) is 0.1[m]. Ankle and hip stiffness 
remains 25 [Nm/rad] and 125 [Nm/rad]. From Fig. 2, the in-phase motor patterns between the ankle and hip 
joints in the first row are kept for the target frequency 0.15 [Hz], while the anti-phase motor patterns between 
the ankle and hip joints in the second row appear in target phase 60◦ , 120◦ , 180◦ , 240◦ and 300◦ for the tracking 
target frequency 1.5 [Hz]. The corresponding head motion example is shown in Fig. 3. The position of tracking 
target and humanoid agent head is plotted at motion tracking frequency 0.15 [Hz] and 1.5 [Hz]. The correspond-
ing joint angles for the ankle and hip are shown in Fig. 4 where we can confirm in-phase for low frequency and 
anti-phase for higher frequency.

Performance of tracking‑balancing tasks. 
First, the corresponding tracking accuracy is quantified through the target-head correlation R, mean amplitude 
of the head movement, and mean head velocity as shown in Table 3. The target-head correlation R is computed 
by Person correlation coefficients. We can confirm that the head tracking task could have been done correctly 
from the high value of correlation R in Table 3. For the higher target motion frequency over 1.2 [Hz], we observe 
a small decrease in target-head correlation R since the high tracking speed may increase the difficulty of track-
ing tasks.

Second, the center of pressure (CoP) is used to estimate the balance stability. The box plot of the center of 
pressure (CoP) influenced by the following motion tracking frequencies f of the target point in Eq. (5) 0.15,  0.30
,  0.45,  0.60,  0.75,  0.90, 1.05, 1.20, 1.35 and 1.50 [Hz], respectively are depicted in Fig. 5. The distribution of CoP 
increases with the increase of tracking frequency. For high-speed tracking performance, there should be a risk of 
losing balance. Therefore, balance maintenance is a crucial component in high-speed tracking-balancing tasks. In 
our modeling, the humanoid agent can finish the tracking-balancing tasks for a wide range of frequency and the 
feet are with unilateral constraints. This demonstrates the robustness of our proposed trained networks by PPO.

Figure 2.   Screenshots of learning tracking-balancing tasks at motion tracking frequency f of target point in Eq. 
(5) with regard to 0.15 [Hz] and 1.5 [Hz]. Where, energy consumption penalization parameter γ in Eq. (6) is 20. 
The motion amplitude A of target point in Eq. (5) is 0.1 [m]. Ankle and hip stiffness remains 25 [Nm/rad] and 
125 [Nm/rad].
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Figure 3.   Position of tracking target and humanoid agent head and its distance at motion tracking frequency f 
in Eq. (5) with regard to 0.15 [Hz] and 1.5 [Hz]. Where, energy consumption penalization parameter γ in Eq. (6) 
is 20. The motion amplitude A of target point in Eq. (5) is 0.1[m]. Ankle and hip stiffness remains 25 [Nm/rad] 
and 125 [Nm/rad].

Figure 4.   Joint angle of ankle and hip at motion tracking frequency f in Eq. (5) with regard to 0.15 [Hz] and 
1.5 [Hz]. Where, energy consumption penalization parameter γ in Eq. (6) is 20. The motion amplitude A of 
target point in Eq. (5) is 0.1 [m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad]. t0 and t1 are 
the timesteps corresponding to the maximum angles of the ankle and hip in the current motion cycle.

Table 3.   Tracking performance of different target frequency.

Freq. [Hz] r Amplitude [m] Head Vel. [m/s]

0.15 0.9984 0.0781 0.0464

0.3 0.9973 0.0782 0.0915

0.45 0.9955 0.07845 0.1371

0.6 0.9934 0.07875 0.1842

0.75 0.9910 0.079 0.2320

0.9 0.9880 0.0791 0.2775

1.05 0.9839 0.0797 0.3253

1.2 0.9801 0.08035 0.3768

1.35 0.9766 0.08135 0.4259

1.5 0.9669 0.0829 0.4800
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Emergent transition of postural modes.  Tracking frequency is an impact factor for changing the motor coor-
dination patterns of the ankle and hip joints, such as in-phase and anti-phase for tracking-balancing tasks27. 
Therefore, we tried to understand the self-organization of postural coordination modes influenced by the track-
ing frequency in our tracking-balancing tasks. The evolution of correlation coefficient, relative phase influenced 
by the following motion tracking frequencies f of the target point in Eq. (5) from 0.15 to 1.50 [Hz], respectively, is 
depicted in Fig. 6. Where, energy consumption penalization parameter γ in Eq. (6) is 20. The motion amplitude 
A of target point in Eq. (5) is 0.1[m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad]. The corre-
lation coefficient of hip and ankle joint angles can summarize the characteristics of the whole coordination pat-
terns. As we can observe from Fig. 6, for tracking frequencies 0.15,  0.30,  0.45, and  0.60 [Hz], the corresponding 
positive correlation means that the in-phase patterns functioned between the ankle and hip joints. However, the 
negative correlation for the tracking frequencies  0.75,  0.90, 1.05, 1.20, 1.35, and 1.50 [Hz] indicates the anti-
phase patterns between the ankle and hip joints. Thus, the transition of postural coordination modes depends 
on the change of the tracking frequencies with regard to relatively low and high values as the above experiment 
setting. Furthermore, the hip and ankle correlation coefficients are negatively correlated with the relative phase.

Next, we discuss how the change in tracking frequency influences the ankle and hip joint angles. In Fig. 6, the 
relative phase positively correlates with the tracking frequency. Relative phase was computed as |t0 − t1| × f × π , 
where f is the motion frequency of the target, t0 and t1 are the timesteps corresponding to the maximum angles of 
the ankle and hip in the current motion cycle as shown in Fig. 4. Because the high tracking frequency means fast 
speed tracking motion tasks. This quick response of humanoid agents may cause unsafe performance unless the 

Figure 5.   The box plot of the center of pressure (CoP) influenced by different motion tracking frequencies f of 
the target point in Eq. (5) 0.15,  0.30,  0.45,  0.60,  0.75,  0.90, 1.05, 1.20, 1.35 and 1.50 [Hz], respectively. Where, 
energy consumption penalization parameter γ in Eq. (6) is 20. The motion amplitude A of target point in Eq. (5) 
is 0.1 [m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad].

Figure 6.   Evolution of correlation coefficient and relative phase influenced by different motion tracking 
frequencies f of the target point in Eq. (5) 0.15,  0.30,  0.45,  0.60,  0.75,  0.90, 1.05, 1.20, 1.35 and 1.50 [Hz], 
respectively. Where, energy consumption penalization parameter γ in Eq. (6) is 20. The motion amplitude A of 
target point in Eq. (5) is 0.1 [m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad].
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ankle and hip joints increase the motion intensity in an opposite direction to compensate for the acceleration/
deceleration of the upper limb for the possible falling risks. Then, there is no solution space with in-phase joint 
usage due to balance maintenance requirements. However, there is a solution to keep the whole-body center of 
mass projection to the ground, close to the foot area if the ankle and hip are coordinated in anti-phase.

The averaged peak-to-peak joint positions for the hip and ankle are plotted in Fig. 7 to show how the hip joint 
range was changed from low frequency to high frequency. We can observe the increase of hip amplitude along 
with the hip torque increase while having a similar motion range for the ankle joint. This trend is in agreement 
with the previous human measurement19 and also with previous model-based simulation results20. It is good to 
confirm the same self-organizing process could be reproduced with the learned neural network without prior 
dynamics and kinematics information usage. Since the range of motion considering angular positions of hip 
joints are much larger than those of ankle joints for high frequency tracking, we can understand that hip joints 
play the active and leading coordination for high-speed tracking movements. It is worth noting that the tracking 
frequency in the given task can determine how to employ the coordination modes of the ankle and hip joints.

The study of balance control with different head tracking frequencies, and its analysis with different motor 
coordination modes has significant implications for clinical applications. Understanding how head tracking 
frequency affects motor coordination modes can inform the development of effective rehabilitation programs for 
individuals with balance impairments, such as those with neurological conditions. By designing rehabilitation 
programs that target specific motor coordination modes, we can improve postural control and reduce the risk 
of falls. Moreover, studying motor coordination modes can help identify individuals who may be at a higher risk 
of falls due to altered coordination patterns. By examining motor coordination modes and their relationship to 
head tracking speeds, clinicians can develop targeted interventions to improve postural control and reduce fall 
risk in high-risk populations, such as older adults or individuals with neurological conditions.

Experiment 2: effect of the energy penalization of agent.  After studying the postural mode transi-
tions by task constraints, let us now focus on another factor, energy penalization in the reward. Energy con-
sumption can determine which type of motion policy is to be applied for implementing motion tasks. Therefore, 
we assume that energy consumption might change the postural coordination between the ankle and hip joints. 
From Eq. (6), Renergy and Rtorque are used to limit the robot’s energy consumption. In this work, to understand 
the influence of energy penalization on the postural coordination during tracking-balancing tasks, we tune the 
energy weight (energy index) γ in Eq. (6) with the following values: 0, 5, 10, 15, 20, 25, 30, 35, and 40. Then, 
the performance of tracking-balancing tasks and the transition of postural coordination are studied separately.

Performance of tracking‑balancing tasks. 
Target-head correlation R could be kept high for each energy index according to the results of Table 4. These 
correlations show the tasks were properly performed for head tracking tasks even for different settings of energy 
penalty. The corresponding head amplitude also shows a similar head motion tendency regardless of the energy 
penalty. Thus, we can assume that energy-saving can be done without affecting the head tracking accuracy itself. 
Table 4 also demonstrates that the required energy cost could be well decreased by following the energy penalty. 
Thus, the motion could be created with lower energy while keeping the task performance.

Emergent transition of postural modes.  In this scenario, the postural coordination between the ankle and hip 
joints is studied by tuning the energy weight in the training reward function. The correlation coefficient and 
relative phase are recruited to quantify the transition of coordination modes. The evolution of the correlation 
coefficient, relative phase influenced by different energy penalization parameters γ = 0,  5,  10,  15,  20,  25,  30, 

(a)

(b)

Figure 7.   (a) Peak-to-peak joint positions. Each point is the mean value of simulation results in 100 s. (b) 
Torque amplitudes of ankle and hip. Hip torque is smaller for in-phase and larger for anti-phase.
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35 and  40 in Eq. (6), respectively, are displayed in Fig. 8. Where the motion amplitude A of target point in Eq. (5) 
is 0.1[m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad]. And the motion tracking frequency 
f of target point in Eq. (5) is 0.4 [Hz].

With the increase in energy weight, the hip and ankle correlation coefficient changes from a negative value to 
a positive one. The negative correlation coefficient for the cases of energy weight γ = 0 and  5 in Eq. (6) expresses 
the anti-phase modes between the ankle and hip joints. However, the in-phase modes between the ankle and hip 
joints appear for large energy weight γ = 10, 15, 20, 25, 30, 35 and 40 in Eq. (6), respectively. From an energy-
saving point of view, in-phase coordination consumes less energy than anti-phase coordination between the 
ankle and hip joints if there is a solution to manage the given balancing and head tracking task. Then, in this 
case, it can be considered there were two types of solutions by in-phase and anti-phase, but by employing energy 
penalty, energy inefficient solution could be removed then it has resulted in an in-phase solution. Anti-phase 
modes enhance adaptive motor flexibility by consuming more energy during tracking-balancing tasks even when 
there is no solution with in-phase modes. However, when both in-phase and anti-phase could be available, it is 
better to remove the anti-phase solution by employing an energy penalty. This is understandable, considering 
the relationship between energy consumption and task management.

Furthermore, the relative phase decreases with the increase in energy consumption weight. This indicates 
that energy consumption modification for tracking-balancing tasks may change the kinematic features of motor 
coordination between the ankle and hip joints. As discussed above, the motion modes switch from anti-phase 
to in-phase to pursue energy-saving goals during managing the given task. Additionally, we can conclude that 
energy penalization tends to change the ankle and hip joints’ coordination modes toward in-phase energy effi-
cient motor mode in principle, however, the energy weight setting is not highly sensitive for the postural mode 
selection as we can observe stable relative phase relationship after having more than 10 value for the weight. The 
energy penalty weight in the reward is a hyper-parameter in the learning process. We could confirm that we need 
some energy penalty consideration in the reward, however, it is not a highly sensitive factor for reproducing the 
consistent in-phase and anti-phase mode employment.

Table 4.   Tracking performance of different energy index.

Energy index γ r Head Amp. [m] Energy cost [J]

0 0.9935 0.0900 1632.3

5 0.9984 0.0982 498.6

10 0.9826 0.0945 379.8

15 0.9836 0.0955 340.8

20 0.9798 0.0840 287.3

25 0.9951 0.0989 381.0

30 0.9909 0.0959 322.1

35 0.9979 0.1000 346.9

40 0.9979 0.1000 340.4

Figure 8.   Evolution of correlation coefficient, relative phase influenced by different energy consumption 
penalization parameter γ = 0, 5, 10, 15, 20, 25, 30, 35 and 40 in Eq. (6), respectively. Where the motion 
amplitude A of target point in Eq. (5) is 0.1 [m]. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/
rad]. And the motion tracking frequency f of the target point in Eq. (5) is 0.4 [Hz].
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Experiment 3: changing the hip stiffness of agent.  Previous studies show that human joint stiffness 
differs mainly by age28,29, body size30,31 and sex32–36. Joint stiffness is an essential factor for balance control in 
quiet standing28, and it increases with age in postural control29. The change in hip stiffness may influence the 
range of motion since hip stiffness changes its recovery torque to return to the hip joint’s neutral position. For 
instance, the recent study37 indicates that relationships between a maximum range of motion and hip stiffness 
during quiet standing are consistent at common angles. Thus, the increase in hip stiffness may change the pos-
tural coordination of the hip and ankle during tracking-balancing tasks. In this study, we propose to change the 
humanoid model’s left and right hip stiffness together. The eight conditions are given here based on the biome-
chanical standards: 25,  50,  75,  100,  125,  150,  175, and  200 [Nm/rad]20,38–40.

In this scenario, we try to understand the influence of different hip stiffness on postural motor coordination. 
As mentioned above, stiffness can be an important mechanical constraint that may change the motion modes. 
Two evaluation indices, such as correlation coefficient and relative phase, have been proposed to study the switch 
of motion modes from in-phase to anti-phase between hip and ankle. The evolution of correlation coefficient, 
relative phase influenced by different hip stiffness values 25,  50,  75,  100,  125,  150,  175, and  200 [Nm/rad], 
respectively are shown in Fig. 9. Where energy consumption penalization parameter γ in Eq. (6) is 20. The motion 
amplitude A of target point in Eq. (5) is 0.1[m]. Ankle stiffness remains 25 [Nm/rad]. And the motion tracking 
frequency f of target point in Eq. (5) is 0.5 [Hz].

As the increase of hip stiffness, the correlation coefficient of the hip and ankle changes from a negative value 
to a positive one. For small stiffness values, such as 25,  50,  75, and  100 [Nm/rad], the corresponding negative 
correlation expresses the anti-phase coordination between the ankle and hip during the tracking-balancing tasks. 
However, a positive correlation with regard to the hip stiffness  125, 150, 175, and  200 [Nm/rad] demonstrates the 
in-phase postural modes between the ankle and hip during tracking-balancing tasks. For the cases with higher 
stiffness, there is supporting torque to return to its neutral position, then the upper body inertia effect during the 
head tracking task appears relatively smaller then in-phase mode can be still employed. For frequency-increased 
cases, anti-phase mode gets necessary for managing the higher body inertia effect. In the case of higher stiffness, 
the inertia effect is decreased then an in-phase solution can be still used. Instead, when the joint stiffness gets 
decreased, the necessity to compensate for the body inertia gets high, then anti-phase mode coordination is 
more required. This is reasonable since anti-phase motor coordination for small stiffness needs to recruit large 
motion intensity. In contrast, in-phase motor coordination for large stiffness recruits small ankle and hip motion 
intensity. The corresponding green curve shows that as the hip stiffness increases, the relative phase decreases, 
which has been observed from human experiments17,19.

Individuals with certain musculoskeletal conditions or injuries may experience changes in joint stiffness 
that affect specific joints during clinical rehabilitation. For example, individuals with hip osteoarthritis may 
experience increased hip stiffness due to changes in the articular cartilage or joint capsule, while their ankle 
joint stiffness may remain unchanged. Similarly, individuals who have undergone hip replacement surgery may 
experience changes in hip stiffness. The self-organizing postural control system, which involves the recruitment 
of hip-ankle coordination modes such as in-phase and anti-phase, could help understand better standing ability 
in the daily life of these individuals.

Experiment 4: new task adaptability with mode alternation.  Continuous variation of frequen‑
cy.  In the previous sections, we could form a self-organizing neural network that employs mode alternation 
depending on the given tasks or the conditions. For the learning process, there was the information and the 

Figure 9.   Evolution of the correlation coefficient, relative phase influenced by different hip stiffness values 
25,  50,  75,  100,  125,  150,  175, and 200 [Nm/rad], respectively. Energy consumption penalization parameter 
γ in Eq. (6) is 20. The motion amplitude A of target point in Eq. (5) is 0.1 [m]. Ankle stiffness remains 25 [Nm/
rad]. And the motion tracking frequency f of target point in Eq. (5) is 0.5 [Hz].
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experience for the given frequencies. In addition, the neural network is trained under different frequencies but 
they were given as the fixed setting, not with continuous variation of the frequency.

In this section, against the learned neural network model, the behavior under the continuous variation of 
frequency is studied regarding the postural coordination of ankle and hip joints. In-phase between hip and 
ankle joint was employed for the low frequency, With the increase of target frequency, the mode was gradually 
shifted into anti-phase as shown in Fig. 10, where the frequency was increased linearly over time. The growth 
rate of the frequency is 0.036 Hz/s for 25 s. Fig. 10 reveals a transient change in coordination mode even for 
the continuous frequency, even when the neural network is trained only with the fixed different settings. It 
indicates that the neural network has certain transferable capability even for the new task which is given firstly 
if the frequency range is within the experienced scale. The generated motion in experiment 4 can be confirmed 
in the video (Supplementary file 1).

New task with upper body mass increase.  By increasing frequency during the head tracking task, the target 
velocity changes with more large scale, it naturally involves larger mass acceleration and deceleration of the 
upper body. Larger mass acceleration and deceleration of the upper body can happen also for the increased 
upper body mass even for the normal target frequency. Expecting the learned neural network to manage the 
larger inertia effect, we have verified how the neural network may behave for the new task with an upper body 
mass increase. It is worth noting that the neural network is trained only with different target frequencies as 
described in the section of Experiment 1.

This scenario deals with the transfer learning capability of the self-organizing neural network on the postural 
coordination of ankle and hip joints, and it was evaluated through the corresponding correlation coefficient and 
relative phase. These indices can illustrate the transition of emergent modes and kinematic features, as discussed 
in Experiment 1. The evolution of the correlation coefficient and relative phase influenced by different added 
upper body mass from 0.0 to 4.0 [kg], respectively, are illustrated in Fig. 11. The motion tracking frequency f 
of target in Eq. (5) is 0.4 [Hz]. At this target frequency, as it is relatively low frequency, the in-phase mode is 
normally employed as in Experiment 1 as can be confirmed in the upper plot in Fig. 12. While the added upper 
body increases from 0.0 to 4.0 [kg], the correlation coefficient of the hip and ankle decreased from positive to 
negative. This means that the postural coordination modes turned into switching from in-phase to anti-phase. 
It is interesting to observe this self-organizing mode alternation even when this task of increased upper body 
mass is newly given to the neural network.

Many people move with backpacks to work or school as daily activity, the weight of these backpacks varies 
from day to day. Carrying a backpack can often lead to an increase in upper body mass, which can challenge 
balance control and postural stability. This is especially true when the weight of the backpack is unknown 
beforehand. As such, we included this scenario in the study to examine the effects of carrying a load on the back 
on balance control and postural stability with a focus on hip-ankle motor coordination mode. For example, 
individuals with hip or ankle injuries may have compromised hip-ankle motor coordination mode, which can 
increase the risk of falls during activities of daily living. By investigating the effects of backpack weight on hip-
ankle motor coordination mode, we can better design rehabilitation programs that improve postural stability 
and reduce the risk of falls.

Further discussion
In this section, we discuss the influence of the combined impact factors of hip stiffness and tracking frequency 
on tracking performance and the switch of coordination patterns of the ankle and hip joints. As discussed 
above in the previous four experiments, mechanical and task-based constraints have a crucial impact on the 

(a)

(b)

Figure 10.   Typical result for continuous target frequency variation. (a) Joint angle variation of ankle and hip. 
(b) The correlation coefficients between the ankle and hip joints with increasing target frequency. The transition 
frequency is 0.69 Hz. The window length for calculating the correlation coefficient is 300 timesteps. The growth 
rate of the frequency is 0.036 Hz/s. The simulation time is 25 s.
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self-organization between the ankle and hip joints. Thus, we would like to explore more cases by combining 
these constraints. Here, we take hip stiffness and tracking frequency as an example, considering mechanical and 
task-based constraints.

The primary purpose of this work is to explore the mechanism of emergent coordination modes between 
the ankle and hip joints. Here, the correlation coefficient of the hip and ankle joint angles is used to evaluate the 
coordination modes. Considering mechanical and task-based constraints for exploring the continuous transition 
between in-phase and anti-phase modes, two essential factors, including stiffness of hip joints and target tracking 
frequency that influence the postural coordination phase, are selected. In Fig. 13, with the increase of target track-
ing frequency and the decrease of stiffness of hip joints, the correlation coefficient changes from a positive value 
to a negative one means that postural coordination switches from in-phase to anti-phase. Mechanical constraints 
like hip stiffness can influence the phase modes as the upper body inertia effect appears more significantly for the 
reduced hip stiffness condition. In high hip stiffness, the postural coordination modes remain in-phase while the 
anti-phase is kept in low hip stiffness. For the hip stiffness ranging from 50 to 150 [Nm/rad], the coordination 
modes are heavily influenced by the target tracking frequency. Furthermore, the continuous transition from in-
phase to anti-phase between the ankle and hip joint happened as the target tracking frequency increased in the 
condition of fixed hip stiffness, as discussed in the previous human experiments17.

We have also tested exploring the effect of head motion amplitude on mode alternation, but the alternation 
observed was not as clear as that of the frequency effect. As explained earlier, the acceleration and deceleration 
of mass play a crucial role in inducing mode alternation. According to mechanical dynamics, the amplitude 
itself has a relatively minor effect on this phenomenon. In the case of humans, the amplitude can have some 

Figure 11.   Evolution of correlation coefficient, relative phase influenced by the different weight of the added 
load at the upper body. Where energy consumption penalization parameter γ in Eq. (6) is 20. Ankle and hip 
stiffness remains 25 [Nm/rad] and 125 [Nm/rad]. The motion tracking frequency f of target point in Eq. (5) is 
0.4 [Hz].

Figure 12.   Joint angle of the ankle and hip in the different weight of the load. Where energy consumption 
penalization parameter γ in Eq. (6) is 20. Ankle and hip stiffness remains 25 [Nm/rad] and 125 [Nm/rad]. The 
motion tracking frequency f of target in Eq. (5) is 0.4 [Hz].
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impact, but our foot, being a rigid body on the floor, doesn’t provide much gripping capability. As a result, the 
sustainable amplitude range is not wide enough to observe a significant alternation for the amplitude test. To 
study this aspect further, we would require factors such as foot gripping function with foot fingers or friction.

Conclusion and perspective
This study proposed and studied to produce a self-organizing neural network that can adaptively coordinate the 
postural mode without assuming a prior body model regarding body dynamics and kinematics. Postural coor-
dination modes are reproduced in head-target tracking tasks through a deep reinforcement learning algorithm. 
Such a result is difficult to obtain with models based on offline optimization21 or the model-based control model20. 
The transitions between the postural coordination types, i.e. in-phase and anti-phase coordination modes, could 
be reproduced by changing frequencies of the moving target (Fig. 6). Mode alternation was consistent with 
observations reported in the literature17,19.

The correlation coefficient and relative phase indicated the two coordination modes, in-phase and anti-phase 
of the ankle and hip joints. These indices can indicate the spatial features of the ankle and hip joint angles. The 
emergence of postural modality was influenced by mechanical and task-based constraints with regard to hip 
stiffness, energy consumption, and frequency of tracking target. From the result of Fig. 8, we can conclude 
that energy penalization tends to change the ankle and hip joints’ coordination modes toward in-phase mode. 
From an energy-saving point of view, in-phase coordination consumes less energy than anti-phase coordination 
between the ankle and hip joints if there is a solution. However, the task involves a complex mass inertia effect, 
the hip joint gets required to be articulated intensively, then it turns into anti-phase mode. Body parameter like 
hip joint stiffness also could be confirmed to make influence the mode alternation. When the joint stiffness gets 
decreased, the necessity to compensate for the body inertia gets high, then anti-phase mode coordination is 
more required (Fig. 9).

Finally, the continuous transition between postural coordination modes was realized, it could demonstrate 
the learned neural network adaptability for a new task while keeping self-organized mode alternation. Even if the 
neural network is not trained under continuous frequency variations, it could adapt to the time-varying target 
frequency changes while keeping consistent mode alternation from in-phase to anti-phase. Further, expecting 
the learned neural network to manage the larger inertia effect, we have verified how the neural network may 
behave for the new task with an upper body mass increase. It is worth noting that the neural network is trained 
only with different target frequencies. For the increased upper body inertia, the mode was altered into anti-phase 
in a self-organizing manner.

This work provides a new approach to computational human motor learning and illustrates the postural 
modality of self-organization for head-tracking tasks. For future research, we may explore continuous coordina-
tion dynamics between the ankle and hip joints under other constraints or tasks such as body size and obesity, 
and functional reaching while standing. Furthermore, whole multi-segments, including neck, arm, hip, knee, and 
ankle joints, may be considered for body modeling to improve the current study toward full whole-body tasks. 
Finally, in-phase and anti-phase alternation is one of the synchronization phenomena in mechanical systems. 
More generalized perspective on synergetic synchronized oscillation is also an important future research direc-
tion to induce dynamic equilibrium in natural mechanical systems41.

Figure 13.   The correlation coefficient of hip and ankle joint angles in the whole tracking-balancing tasks is 
determined by the stiffness of hip joints from 25 to 200 [Nm/rad] and motion frequency f of the target point in 
Eq. (5) from 0.05 to 0.5 [Hz].
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Data availability
All codes used to perform the analyses are available from the repository. https://​github.​com/​Li-​Guanda/​Swing​
Human​oid.
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