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Diabetic retinopathy is a leading cause of blindness in working-age adults worldwide. Neovascular 
leakage on fluorescein angiography indicates progression to the proliferative stage of diabetic 
retinopathy, which is an important distinction that requires timely ophthalmic intervention with laser 
or intravitreal injection treatment to reduce the risk of severe, permanent vision loss. In this study, 
we developed a deep learning algorithm to detect neovascular leakage on ultra-widefield fluorescein 
angiography images obtained from patients with diabetic retinopathy. The algorithm, an ensemble 
of three convolutional neural networks, was able to accurately classify neovascular leakage and 
distinguish this disease marker from other angiographic disease features. With additional real-world 
validation and testing, our algorithm could facilitate identification of neovascular leakage in the 
clinical setting, allowing timely intervention to reduce the burden of blinding diabetic eye disease.

Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, often affecting working-age individuals1. 
It is the most common microvascular complication of diabetes mellitus (DM), affecting nearly one-third of those 
with DM2. In the early non-proliferative stages of DR (NPDR), regular screening is recommended to identify 
individuals at risk of progression to proliferative DR (PDR)3. If PDR develops, early detection and treatment with 
laser and/or intravitreal anti-VEGF injections reduces the risk of permanent vision-threatening complications4,5. 
It is therefore imperative to accurately identify patients with PDR to guide timely treatment.

Eye exams and color fundus photographs are the standard of care to detect the presence of neovasculariza-
tion (NV), the defining feature of PDR. NV must be discerned from other abnormal vascular features in NPDR, 
such as microaneurysms, dot-blot hemorrhages, venous beading, and intraretinal microvascular abnormalities6. 
Another imaging modality that complements eye exams is fluorescein angiography (FA). FA uses the fluorescent 
properties of fluorescein dye to highlight abnormal vascular features that may be more difficult to observe with 
an eye exam alone7. For example, the NV lesions that are diagnostic of PDR cause leakage on FA, which is char-
acterized by bright hyperfluorescence that progressively enlarges over time with hazy borders. However, leakage 
caused by NV must still be distinguished from other angiographic findings in DR. For example, microaneurysms 
may appear as bright hyperfluorescent foci, retinal edema may appear as areas of late hyperfluorescence, and 
vascular incompetence manifests as late hyperfluorescence along retinal vessels. Thus, the interpretation of FAs 
may provide additional diagnostic value in DR beyond examination and color fundus photographs, but also 
requires a trained clinician to identify NV and PDR.

Convolutional neural networks (CNNs) have been used in the automated classification of eye diseases includ-
ing age-related macular degeneration, retinopathy of prematurity, and glaucoma8–10. CNNs have also been used 
in the detection of referral-warranted diabetic retinopathy from color fundus photographs11,12. In this study, we 
trained a deep learning algorithm to detect leakage from retinal NV on ultra-widefield fluorescein angiography 
(UWF-FA), an imaging modality that provides a 200-degree field of view for FA. Retinal NV defines PDR, and 
accurate detection of NV facilitates early treatment before progression to vision-threatening complications. 
Our algorithm was able to accurately classify neovascular leakage in the presence of other hyperfluorescent and 
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hypofluorescent lesions on UWF-FA images. With further improvements in performance, adoption of such an 
algorithm could allow for more consistent identification of NV, facilitating early treatment of patients with PDR 
and reducing the burden of blinding diabetic eye disease.

Results
Patient and imaging characteristics.  The study included 678 images from 377 patients. Table 1 shows 
the demographic and clinical characteristics of the 377 patients.

There was a slightly greater proportion of male patients (55%; n = 209) and most were White (66%; n = 249) 
with a substantial minority who were Black (24%; n = 90). Mean age was 58.6 years (SD 13.4), mean BMI was 
32.6 kg/m2 (SD 8.7), and mean systolic blood pressure was 136.8 mmHg (SD 22.4). Most patients had type 2 
DM (82%; n = 308), and mean hemoglobin A1c was 8.0% (SD 2.0). Eye-level characteristics of the 678 images 
are shown in Table 2.

Eyes with varying clinical DR severity ranging from no DR to PDR were included, with DR severity deter-
mined by eye exam with the treating retinal specialist. Mean logMAR visual acuity was 0.36 (SD 0.36), or Snellen 
equivalent 20/46. Severity of DR was determined on clinical exam and evaluation by a retinal specialist. 10% 
(n = 70) of eyes had no DR, 15% (n = 102) of eyes had mild NPDR, 20% (n = 135) of eyes had moderate NPDR, 
and 13% (n = 90) of eyes had severe NPDR. 24% (n = 163) of eyes had PDR. A substantial proportion of eyes had 

Table 1.   Patient baseline characteristics.

Total N = 377 n %

Sex

 Male 209 55

 Female 168 45

Race

 White 249 66

 Black 90 24

 Asian 16 4

 Other 22 6

 Type 1 DM 69 18

 Type 2 DM 308 82

Mean SD

Age 58.6 13.4

Last systolic BP 136.8 22.4

Hemoglobin A1c (%) 8.0 2.0

BMI 32.6 8.7

Table 2.   Eye characteristics.

N = 678 Mean SD

LogMAR VA 0.36 0.36

Snellen VA Equivalent 20/46

n %

Eye laterality

 OD 366 54

Lens status

 Phakic 237 35

 Pseudophakic 425 63

 Aphakic 16 2

DR severity

 No DR 70 10

 Mild NPDR 102 15

 Moderate NPDR 135 20

 Severe NPDR 90 13

 PDR 163 24

 History of macular edema 290 43

 Neovascular leakage on FA 120 18



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9165  | https://doi.org/10.1038/s41598-023-36327-6

www.nature.com/scientificreports/

a history of macular edema (43%; n = 290). Graders identified the presence of angiographic neovascular leakage 
in 18% (n = 120) of images. Most eyes were pseudophakic (63%; n = 425).

Algorithm performance.  We trained three CNNs and evaluated performance of the model-averaged 
ensemble classifier through five-fold cross-validation (Fig. 1).

The component CNNs were selected based on performance in a variety of prior ophthalmic applications13–19. 
Since the data set of 678 images contained only 120 images (18%) with grader-identified neovascular leakage, 
additional weight was placed on this classification to address the class imbalance.

Figure 2A shows the receiver operating characteristic (ROC) curves obtained from five-fold cross-valida-
tion. Area under the ROC curve (AUC) was 0.96 for the model-averaged ensemble predictor. The AUCs for 
each individual CNN in the ensemble were 0.90 for InceptionResNetV2, 0.92 for EfficientNetB6, and 0.94 for 
ResNet152V2. Figure 2B shows the precision-recall (PR) curves from five-fold cross-validation. The average pre-
cision was 0.87 for the ensemble predictor. Individual CNN average precisions were 0.76 for InceptionResNetV2, 
0.79 for EfficientNetB6, and 0.83 for ResNet152V2. Table 3 lists the metrics obtained within each fold of training 
and testing for the ensembled predictor. At the selected operating point, sensitivity was 0.82, specificity was 0.95, 
and precision was 0.77.

Figure 3 shows the confusion matrix for the ensemble classifier at the selected operating point. Most of the 
positive and negative images were corrected identified by the model, but a proportion of images were false-
positives or false-negatives.

Supplementary Figure 1 shows images of the false-positive and false-negative algorithm predictions from 
Fold 1 of cross-validation. Some potential reasons for false-negative predictions in these images (Supplementary 
Fig. 1) included NV that exhibited slow leakage of fluorescein, very small foci of NV, NV near the optic disc, 

Figure 1.   Architecture of the deep learning classifier. Five-fold cross-validation was used with an 80%/20% 
train/test split. Predictions from the ResNet152V2, EfficientNetB6, and InceptionResNetV2 convolutional 
neural networks were ensembled using model averaging.

Figure 2.   Receiver operating characteristic and precision-recall curves for detection of leakage from 
neovascularization by the deep learning classifier.
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and concurrent presence of other causes of leakage. Other causes of leakage observed included staining around 
retinal venules and retinal edema. Potential reasons for false-positive predictions in these images (Supplemen-
tary Fig. 2) included window defect from fibrosis or scar, aberrant non-neovascular vessels (such as intraretinal 
microvascular abnormalities or IRMA), and bright fluorescence from other causes of leakage such as clusters 
of microaneurysms. Forty randomly-selected images and corresponding saliency maps are included in Sup-
plementary Fig. 3 (true-positive predictions), Supplementary Fig. 4 (true-negative predictions), Supplementary 
Fig. 5 (false-positive predictions), and Supplementary Fig. 6 (false-negative predictions).

While no standardized external test set exists for UWF-FA images in diabetic retinopathy, to conduct a pilot 
external validation study we used UWF-FA images of diabetic retinopathy found in the American Society of 
Retinal Specialists (ASRS) Image Bank. The algorithm correctly classified 17 out of 17 (100%) images as true-
positive for NV leakage, and 4 out of 5 (80%) images as true-negative for NV leakage. 1 out of 5 (20%) images 
was classified as false positive, and there were no false negatives.

Table 3.   Cross-validation metrics.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall

Area under 
ROC curve 0.95 0.97 0.98 0.94 0.98 0.96

Average precision 0.84 0.92 0.93 0.83 0.92 0.87

Accuracy 0.90 0.95 0.94 0.90 0.94 0.92

Sensitivity 0.74 0.75 0.92 0.79 0.90 0.82

Specificity 0.93 0.99 0.95 0.93 0.95 0.95

Precision 0.68 0.95 0.79 0.73 0.76 0.77

Figure 3.   Confusion matrix comparing grader labels and algorithm predictions. Most of the fluorescein 
angiogram images were negative for neovascularization.
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Discussion
Our deep learning algorithm was able to detect neovascular leakage in UWF-FA images containing other DR 
disease features that cause hyper- and hypo-fluorescent angiographic changes. To our knowledge, an algorithm 
to perform this classification task has not previously been constructed. Our image data set was obtained from 
a well-characterized group of patients with DM and varying stages of DR20. The algorithm may be useful in 
augmenting ophthalmologists’ or retinal specialists’ ability to discern neovascular leakage on fluorescein angi-
ography in the clinical setting.

Deep learning algorithms have been created for screening, classification, and segmentation of numerous eye 
conditions8,9,11,21,22. In diabetic retinopathy, deep learning has been used to screen patients with diabetes mellitus 
(DM) for referral-warranted diabetic retinopathy (DR)11,23, and to identify the severity of DR24. For example, 
Dai et al. achieved an AUC of 0.97 for detection of PDR with a ResNet-based classifier24. Ting et al. achieved an 
AUC of 0.96 for detection of vision-threatening DR used a VGGNet-based classifier25. However, many studies 
including these used 50-degree color fundus photographs. Peripheral vascular lesions not visible on traditional 
photography are commonly found in DR and may be important prognostic indicators26,27. Our study used 
UWF imaging with a 200-degree field of view to include NV lesions outside of the posterior pole28. A study by 
Nagasawa et al. used non-FA UWF imaging to detect treatment-naïve PDR with an AUC of 0.9729. However, in 
their study the classifier only had to distinguish between images of normal subjects and images of subjects with 
PDR, whereas discriminating between NPDR and PDR may be a more challenging task. Our algorithm trained 
on UWF-FA images achieved an AUC of 0.96 to detect NV leakage, a finding that is diagnostic of PDR. Sickle cell 
retinopathy is another retinal vascular disease which may also progress into a proliferative stage characterized 
by neovascularization and tractional retinal detachment. Cai et al. trained an InceptionV4 network to detect 
seafan neovascularization from ultra-wide-field fundus photographs, achieving sensitivity and specificity of 
0.9730. Early detection of proliferative vascular disease using automated methods may facilitate early treatment 
to reduce the risk of vision loss.

Our data included 163 eyes classified as PDR by a clinician, whereas only 120 images were labeled by graders 
as positive for NV leakage. This discrepancy could be explained by clinical scenarios in which a clinician would 
diagnose PDR despite lack of evidence of NV on UWF-FA. These could include development of vitreous hemor-
rhage in an eye with known pre-existing diabetic retinopathy, imaging of a patient who had intravitreal injection 
performed for proliferative disease preceding referral (causing regression of NV on imaging), neovascularization 
in the far periphery visible clinically but not visualized on UWF-FA, or iris neovascularization. False-positive 
predictions by the algorithm were not statistically different (Chi-Squared Test) between eyes with PDR without 
NV leakage on imaging, and eyes with NPDR without NV leakage on imaging.

Fluorescein angiogram results are typically recorded as a collection of a dozen or more image frames reflect-
ing the different time points and phases of the angiogram. A potential use of the algorithm would be identifying 
image frames in which neovascularization is detected, indicating the most important frames to review. In this 
role, the algorithm would facilitate clinical diagnosis. Deep learning has been used to detect abnormalities on 
FA in other retinal diseases such as retinopathy of prematurity and age-related macular degeneration31–33. Since 
PDR is a cause of vision-threatening complications of diabetes mellitus, early diagnosis is key to obtaining appro-
priate treatment to prevent vision loss4,5. Leakage from NV is present in active, untreated proliferative diabetic 
retinopathy, and often resolves with treatment of PDR.

The limitations of this study include the lack of a larger, standardized external test image set, the inherent 
limitations of a retrospective, single-center study, inability to assess for diabetic macular edema, and that images 
used were only from the early venous phase of fluorescein angiography. No standardized external test image set 
exists for this classifier. We used a data set of 22 images from the ASRS Image Bank as a pilot data set for external 
validation, but a larger, standardized external test set would be needed to confirm the algorithm’s generaliz-
ability. Improved data capture and sharing standards through the National Eye Institute Bridge2AI initiative 
or a model-to-data approach could be used to confirm external validity34. Although diabetic macular edema 
does cause leakage on FA, the preferred imaging modality for detection of diabetic macular edema is optical 
coherence tomography and not FA. A multi-modality imaging approach with optical coherence tomography 
would be needed to incorporate detection of diabetic macular edema which is an additional vision-threatening 
complication of DM. Finally, we chose the early venous phase of FA because leakage from NV appeared to be 
most prominent during this phase in contrast to other angiographic findings. We reasoned that earlier phases 
of FA would be less likely to exhibit leakage from neovascularization, and that in the later phases of FA, hyper-
fluorescence from staining would be more difficult to distinguish from leakage. However, leakage from NV may 
also be present during other phases, and the temporal pattern of leakage could provide additional information 
to the model. Analysis of videos of FA could also be of benefit, but video FA is not widely recorded which limits 
its generalizability.

In summary, we trained a deep learning algorithm to detect the presence of neovascular leakage in UWF-FA 
images from patients with diabetic retinopathy. With additional testing to verify external validity, the algorithm 
could help guide early identification and treatment of proliferative diabetic retinopathy.

Methods
We included patients 18 years of age or older with DM who received a diagnosis of diabetic retinopathy by a 
retina-trained clinician and had an ultra-widefield fluorescein angiography (UWF-FA) study performed between 
January 2009 and May 2018 at two sites of a tertiary academic medical center (Kellogg Eye Center Ann Arbor 
and Grand Blanc). Images were obtained retrospectively from a previously generated data set used for quantifica-
tion of retinal neovascularization20. Briefly, the images were captured with a UWF scanning laser ophthalmos-
copy device (Optos 200Tx or Optos California; Optos PLC). Images from the venous phase of the fluorescein 
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angiogram were used because leakage from NV was most prominent during this phase compared to other 
angiographic findings. Images were excluded if image quality was too poor to identify distinct fundus features. 
Images were labeled with neovascular leakage by graders who underwent training as described previously20. 
Graders were masked to patient data. A fellowship-trained retinal specialist (P.Y.Z.) verified grader labels. Images 
were cropped to the central 1792 × 1280 and downsampled to 896 × 640. This study adhered to the tenets of 
the Declaration of Helsinki. The study was initiated after approval by the University of Michigan Institutional 
Review Board (HUM00120509, PI: Y.M. Paulus), which approved an exemption for the requirement to obtain 
informed consent.

For the deep learning algorithm, we trained three CNNs: ResNet152V2, EfficientNetB6, and Inception-
ResNetV2. Each network was pre-trained on ImageNet and then trained on the UWF-FA data set. The algorithm 
as evaluated using five-fold cross-validation, which each fold consisting of an 80% training set and 20% test set. 
To generate an ensembled prediction, we averaged the predictions of each of the three CNNs. The Adam algo-
rithm was used for optimization, and the learning rate was set to 0.0005. The batch size was set to 16. Training 
images were randomly augmented with horizontal and/or vertical translation of up to 10%, random horizontal 
and vertical flip, image rotation of up to 72 degrees, and image zoom between 90 and 110%. Training was set 
to a maximum of 35 epochs, with early stopping if the training loss did not decrease after 8 epochs. Computa-
tion was performed using Keras with TensorFlow version 2.7.0 as backend on the University of Michigan High 
Performance Computing Cluster (16 GB NVIDIA Tesla V100; NVIDIA Corporation). Statistical analyses were 
performed using Excel and Python version 3.9.7 with scikit-learn module version 1.0.1.

Data availability
The data that support the results of this study are not publicly available in respect of patient confidentiality. Pro-
gramming code and algorithm weights are available upon reasonable request with the corresponding authors.
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