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This work presents the results of using tree-based models, including Gradient Boosting, Extra Trees,
and Random Forest, to model the solubility of hyoscine drug and solvent density based on pressure
and temperature as inputs. The models were trained on a dataset of hyoscine drug with known
solubility and density values, optimized with WCA algorithm, and their accuracy was evaluated using
R?, MSE, MAPE, and Max Error metrics. The results showed that Gradient Boosting and Extra Trees
models had high accuracy, with R? values above 0.96 and low MAPE and Max Error values for both
solubility and density output. The Random Forest model was less accurate than the other two models.
These findings demonstrate the effectiveness of tree-based models for predicting the solubility and
density of chemical compounds and have potential applications in determination of drug solubility
prior to process design by correlation of solubility and density to input parameters including pressure
and temperature.

The poor water solubility of newly discovered medicines has been a major issue for pharmaceutical industry, and
various techniques have been explored and developed to enhance the solubility of drugs in aqueous solutions’.
Either physical or chemical methods can be used for increasing the solubility of drugs in aqueous media, however
the method of nanonization based on physical methods has attracted much attention recently for preparation of
drug nanoparticles. One of the physical methods for drug nanonization is supercritical processing which can be
used to prepare drug particles at nano size for enhanced aqueous solubility?. For developing this new technique,
drug solubility in the supercritical solvent must be known prior to process design and development.
Estimating pharmaceutical solubility in supercritical solvents such as CO, has been reported by different
methods such as thermodynamics and data-driven models’. The main inputs for the modeling have been con-
sidered to be pressure and temperature as these factors showed the most important effects on the drug solubil-
ity change>*7. It is a crucial step to measure and correlate drug solubility to prepare drugs with nanosized and
better bioavailability. The process of supercritical for solid-dosage drugs is also considered as green technology
because CO, gas is usually employed for the drug treatment, and no organic solvent is used for the process®°.
Other approaches have been studied for enhancing drug solubility in water, however nanonization is a facile
and effective process specifically mechanical approaches which do not use chemical agents for preparation
of nanomedicines!®. The method of supercritical processing can be also developed for continuous processing
thereby a hybrid process can be developed using this novel technology. For solubility estimation of pharma-
ceuticals, basically two main approaches are utilized including thermodynamics and data-driven models. The
methods of thermodynamics estimate the drug solubility based on solid-liquid equilibrium, and the computa-
tions are performed to find the amount of dissolved drug (solid phase) in the solvent as function of pressure and
temperature'!™*>. On the other hand, data-driven models estimate the solubility based on the available measured
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data via training appropriate algorithms. Despite the acceptance of thermodynamic models for pharmaceuti-
cal solubility, these models are not straightforward to develop for a variety of drug substances. The method of
machine learning which is data-driven model has indicated greater performance in terms of fitting accuracy for
estimating different drugs solubility in supercritical solvents'*-'°.

Therefore, it is crucial in drug development and pharmaceutical industry to determine solubility as well as
density of supercritical solvent, which can have a significant impact on its bioavailability and efficacy. Therefore,
accurate prediction of these properties is essential for the success of drug development. The methods of machine
learning can be employed for both solubility prediction and solvent density, as the solvent is considered to be
compressible in this process. Begum used several methods including SVM, KNN, and linear regression (LR)
to predict the solubility of Hyoscine and density of solvent in supercritical processing, and the results were
promising’. However, other methods based on machine learning can be developed and tested for correlation of
Hyoscine solubility in supercritical CO, solvent.

Machine learning algorithms have shown great potential in predicting the solubility and density of drugs,
thereby reducing the cost and time required for drug development'’. In this study, we explore the performance
of three popular machine learning algorithms, Extra Trees (ET), Random Forest (RF), and Gradient Boosting
(GB), in predicting the solubility of Hyoscine drug and density of the solvent as function of pressure and tem-
perature. Furthermore, we use the Water Cycle Algorithm (WCA) to tune the hyperparameters of the models
to improve their performance.

RF works by building several decision trees, each with a subset of the features and training data, and then
combining their results to make a final prediction. ET is similar to RE, but it uses random thresholds to split nodes
in the decision trees and randomly selects features for each tree. Both RF and ET have a low risk of overfitting
and are robust to noisy data, making them popular choices for high-dimensional datasets'$-2!.

GB, on the other hand, combines multiple weak decision trees to create a strong predictor. It starts with a
simple tree and then iteratively improves the model by adding more trees that predict the residual error of the
previous trees. GB has shown to be effective for tasks where the output variable is continuous, such as in regres-
sion tasks. However, GB can be sensitive to overfitting and is computationally more expensive than RF and ET?.

The dataset used in this study contains 45 observations of Hyoscine solubility and density of the solvent at
various combinations of temperature and pressure. The input variables are temperature (in K) and pressure (in
bar), while the output variables are solubility (mole fraction) and density (kg m~)*. The dataset was preprocessed
using min-max scaling to normalize the input variables. The key aim of this research is to evaluate the RF, ET,
and GB models in predicting the solubility and density and to determine the optimal hyperparameters for these
models using the WCA algorithm.

Modeling preliminaries
In this section, the fundamental components of the modeling process used in this work will be described. In the
subsequent section, the modeling framework will be introduced.

Decision tree regression. A decision tree, also known as a DT, is a flexible algorithm that can be applied
to classification as well as regression problems. The decision tree algorithm derives from the primary principle of
decomposing a difficult problem into a series of more manageable subproblems, each of which has the potential
to result in a solution that is more understandable**?**. Decision trees consist of a series of hierarchical conditions
that are sequentially applied from the root of the tree to the leaves. Due to their transparent and interpretable
structure, decision trees are straightforward to comprehend. Once trained, decision trees open up the possibil-
ity of generate logical rules that can be employed to forecast novel datasets by repeatedly dividing them into
subgroups®.

A DT model is trained by iteratively partitioning the training set. Starting from the root node, the algorithm
repeatedly splits the data at each internal node based on specific criteria until the stopping condition is satisfied.
Each leaf node of the tree generates its own unique and simple regression model. Upon completion of the induc-
tion process, pruning is performed to enhance the model’s generalization ability by reducing the complexity of
the tree. Pruning involves removing nodes that have little or no impact on the prediction accuracy of the tree,
which helps to prevent overfitting to the training data.

Tree-based ensembles. In this subsection, we will introduce three ensemble methods based on decision
trees that are employed in this study. Random Forest (RF) is a widely-used ensemble model that is designed
to overcome the shortcomings of the conventional Decision Tree algorithm. The RF technique involves train-
ing numerous decision tree learners concurrently to minimize model bias and variance. The construction of a
random forest model involves randomly selecting N bootstrap samples from the original dataset, and for each
sample, an unpruned regression tree is trained. Instead of using every possible predictor, K randomly selected
predictors are used as potential splits?. The process is then iterated until C trees are formed, and then new data
is estimated by averaging the predictions made by the C trees. By employing bagging to grow trees from different
training datasets, RF increases the diversity of the trees and decreases the total variance of method**. A RF model
(for regression) can be mathematically expressed as**?’:

C
e v 1 .
fre0 = ; T;(x)

The random forest regression predictor takes a vectored input variable x, and produces an output by combin-
ing the predictions of C decision trees, where Tj(x) represents a single regression tree generated using a subset of
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input variables and bootstrapped samples®*. The RF method has the potential benefit of performing out-of-bag
error estimation during forest construction by reusing training instances that were not used to build individual
trees. The out-of-bag subset is a random subset of samples used to estimate the generalization error without
consulting an external validation dataset'®%,

RF can determine the importance of input features, helping to enhance model performance on high-dimen-
sional datasets. It involves measuring the mean decrease in prediction accuracy by changing one input variable
while keeping others constant. This assigns a relative importance score to each variable and guides the selection
of the most influential features for the final model**%.

One other tree-based ensemble similar to Random Forest is Extremely Randomized Tress or Extra Trees?.
This method is a relatively new approach in the field of machine learning and can be seen as an expansion of the
widely-used random forest algorithm. It is designed to be less prone to overfitting®. Similar to the random forest,
the extra trees algorithm (ET) works by training each base estimator with a random subset of features. In contrast
to random forest, it does not randomly choose a feature and its corresponding value to use in node splitting*°.

Random Forest (RF) and Extremely Randomized Trees (ET) are both ensemble learning algorithms that
combine multiple DT to create a more robust model. The main difference between the two algorithms is in the
way they select the features used in each decision tree. In RF, a random subset of features is selected for each
tree, and the best feature is chosen for each node split. In contrast, ET uses a random subset of features for each
tree and selects a random threshold value for each feature to split the node. This makes ET even more random
than RE as it completely eliminates the bias that comes from choosing the best feature. ET is therefore less likely
to overfit a dataset, but may have slightly higher bias than RE Overall, both algorithms are highly effective for
high-dimensional datasets with many features, and the choice between the two will depend on the specific
characteristics of the data and the trade-off between bias and variance.

As the last one, Gradient Boosting Regression (GBR) is a regression technique that involves combining a set of
simple decision trees to form a strong predictor. The technique entails adding decision trees to a model iteratively
in order to correct errors made by previous trees. The model learns the difference between the previous model’s
predictions and the actual values of the target variable at each iteration®..

The GBR algorithm uses a loss function to examine the accuracy of the model at each iteration. The objective
function measures the discrepancy between the target variable’s predicted and actual values. In GBR, the widely
adopted loss function is the mean squared error (MSE) function.

The GBR model is formulated as follows*!:

M
f&) =) Buhm(x)
m=1

Here, f(x) is the predicted target variable, B, is the weight assigned to the m-th decision tree, h,, (x) is the
prediction of the m-th decision tree for input x, and M stands for the quantity of trees in the model.

The decision trees used in GBR are typically shallow, with only a few levels of branching. In order to define
the tree structure, the input space is partitioned into regions according to the values of the input features. The
principle for selecting splits is to maximize the reduction in the MSE of the target variable.

The GBR algorithm uses gradient descent to update the weights of the decision trees at each iteration. The
gradient of the loss function in relation to the predicted target variable is calculated, and the decision tree is
trained to predict the negative gradient. The weight of the tree is then updated to minimize the loss function.

Water cycle algorithm (WCA). The Water Cycle Algorithm (WCA) is an optimization algorithm based
on population that is inspired by the natural water cycle process. The algorithm is based on the concept of the
water cycle, which involves water evaporation from the earth’s surface, cloud formation, and precipitation back
onto the earth’s surface. In its search for optimal solutions, the WCA follows a similar pattern. Initialization,
evaporation, precipitation, and river formation are all steps in the algorithm®.

During the initialization step, a random population of candidate solutions is generated. Each solution is
characterized by a set of parameters that describe the issue at hand. In a function optimization problem, for
example, the parameters could be the values of the input variables®.

The fitness values of the solutions are evaluated during the evaporation step. A solution’s fitness is a measure
of how good it is, with higher fitness values indicating better solutions. The fitness values are used to calculate
the evaporation rate, which is used to determine how much water evaporates from each solution®*,

The evaporated water is transformed into clouds in the precipitation step, which are then randomly distributed
across the population of solutions. Each cloud represents a potential solution improvement. The cloud fitness
values are compared, and the best one is chosen®.

The selected cloud is used in the river formation step to create a river that flows from the current solution to
the selected cloud. The river is represented as a set of solution parameter changes. The differences between the
current solution and the chosen cloud determine the changes.

Evaporation, precipitation, and river formation are all repeated until a stopping criterion is reached. A maxi-
mum number of iterations, a minimum fitness value, or a maximum computational time could be used as the
stopping criterion’®.

The WCA's ability to handle multiple objectives is one of its strengths. The goal of multi-objective optimiza-
tion is to determine a set of solutions that are optimal in terms of several competing objectives. The WCA can
be extended to handle multiple objectives by employing the dominance concept. A solution is said to dominate
another solution if it outperforms it in at least one objective while failing in none. The WCA can be used to find
a set of solutions that are not dominated by any other solution®.
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Modeling framework

In this work, we aimed to predict the solubility of Hyoscine drug as well as density of solvent (supercritical CO,)
at different combinations of temperature and pressure using machine learning models. We utilized three models,
Random Forest (RF), Extra Trees (ET), and Gradient Boosting (GB), and fine-tuned their hyperparameters using
the Water Cycle Algorithm (WCA). The dataset was preprocessed using the Min-Max scaler to normalize the
input features. The methodology can be visualized through the flowchart in Fig. 1. Indeed, all models have two
outputs and two inputs.

Data description

The given dataset comprises of 45 instances that represent the solubility of the Hyoscine drug at distinct com-
binations of temperature and pressure. The input variables considered for the dataset are temperature in Kelvin
and pressure in bar, whereas the output variables are density and solubility®. The entire data set is displayed in
Table 1 which has been obtained from?”. The psc, stand for the density of solvent and y is the solubility in this
table. Also, in Fig. 2 the scatter plot of input parameters is shown against outputs. In this research, 80% of the
data is selected randomly for training phase and 20% is kept for testing phase.

Results and discussions

In order to implement the models in this study, we used Python 3.9, along with several libraries and frameworks

for machine learning and data analysis including NumPy, Pandas, Scikit-learn, and Matplotlib. Based on the

tree-based models used in the work, the results for solubility and density output are summarized in the Table 2.
As shown in the table, Gradient Boosting and Extra Trees models have achieved high accuracy for both solu-

bility and density output, with R* values of above 0.96. Nevertheless, the Random Forest model was less accurate

Data Set
Preprocess )
dataset @—— Min-Max Scaler
Hyperparameter
WCA f——p :
tuning :

Train Final Tree-based
> <4+

models

Ensemble

Figure 1. Overall modeling framework developed for solubility and density estimation.

Scientific Reports|  (2023) 13:10046 | https://doi.org/10.1038/s41598-023-37232-8 nature portfolio



www.nature.com/scientificreports/

170+1 838.96 1.12+0.017 | 776.53 1.13+0.021 | 704.97 0.98+0.033 | 625.09 0.84+0.015 | 544.13 0.79+0.015
200+1 866.48 1.22+0.022 | 813.52 1.34+0.020 | 755.52 1.39+0.038 | 692.68 1.34+0.027 | 627.22 1.31+0.025
230+1 888.88 1.31+0.024 | 841.89 1.45+0.031 | 791.75 1.61£0.044 | 738.63 1.67+0.046 | 683.45 1.81+0.061
260+1 907.91 1.36+0.027 | 865.12 1.55+0.041 | 820.21 1.7740.062 | 773.36 1.89+0.047 | 725.06 2.09+0.058
290+1 924.56 1.43+0.030 | 884.91 1.6+0.052 | 843.77 1.89+0.054 | 801.33 2.1140.065 |757.9 2.3+0.064
320+1 939.39 1.45+0.022 | 902.22 1.68+0.047 | 863.97 1.96+0.070 | 824.82 2.12+0.064 | 785.01 2.47+0.054
350+1 952.81 1.51+0.025 |917.65 1.72+0.060 | 881.71 2.02+0.040 | 845.13 2.26+0.054 | 808.11 2.61+0.071
380+1 965.09 1.52+0.038 | 931.61 1.78+0.046 | 897.56 2.08+0.075 | 863.05 2.34+0.045 | 828.27 2.79+0.075
410+1 976.43 1.55+0.035 | 944.38 1.79+0.055 | 911.91 2.1340.066 | 879.12 2.44+0.060 | 846.19 2.83+0.094
Table 1. Entire values of drug solubility’.
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Figure 2. Scatter plots of temperature, pressure, density, and solubility.

Pressure (bar)

Gradient Boosting | 0.99414 | 1.0764E-03 | 1.30061E-02 | 7.28459E-02 |0.96625 |3.0201E+02 | 1.38237E-02 |4.77604E+01
Extra Trees 0.99064 | 1.4550E-03 | 1.89275E-02 | 6.06040E-02 | 0.98044 | 1.2377E+02 | 1.13865E-02 | 1.50860E+01
Random Forest 0.95275 | 5.9841E-03 | 3.14389E-02 | 1.59962E-01 | 0.94655 | 3.0522E+02 | 1.71083E-02 | 2.86926E+01

Table 2. Modeling performance.

than the other two models. The MAPE values for all models were below 0.04, indicating that the models had a low
average percentage error. Max Error values indicate the maximum deviation from the true value, and the models
had a relatively low maximum error for both solubility and density output. The comparison of estimated and
observed values of solubility and density are visualized in Figs. 3 and 4. Based on All these facts and figures, the
Gradient Boosting is selected as the most appropriate model for solubility and Extra Trees is selected for density.
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Figure 3. Estimated and observed solubility values using final models.
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Figure 4. Estimated and observed density values using final models.
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Variations of both responses, i.e., drug solubility and solvent density as 3D and 2D representations are indi-
cated in Figs. 5, 6, 7, 8, 9, 10. The results revealed that solubility of Hyoscine is increased with pressure and
temperature, while on the other hand the density is increased with pressure and reduced with temperature. It
is also observed that the pressure has eminent influence on the variability of physical parameters which is due
to the nature of the solvent which is compressed gas, and its compressibility is high so that it is affected by the
pressure. In fact, more compressed gas as the solvent is favorable which can enclose more drug molecules and
increases the drug solubility in the solvent at high pressure. However, the cost of processing should be taken into
account when the pressure and temperature go up.

Conclusion

In this work, we investigated the effectiveness of tree-based models in predicting the solubility of hyoscine drug
and density values of the solvent in supercritical processing of drugs. We utilized Gradient Boosting, Extra Trees,
and Random Forest models alongside with WCA as model optimizer to evaluate their performance in predicting
the solubility and density of the hyoscine drug, and their accuracy was evaluated using R?, MSE, MAPE, and
Max Error metrics. Our results demonstrated that both Gradient Boosting and Extra Trees models were highly
accurate in predicting the solubility and density values of the hyoscine drug. The models had R? values above
0.96, and their MAPE and Max Error values were relatively low, indicating a low average percentage error and
maximum deviation from the true value. These findings suggest that tree-based models, particularly Gradient
Boosting and Extra Trees, could be effective in predicting the solubility and density values of the hyoscine drug.
This could have significant implications in drug discovery and other chemical industries, where the ability to
accurately predict solubility and density values could aid in the development of new drugs or chemical products.

275
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Figure 5. 3D indication for drug solubility estimations.
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Figure 6. 3D indication for density of solvent.
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Figure 7. Single effect of T on solubility.

Scientific Reports|  (2023) 13:10046 | https://doi.org/10.1038/s41598-023-37232-8 nature portfolio



www.nature.com/scientificreports/

\a x T=318(K) [ )
: e T=338(K) e o o
e 0o o
2.2 A
e o o
e 0 0
2.0 1
o0 @
42‘1-8' X X X ¥ X
= X X X
e e ® O X X X
g 1.6 X X X
— X X X
o X X X
o,
g o 8
1.2 1
X %
1.0 A
o 0
0.8 A
200 250 300 350 400
P (bar)
Figure 8. Single effect of P on solubility.
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Figure 9. Single effect of T on density.
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Figure 10. Single effect of P on density.
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