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Computational intelligence 
modeling of hyoscine drug 
solubility and solvent density 
in supercritical processing: gradient 
boosting, extra trees, and random 
forest models
Mohammed Ghazwani 1 & M. Yasmin Begum 2*

This work presents the results of using tree-based models, including Gradient Boosting, Extra Trees, 
and Random Forest, to model the solubility of hyoscine drug and solvent density based on pressure 
and temperature as inputs. The models were trained on a dataset of hyoscine drug with known 
solubility and density values, optimized with WCA algorithm, and their accuracy was evaluated using 
R2, MSE, MAPE, and Max Error metrics. The results showed that Gradient Boosting and Extra Trees 
models had high accuracy, with R2 values above 0.96 and low MAPE and Max Error values for both 
solubility and density output. The Random Forest model was less accurate than the other two models. 
These findings demonstrate the effectiveness of tree-based models for predicting the solubility and 
density of chemical compounds and have potential applications in determination of drug solubility 
prior to process design by correlation of solubility and density to input parameters including pressure 
and temperature.

The poor water solubility of newly discovered medicines has been a major issue for pharmaceutical industry, and 
various techniques have been explored and developed to enhance the solubility of drugs in aqueous solutions1. 
Either physical or chemical methods can be used for increasing the solubility of drugs in aqueous media, however 
the method of nanonization based on physical methods has attracted much attention recently for preparation of 
drug nanoparticles. One of the physical methods for drug nanonization is supercritical processing which can be 
used to prepare drug particles at nano size for enhanced aqueous solubility2. For developing this new technique, 
drug solubility in the supercritical solvent must be known prior to process design and development.

Estimating pharmaceutical solubility in supercritical solvents such as CO2 has been reported by different 
methods such as thermodynamics and data-driven models3. The main inputs for the modeling have been con-
sidered to be pressure and temperature as these factors showed the most important effects on the drug solubil-
ity change2,4–7. It is a crucial step to measure and correlate drug solubility to prepare drugs with nanosized and 
better bioavailability. The process of supercritical for solid-dosage drugs is also considered as green technology 
because CO2 gas is usually employed for the drug treatment, and no organic solvent is used for the process8–10.

Other approaches have been studied for enhancing drug solubility in water, however nanonization is a facile 
and effective process specifically mechanical approaches which do not use chemical agents for preparation 
of nanomedicines10. The method of supercritical processing can be also developed for continuous processing 
thereby a hybrid process can be developed using this novel technology. For solubility estimation of pharma-
ceuticals, basically two main approaches are utilized including thermodynamics and data-driven models. The 
methods of thermodynamics estimate the drug solubility based on solid–liquid equilibrium, and the computa-
tions are performed to find the amount of dissolved drug (solid phase) in the solvent as function of pressure and 
temperature11–13. On the other hand, data-driven models estimate the solubility based on the available measured 
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data via training appropriate algorithms. Despite the acceptance of thermodynamic models for pharmaceuti-
cal solubility, these models are not straightforward to develop for a variety of drug substances. The method of 
machine learning which is data-driven model has indicated greater performance in terms of fitting accuracy for 
estimating different drugs solubility in supercritical solvents14–16.

Therefore, it is crucial in drug development and pharmaceutical industry to determine solubility as well as 
density of supercritical solvent, which can have a significant impact on its bioavailability and efficacy. Therefore, 
accurate prediction of these properties is essential for the success of drug development. The methods of machine 
learning can be employed for both solubility prediction and solvent density, as the solvent is considered to be 
compressible in this process. Begum used several methods including SVM, KNN, and linear regression (LR) 
to predict the solubility of Hyoscine and density of solvent in supercritical processing, and the results were 
promising3. However, other methods based on machine learning can be developed and tested for correlation of 
Hyoscine solubility in supercritical CO2 solvent.

Machine learning algorithms have shown great potential in predicting the solubility and density of drugs, 
thereby reducing the cost and time required for drug development17. In this study, we explore the performance 
of three popular machine learning algorithms, Extra Trees (ET), Random Forest (RF), and Gradient Boosting 
(GB), in predicting the solubility of Hyoscine drug and density of the solvent as function of pressure and tem-
perature. Furthermore, we use the Water Cycle Algorithm (WCA) to tune the hyperparameters of the models 
to improve their performance.

RF works by building several decision trees, each with a subset of the features and training data, and then 
combining their results to make a final prediction. ET is similar to RF, but it uses random thresholds to split nodes 
in the decision trees and randomly selects features for each tree. Both RF and ET have a low risk of overfitting 
and are robust to noisy data, making them popular choices for high-dimensional datasets18–21.

GB, on the other hand, combines multiple weak decision trees to create a strong predictor. It starts with a 
simple tree and then iteratively improves the model by adding more trees that predict the residual error of the 
previous trees. GB has shown to be effective for tasks where the output variable is continuous, such as in regres-
sion tasks. However, GB can be sensitive to overfitting and is computationally more expensive than RF and ET22.

The dataset used in this study contains 45 observations of Hyoscine solubility and density of the solvent at 
various combinations of temperature and pressure. The input variables are temperature (in K) and pressure (in 
bar), while the output variables are solubility (mole fraction) and density (kg m-3)3. The dataset was preprocessed 
using min–max scaling to normalize the input variables. The key aim of this research is to evaluate the RF, ET, 
and GB models in predicting the solubility and density and to determine the optimal hyperparameters for these 
models using the WCA algorithm.

Modeling preliminaries
In this section, the fundamental components of the modeling process used in this work will be described. In the 
subsequent section, the modeling framework will be introduced.

Decision tree regression.  A decision tree, also known as a DT, is a flexible algorithm that can be applied 
to classification as well as regression problems. The decision tree algorithm derives from the primary principle of 
decomposing a difficult problem into a series of more manageable subproblems, each of which has the potential 
to result in a solution that is more understandable23,24. Decision trees consist of a series of hierarchical conditions 
that are sequentially applied from the root of the tree to the leaves. Due to their transparent and interpretable 
structure, decision trees are straightforward to comprehend. Once trained, decision trees open up the possibil-
ity of generate logical rules that can be employed to forecast novel datasets by repeatedly dividing them into 
subgroups25.

A DT model is trained by iteratively partitioning the training set. Starting from the root node, the algorithm 
repeatedly splits the data at each internal node based on specific criteria until the stopping condition is satisfied. 
Each leaf node of the tree generates its own unique and simple regression model. Upon completion of the induc-
tion process, pruning is performed to enhance the model’s generalization ability by reducing the complexity of 
the tree. Pruning involves removing nodes that have little or no impact on the prediction accuracy of the tree, 
which helps to prevent overfitting to the training data.

Tree‑based ensembles.  In this subsection, we will introduce three ensemble methods based on decision 
trees that are employed in this study. Random Forest (RF) is a widely-used ensemble model that is designed 
to overcome the shortcomings of the conventional Decision Tree algorithm. The RF technique involves train-
ing numerous decision tree learners concurrently to minimize model bias and variance. The construction of a 
random forest model involves randomly selecting N bootstrap samples from the original dataset, and for each 
sample, an unpruned regression tree is trained. Instead of using every possible predictor, K randomly selected 
predictors are used as potential splits26. The process is then iterated until C trees are formed, and then new data 
is estimated by averaging the predictions made by the C trees. By employing bagging to grow trees from different 
training datasets, RF increases the diversity of the trees and decreases the total variance of method24. A RF model 
(for regression) can be mathematically expressed as24,27:

The random forest regression predictor takes a vectored input variable x, and produces an output by combin-
ing the predictions of C decision trees, where Ti(x) represents a single regression tree generated using a subset of 

f̂ CRF(x) =
1

C

C∑

i=1

Ti(x)
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input variables and bootstrapped samples24. The RF method has the potential benefit of performing out-of-bag 
error estimation during forest construction by reusing training instances that were not used to build individual 
trees. The out-of-bag subset is a random subset of samples used to estimate the generalization error without 
consulting an external validation dataset18,24.

RF can determine the importance of input features, helping to enhance model performance on high-dimen-
sional datasets. It involves measuring the mean decrease in prediction accuracy by changing one input variable 
while keeping others constant. This assigns a relative importance score to each variable and guides the selection 
of the most influential features for the final model28,29.

One other tree-based ensemble similar to Random Forest is Extremely Randomized Tress or Extra Trees20. 
This method is a relatively new approach in the field of machine learning and can be seen as an expansion of the 
widely-used random forest algorithm. It is designed to be less prone to overfitting20. Similar to the random forest, 
the extra trees algorithm (ET) works by training each base estimator with a random subset of features. In contrast 
to random forest, it does not randomly choose a feature and its corresponding value to use in node splitting30.

Random Forest (RF) and Extremely Randomized Trees (ET) are both ensemble learning algorithms that 
combine multiple DT to create a more robust model. The main difference between the two algorithms is in the 
way they select the features used in each decision tree. In RF, a random subset of features is selected for each 
tree, and the best feature is chosen for each node split. In contrast, ET uses a random subset of features for each 
tree and selects a random threshold value for each feature to split the node. This makes ET even more random 
than RF, as it completely eliminates the bias that comes from choosing the best feature. ET is therefore less likely 
to overfit a dataset, but may have slightly higher bias than RF. Overall, both algorithms are highly effective for 
high-dimensional datasets with many features, and the choice between the two will depend on the specific 
characteristics of the data and the trade-off between bias and variance.

As the last one, Gradient Boosting Regression (GBR) is a regression technique that involves combining a set of 
simple decision trees to form a strong predictor. The technique entails adding decision trees to a model iteratively 
in order to correct errors made by previous trees. The model learns the difference between the previous model’s 
predictions and the actual values of the target variable at each iteration31.

The GBR algorithm uses a loss function to examine the accuracy of the model at each iteration. The objective 
function measures the discrepancy between the target variable’s predicted and actual values. In GBR, the widely 
adopted loss function is the mean squared error (MSE) function.

The GBR model is formulated as follows31:

Here, f(x) is the predicted target variable, βm is the weight assigned to the m-th decision tree, hm(x) is the 
prediction of the m-th decision tree for input x, and M stands for the quantity of trees in the model.

The decision trees used in GBR are typically shallow, with only a few levels of branching. In order to define 
the tree structure, the input space is partitioned into regions according to the values of the input features. The 
principle for selecting splits is to maximize the reduction in the MSE of the target variable.

The GBR algorithm uses gradient descent to update the weights of the decision trees at each iteration. The 
gradient of the loss function in relation to the predicted target variable is calculated, and the decision tree is 
trained to predict the negative gradient. The weight of the tree is then updated to minimize the loss function.

Water cycle algorithm (WCA).  The Water Cycle Algorithm (WCA) is an optimization algorithm based 
on population that is inspired by the natural water cycle process. The algorithm is based on the concept of the 
water cycle, which involves water evaporation from the earth’s surface, cloud formation, and precipitation back 
onto the earth’s surface. In its search for optimal solutions, the WCA follows a similar pattern. Initialization, 
evaporation, precipitation, and river formation are all steps in the algorithm32.

During the initialization step, a random population of candidate solutions is generated. Each solution is 
characterized by a set of parameters that describe the issue at hand. In a function optimization problem, for 
example, the parameters could be the values of the input variables33.

The fitness values of the solutions are evaluated during the evaporation step. A solution’s fitness is a measure 
of how good it is, with higher fitness values indicating better solutions. The fitness values are used to calculate 
the evaporation rate, which is used to determine how much water evaporates from each solution33,34.

The evaporated water is transformed into clouds in the precipitation step, which are then randomly distributed 
across the population of solutions. Each cloud represents a potential solution improvement. The cloud fitness 
values are compared, and the best one is chosen35.

The selected cloud is used in the river formation step to create a river that flows from the current solution to 
the selected cloud. The river is represented as a set of solution parameter changes. The differences between the 
current solution and the chosen cloud determine the changes.

Evaporation, precipitation, and river formation are all repeated until a stopping criterion is reached. A maxi-
mum number of iterations, a minimum fitness value, or a maximum computational time could be used as the 
stopping criterion36.

The WCA’s ability to handle multiple objectives is one of its strengths. The goal of multi-objective optimiza-
tion is to determine a set of solutions that are optimal in terms of several competing objectives. The WCA can 
be extended to handle multiple objectives by employing the dominance concept. A solution is said to dominate 
another solution if it outperforms it in at least one objective while failing in none. The WCA can be used to find 
a set of solutions that are not dominated by any other solution36.

f (x) =

M∑

m=1

βmhm(x)
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Modeling framework
In this work, we aimed to predict the solubility of Hyoscine drug as well as density of solvent (supercritical CO2) 
at different combinations of temperature and pressure using machine learning models. We utilized three models, 
Random Forest (RF), Extra Trees (ET), and Gradient Boosting (GB), and fine-tuned their hyperparameters using 
the Water Cycle Algorithm (WCA). The dataset was preprocessed using the Min–Max scaler to normalize the 
input features. The methodology can be visualized through the flowchart in Fig. 1. Indeed, all models have two 
outputs and two inputs.

Data description
The given dataset comprises of 45 instances that represent the solubility of the Hyoscine drug at distinct com-
binations of temperature and pressure. The input variables considered for the dataset are temperature in Kelvin 
and pressure in bar, whereas the output variables are density and solubility3. The entire data set is displayed in 
Table 1 which has been obtained from37. The ρscCO2 stand for the density of solvent and y is the solubility in this 
table. Also, in Fig. 2 the scatter plot of input parameters is shown against outputs. In this research, 80% of the 
data is selected randomly for training phase and 20% is kept for testing phase.

Results and discussions
In order to implement the models in this study, we used Python 3.9, along with several libraries and frameworks 
for machine learning and data analysis including NumPy, Pandas, Scikit-learn, and Matplotlib. Based on the 
tree-based models used in the work, the results for solubility and density output are summarized in the Table 2.

As shown in the table, Gradient Boosting and Extra Trees models have achieved high accuracy for both solu-
bility and density output, with R2 values of above 0.96. Nevertheless, the Random Forest model was less accurate 

Data Set

Preprocess 
dataset

Final 
Evalua�on

Min-Max Scaler

Hyperparameter 
            tuningWCA

Tree-based 
Ensemble

Train Final 
models

Figure 1.   Overall modeling framework developed for solubility and density estimation.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10046  | https://doi.org/10.1038/s41598-023-37232-8

www.nature.com/scientificreports/

than the other two models. The MAPE values for all models were below 0.04, indicating that the models had a low 
average percentage error. Max Error values indicate the maximum deviation from the true value, and the models 
had a relatively low maximum error for both solubility and density output. The comparison of estimated and 
observed values of solubility and density are visualized in Figs. 3 and 4. Based on All these facts and figures, the 
Gradient Boosting is selected as the most appropriate model for solubility and Extra Trees is selected for density.

Table 1.   Entire values of drug solubility37.

Pressure (bar)

Temperature (K)

308 ± 0.1 318 ± 0.1 328 ± 0.1 338 ± 0.1 348 ± 0.1

ρscCO2 (kg m−3) (y × 104) ρscCO2 (kg m−3) (y × 104) ρscCO2 (kg m−3) (y × 104) ρscCO2 (kg m−3) (y × 104) ρscCO2 (kg m−3) (y × 104)

170 ± 1 838.96 1.12 ± 0.017 776.53 1.13 ± 0.021 704.97 0.98 ± 0.033 625.09 0.84 ± 0.015 544.13 0.79 ± 0.015

200 ± 1 866.48 1.22 ± 0.022 813.52 1.34 ± 0.020 755.52 1.39 ± 0.038 692.68 1.34 ± 0.027 627.22 1.31 ± 0.025

230 ± 1 888.88 1.31 ± 0.024 841.89 1.45 ± 0.031 791.75 1.61 ± 0.044 738.63 1.67 ± 0.046 683.45 1.81 ± 0.061

260 ± 1 907.91 1.36 ± 0.027 865.12 1.55 ± 0.041 820.21 1.77 ± 0.062 773.36 1.89 ± 0.047 725.06 2.09 ± 0.058

290 ± 1 924.56 1.43 ± 0.030 884.91 1.6 ± 0.052 843.77 1.89 ± 0.054 801.33 2.11 ± 0.065 757.9 2.3 ± 0.064

320 ± 1 939.39 1.45 ± 0.022 902.22 1.68 ± 0.047 863.97 1.96 ± 0.070 824.82 2.12 ± 0.064 785.01 2.47 ± 0.054

350 ± 1 952.81 1.51 ± 0.025 917.65 1.72 ± 0.060 881.71 2.02 ± 0.040 845.13 2.26 ± 0.054 808.11 2.61 ± 0.071

380 ± 1 965.09 1.52 ± 0.038 931.61 1.78 ± 0.046 897.56 2.08 ± 0.075 863.05 2.34 ± 0.045 828.27 2.79 ± 0.075

410 ± 1 976.43 1.55 ± 0.035 944.38 1.79 ± 0.055 911.91 2.13 ± 0.066 879.12 2.44 ± 0.060 846.19 2.83 ± 0.094

Figure 2.   Scatter plots of temperature, pressure, density, and solubility.

Table 2.   Modeling performance.

Models/metrics

Solubility Density

R2 MSE MAPE Max error R2 MSE MAPE Max error

Gradient Boosting 0.99414 1.0764E−03 1.30061E−02 7.28459E−02 0.96625 3.0201E+02 1.38237E−02 4.77604E+01

Extra Trees 0.99064 1.4550E−03 1.89275E−02 6.06040E−02 0.98044 1.2377E+02 1.13865E−02 1.50860E+01

Random Forest 0.95275 5.9841E−03 3.14389E−02 1.59962E−01 0.94655 3.0522E+02 1.71083E−02 2.86926E+01
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Figure 3.   Estimated and observed solubility values using final models.

Figure 4.   Estimated and observed density values using final models.
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Variations of both responses, i.e., drug solubility and solvent density as 3D and 2D representations are indi-
cated in Figs. 5, 6, 7, 8, 9, 10. The results revealed that solubility of Hyoscine is increased with pressure and 
temperature, while on the other hand the density is increased with pressure and reduced with temperature. It 
is also observed that the pressure has eminent influence on the variability of physical parameters which is due 
to the nature of the solvent which is compressed gas, and its compressibility is high so that it is affected by the 
pressure. In fact, more compressed gas as the solvent is favorable which can enclose more drug molecules and 
increases the drug solubility in the solvent at high pressure. However, the cost of processing should be taken into 
account when the pressure and temperature go up.

Conclusion
In this work, we investigated the effectiveness of tree-based models in predicting the solubility of hyoscine drug 
and density values of the solvent in supercritical processing of drugs. We utilized Gradient Boosting, Extra Trees, 
and Random Forest models alongside with WCA as model optimizer to evaluate their performance in predicting 
the solubility and density of the hyoscine drug, and their accuracy was evaluated using R2, MSE, MAPE, and 
Max Error metrics. Our results demonstrated that both Gradient Boosting and Extra Trees models were highly 
accurate in predicting the solubility and density values of the hyoscine drug. The models had R2 values above 
0.96, and their MAPE and Max Error values were relatively low, indicating a low average percentage error and 
maximum deviation from the true value. These findings suggest that tree-based models, particularly Gradient 
Boosting and Extra Trees, could be effective in predicting the solubility and density values of the hyoscine drug. 
This could have significant implications in drug discovery and other chemical industries, where the ability to 
accurately predict solubility and density values could aid in the development of new drugs or chemical products.

Figure 5.   3D indication for drug solubility estimations.
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Figure 6.   3D indication for density of solvent.

Figure 7.   Single effect of T on solubility.
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Figure 8.   Single effect of P on solubility.

Figure 9.   Single effect of T on density.
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Data availability
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