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to improve the measurement
efficiency of low-field nuclear
magnetic resonance
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Nuclear magnetic resonance (NMR) has shown good applications in engineering fields such as well
logging and rubber material ageing assessment. However, due to the low magnetic field strength of
NMR sensors and the complex working conditions of engineering sites, the signal-to-noise ratio (SNR)
of NMR signals is low, and it is usually necessary to increase the number of repeated measurements
to improve the SNR, which means a longer measurement time. Therefore, it is especially important to
set the measurement parameters appropriately for onsite NMR. In this paper, we propose a stochastic
simulation using Monte Carlo methods to predict the measurement curves of T, and Dg and correct
the measurement parameters of the next step according to the previous measurement results. The
method can update the measurement parameters in real time and perform automatic measurements.
At the same time, this method greatly reduces the measurement time. The experimental results show
that the method is suitable for the measurement of the self-diffusion coefficient D, and longitudinal
relaxation time T,, which are frequently used in NMR measurements.

Nuclear magnetic resonance (NMR) can be used to explore the structure and properties of substances from the
microscopic level through non-destructive methods and is now widely used in the fields of medicine, chemistry,
materials, biology, petroleum, geology', etc. The application of portable NMR sensors and unilateral magnetic
resonance devices has attracted the attention of many researchers*. However, the low magnetic field strength
and uniformity and complex working conditions result in a low signal-to-noise ratio (SNR), long measurement
time and low measurement efficiency. These are currently urgent problems that need to be solved. A more effec-
tive way is to optimize the measurement process and set the measurement parameters appropriately to improve
the efficiency.

There are some reports on the parameter optimization algorithm in NMR measurements. Some scholars
have noticed the influence of the magnetic resonance measurement parameters on the measurement results,
but their research mainly focuses on the frequency domain®, that is, exploring the data acquisition method
that can reduce the measurement time and ensure that the frequency domain inversion spectrum has sufficient
precision'®!%. In 2017, Xing D. et al.'® presented an adaptive method for determining an acquisition parameter
tyin a modified CPMG sequence for measuring the internal magnetic field gradient distribution of samples. This
method can reduce the difficulties of operating T,-G experiments. In 2018, A. Reci'® proposed an optimization
method for the measurement parameters of the NMR liquid self-diffusion coefficient based on the Cramér-Rao
lower bound (CRLB) theory, which assumes that the self-diffusion coefficient of the sample satisfies the log-
normal distribution. In 2019, A. Reci 7 further improved the sampling method based on CRLB theory, making it
also applicable to signal acquisition with double exponential decay. In 2021, Guest et al. studied the relationship
between the experimental parameters and SNR for diffusion coefficient measurement'®.

In recent years, NMR has been widely used in industrial automation'>?, but few studies have provided a
more general time-domain sampling strategy for T, and D, measurement experiments in on-site NMR. At the
same time, some users of NMR instruments may not have background knowledge of the NMR principles, so it
is difficult for them to adjust the measurement parameters. Therefore, automatic and intelligent measurement
algorithms are wanted by users. In this paper, we introduce a Monte Carlo algorithm-based intelligent search
method for NMR measurement parameters. This method can automatically set the key parameters in the T, and
D, measurements. The experimental results demonstrate that the method could achieve a 3-4 times acceleration
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effect in the T; and D, measurement experiments, and the systematic error between the results and the accurate
value was less than 5%.

Algorithm introduction

Introduction to the Monte Carlo method. The Monte Carlo method, also known as the statistical simu-
lation method, is a numerical calculation method guided by probabilistic statistical theory?'~*°. The characteris-
tic of this method is the random sampling of the measurement variable, and an approximate result is calculated
in real time for the NMR measurement constrained with the available dataset. In this paper, an intelligent search
method for NMR measurement parameters based on the Monte Carlo algorithm is proposed to achieve the
measurements of T; and D,

Measurement sequence. Figure 1 shows the static gradient spin echo (SGSE) sequence 1 for D, measure-
ment in low-field NMR when a static gradient magnetic field is present®. where the time interval between the
90° and 180° pulses (Tq) is variable. When measuring the diffusion properties, Tq is increased at each T4 point,
and the spin echoes are recorded. Therefore, the diffusion decay curve of a liquid molecule under a gradient
magnetic fleld can be fitted. To improve the SNR, the sequence shown in Fig. 1 needs to be repeated several times
and superimposed, and it is therefore quite time-consuming.

Currently, the common way to increase the Ty value is uniform stepping, if N signals need to be measured
to fit the curve of D,. Ty is set at a uniformly increasing step rate.

The diffusion curve is estimated by using these measured values, which consumes considerable time. At the
same time, some users of NMR instruments may not have background knowledge of the NMR principles, so it
is difficult for them to adjust the measurement parameters. Therefore, automatic and intelligent measurement
algorithms are wanted by users.

The inversion recovery (IR) sequence used to measure T, is shown in Fig. 2. Similar to the SGSE sequence
and variable Ty, T; is varied to measure the T recovery of the sample.

Method. InT;and Dy measurements, adjusting T4 and T; during the measurement needs to be performed.
In our method, many diffusion curves and T decay curves are randomly generated by Monte Carlo simulations,
and then the unreasonable curves are excluded according to the data already measured, and the remaining
curves can be used to estimate the measurement parameters for the next step. The detailed steps of the algorithm
are as follows.

First, the initial range of B and Dy are determined in Eq. (1), and the two-dimensional space determined by
the initial ranges of these two parameters is called the initial parameter space. The initial parameter space is set
to BE [0, 2], DpE[107°* mm?/s, 10~ mm?/s]. The Dy range can cover most of the self-diffusion coeflicients of the
tested samples. The variation range is [2 ms, 180 ms], which can reflect the attenuation curve of all samples in the
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Figure 1. SESG-CPMG measurement of D, sequences and their parameters.
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Figure 2. IR-CPMG measurement of T, sequences and their parameters.
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above Dy range. A Monte Carlo sampling method is used to randomly select a specified number of data points in
this initial parameter space and thus draw a cluster of t-f(t) curves to calculate the uncertainty of the model at
this point (expressed as the product of the variance of B and DO in this space). f(t) is the diffusion decay curve,
and t is the abscissa of the measured data points. The most divergent time point t; in this curve cluster is selected
as the first sampling point, and the actual corresponding measurement value f (t;) is obtained by measurement.
From this measurement dataset, (t;, f(t;)) constitutes the first data point of the dataset, and the initial param-
eter space of B and D is constrained under the constraints of this data point (i.e. only the parameter space that
matches the (t;, f(t;)) data point is retained), which in turn yields the B and D, parameter subspaces. Similarly,
the t-f(t) curve cluster is plotted in this parameter subspace, and the model uncertainty is calculated, while the
point t;, which makes the curve cluster most divergent, is still selected as the next sampled data point, and the
measurement is performed. At this time, the data space is expanded to ((ty, f(t;), (t2, f(t2))), and the parameter
space of B and D, will be further reduced under the constraint of these two measurement data points. The above
steps are repeated until the model uncertainty no longer significantly decreases; then, the parameter space of B
and D, under the data space constraint consisting of all measured data will be close to the true B and D, values.
The diffusion decay curve f(t) satisfies the following form?":

f() =B*e_(DL0) , (1)

This equation is correct for the constant gradient case, where the parameter vector A =[Dy, B]is to be deter-
mined. tis the abscissa of the measured data points. Considering the form of Eq. (1), if there is no measurement
error, B should be equal to the peak of the measured echo, and the maximum Max 'i), y; is the real measurement
data. Considering the measurement error, the parameter search range can be set to|Max (y;) & 50; and the Dg of
common samples is between 0 and 10~8cm? - s~ 1. Therefore, D and B are set to obey the uniform distribution
in their respective intervals:

Dy ~ U[0,1078]
B ~ U|[Max(y;) — 50, Max(y;) + 50] ’ 2)

Multiple random sampling according to the above distribution is performed.
. ()]’
> |yi —Bxe \Po < No?, (3)

When there are sufficient curves that satisfy the condition of Eq. (3), DY can be calculated, and then, it can
be substituted into fi;; = t|DY; = Max(DY,) to obtain ;. Tq is set to 4| to obtain the new measured value
of t;1, and it is fit by least squares to obtain 2. The iterations are stopped when [30d) — Ao—1)| < eis satisfied.
The measurement of T was performed similarly.

The entire algorithm flow is shown in Fig. 3.

Experimental verifications
The equipment used in the experiment was a spectrometer (KEA2, Magritek Inc. New Zealand), RF power ampli-
fier (BT00500 ALPHA-SA, Tomoco Inc., Australia) and unilateral nuclear magnetic resonance sensor (130 mT).
To verify the effectiveness of the above algorithm, the diffusion coefficient of pure water was measured at points
taken with the algorithms Dy and T . Moreover, t; obtained by the algorithm is inputted into the programmable
spectrometer, y; is obtained from the actual measurement, and then, y; is returned to the algorithm to calculate
ti+1. This process is shown in Fig. 4.

The upper limit of error e = 10710 is set, and the algorithm stops iterating after 12 points are measured. With
the increase in measurement data, the prediction dataset continues decreasing, giving the prediction dataset
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Figure 3. Algorithm flow chart.
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Figure 4. Measurement flow chart.
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Figure 5. Dy Convergence of the predicted dataset in the measurement with increasing measurement data.
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when the known data are 1, 5, 8, and 12, respectively, as shown in Fig. 5, and the diffusion curve plotted by the
actual measurement data as shown in Fig. 6.

The same algorithm is used to measure T of the pure water, the upper error limit is set toe = 107!, and the
algorithm stops iterating after measuring 13 points. The predicted dataset with the known number of Data Points
1, 5, 8, and 13 is shown in Fig. 7, and the actual measured T curve is shown in Fig. 8.

1.2 T T

1.0

0.8

0.6

0.4

0.2

Normalized amplitude of echo signal

0 500 1000 1500

Ty/ms

Figure 6. Pure water measured diffusion curve.
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Figure 7. Convergence of the prediction dataset with an increasing measurement data in the T, measurement.
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Figure 8. Pure water actual measurement T.

Table 1 shows the data of Dy and T, obtained by the Monte Carlo intelligent algorithm and manual measure-
ments using the same experimental equipment with pure water and glycerol as samples at 20 °C room tempera-
ture, respectively.

To evaluate the accuracy and stability of the Monte Carlo optimization-based algorithm in the D, and T
measurement experiments, 10 repeated D, and Ty measurements were performed on pure water and glycerol
samples, respectively. The deviation of the mean value of the 10 replicate measurements relative to the manual
measurements was used to measure the systematic error of the algorithm, and the standard deviation of the 10
replicate measurements was used to measure the accuracy of the algorithm®, as shown in Table 2.

The Monte Carlo-based optimization algorithm was experimentally demonstrated to be well adapted to two
D,, pure water and glycerol, in T samples with values tens of times different, and the systematic error relative to
the manually measured values is less than 1%. Considering the effect of temperature, it can be considered that
the Dg and Ty parameters of the measured pure water under this algorithm are basically accurate.

In addition, with the algorithm optimization, the D, and T measurement experiments can be completed with
only 3 to 4 data points and achieves a speed increase of approximately 6 times compared to manual measure-
ments of 15 to 25 data points, even without taking into account the manual process of repeatedly adjusting the
measurement parameters, greatly improving the measurement efficiency.

In the application of low-field unilateral magnetic resonance, due to its poor magnetic field uniformity and
low signal-to-noise ratio, the parameters of T2 generally do not need to be selected, and the echo time needs to
be set as small as possible. Therefore, this study does not involve the adaptive adjustment of the measurement
parameters in the T, experiment™.

Conclusion

In this paper, the diffusion and relaxation curves of the samples are estimated by Monte Carlo simulation, and
the algorithm selects the optimal measurement parameters according to the estimated values to achieve Dy and
T;. The algorithm selects the optimal measurement parameters based on the estimated values and automates

D, (mm?/s) Points T, (ms) Points

M-C Manual M-C Manual M-C Manual M-C Manual
Water 2.49%1073 2.35%x1073 4 15 2653 2650 4 15
Glycerine 0.124x 1073 0.12x1073 3 15 227 230 3 15

Table 1. D, and T, of deionized water and glycerine by the Monte Carlo method and manual, where M-C
replaced Monte Carlo, and points represents the measurement points in the Dy and T, experiments.

Standard
Bias deviation
DI) Tl DO Tl
Water -0.34% | -0.48% | 1.75% | 2.68%
Glycerine -0.83% | 0.96% 1.66% | 2.23%

Table 2. Bias and standard deviation of D and T by repeating the measurement 10 times.
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the parameter setting during the measurement, saves the measurement time, significantly reduces the measure-
ment threshold, and facilitates NMR. The algorithm has been experimentally verified to be able to obtain more
accurate results than the previous algorithm. The algorithm has been experimentally verified to obtain more
accurate measurement results. Notably, the proposed intelligent search algorithm is based on the premise of
single-component samples, and it needs to be extended for multi-component samples, which is also the future
research direction of our team.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due private reasons
but are available from the corresponding author on reasonable request.
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