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A Monte Carlo algorithm 
to improve the measurement 
efficiency of low‑field nuclear 
magnetic resonance
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Nuclear magnetic resonance (NMR) has shown good applications in engineering fields such as well 
logging and rubber material ageing assessment. However, due to the low magnetic field strength of 
NMR sensors and the complex working conditions of engineering sites, the signal-to-noise ratio (SNR) 
of NMR signals is low, and it is usually necessary to increase the number of repeated measurements 
to improve the SNR, which means a longer measurement time. Therefore, it is especially important to 
set the measurement parameters appropriately for onsite NMR. In this paper, we propose a stochastic 
simulation using Monte Carlo methods to predict the measurement curves of T

1
 and D

0
 and correct 

the measurement parameters of the next step according to the previous measurement results. The 
method can update the measurement parameters in real time and perform automatic measurements. 
At the same time, this method greatly reduces the measurement time. The experimental results show 
that the method is suitable for the measurement of the self-diffusion coefficient D0 and longitudinal 
relaxation time T1, which are frequently used in NMR measurements.

Nuclear magnetic resonance (NMR) can be used to explore the structure and properties of substances from the 
microscopic level through non-destructive methods and is now widely used in the fields of medicine, chemistry, 
materials, biology, petroleum, geology1, etc. The application of portable NMR sensors and unilateral magnetic 
resonance devices has attracted the attention of many researchers2–5. However, the low magnetic field strength 
and uniformity and complex working conditions result in a low signal-to-noise ratio (SNR), long measurement 
time and low measurement efficiency. These are currently urgent problems that need to be solved. A more effec-
tive way is to optimize the measurement process and set the measurement parameters appropriately to improve 
the efficiency.

There are some reports on the parameter optimization algorithm in NMR measurements. Some scholars 
have noticed the influence of the magnetic resonance measurement parameters on the measurement results, 
but their research mainly focuses on the frequency domain6–9, that is, exploring the data acquisition method 
that can reduce the measurement time and ensure that the frequency domain inversion spectrum has sufficient 
precision10–14. In 2017, Xing D. et al.15 presented an adaptive method for determining an acquisition parameter 
t0 in a modified CPMG sequence for measuring the internal magnetic field gradient distribution of samples. This 
method can reduce the difficulties of operating T2-G experiments. In 2018, A. Reci16 proposed an optimization 
method for the measurement parameters of the NMR liquid self-diffusion coefficient based on the Cramér-Rao 
lower bound (CRLB) theory, which assumes that the self-diffusion coefficient of the sample satisfies the log-
normal distribution. In 2019, A. Reci 17 further improved the sampling method based on CRLB theory, making it 
also applicable to signal acquisition with double exponential decay. In 2021, Guest et al. studied the relationship 
between the experimental parameters and SNR for diffusion coefficient measurement18.

In recent years, NMR has been widely used in industrial automation19,20, but few studies have provided a 
more general time-domain sampling strategy for T1 and D0 measurement experiments in on-site NMR. At the 
same time, some users of NMR instruments may not have background knowledge of the NMR principles, so it 
is difficult for them to adjust the measurement parameters. Therefore, automatic and intelligent measurement 
algorithms are wanted by users. In this paper, we introduce a Monte Carlo algorithm-based intelligent search 
method for NMR measurement parameters. This method can automatically set the key parameters in the T1 and 
D0 measurements. The experimental results demonstrate that the method could achieve a 3–4 times acceleration 

OPEN

1College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, China. 2Urumqi Power 
Supply Company, State Grid Xinjiang Electric Power Co, LTD, Urumqi, China. *email: guopan@cqnu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-37731-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10533  | https://doi.org/10.1038/s41598-023-37731-8

www.nature.com/scientificreports/

effect in the T1 and D0 measurement experiments, and the systematic error between the results and the accurate 
value was less than 5%.

Algorithm introduction
Introduction to the Monte Carlo method.  The Monte Carlo method, also known as the statistical simu-
lation method, is a numerical calculation method guided by probabilistic statistical theory21–29. The characteris-
tic of this method is the random sampling of the measurement variable, and an approximate result is calculated 
in real time for the NMR measurement constrained with the available dataset. In this paper, an intelligent search 
method for NMR measurement parameters based on the Monte Carlo algorithm is proposed to achieve the 
measurements of T1 and D0.

Measurement sequence.  Figure 1 shows the static gradient spin echo (SGSE) sequence 1 for D0 measure-
ment in low-field NMR when a static gradient magnetic field is present30. where the time interval between the 
90° and 180° pulses ( Td ) is variable. When measuring the diffusion properties, Td is increased at each Td point, 
and the spin echoes are recorded. Therefore, the diffusion decay curve of a liquid molecule under a gradient 
magnetic field can be fitted. To improve the SNR, the sequence shown in Fig. 1 needs to be repeated several times 
and superimposed, and it is therefore quite time-consuming.

Currently, the common way to increase the Td value is uniform stepping, if N signals need to be measured 
to fit the curve of D0. Td is set at a uniformly increasing step rate.

The diffusion curve is estimated by using these measured values, which consumes considerable time. At the 
same time, some users of NMR instruments may not have background knowledge of the NMR principles, so it 
is difficult for them to adjust the measurement parameters. Therefore, automatic and intelligent measurement 
algorithms are wanted by users.

The inversion recovery (IR) sequence used to measure T1 is shown in Fig. 2. Similar to the SGSE sequence 
and variable Td, Ti is varied to measure the T1 recovery of the sample.

Method.  In T1 and D0 measurements, adjusting Td and Ti during the measurement needs to be performed. 
In our method, many diffusion curves and T1 decay curves are randomly generated by Monte Carlo simulations, 
and then the unreasonable curves are excluded according to the data already measured, and the remaining 
curves can be used to estimate the measurement parameters for the next step. The detailed steps of the algorithm 
are as follows.

First, the initial range of B and D0 are determined in Eq. (1), and the two-dimensional space determined by 
the initial ranges of these two parameters is called the initial parameter space. The initial parameter space is set 
to B ∈ [0, 2], D0∈[10–6 mm2/s, 10–2 mm2/s]. The D0 range can cover most of the self-diffusion coefficients of the 
tested samples. The variation range is [2 ms, 180 ms], which can reflect the attenuation curve of all samples in the 

Figure 1.   SESG-CPMG measurement of D0 sequences and their parameters.

Figure 2.   IR-CPMG measurement of T1 sequences and their parameters.
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above D0 range. A Monte Carlo sampling method is used to randomly select a specified number of data points in 
this initial parameter space and thus draw a cluster of t-f (t) curves to calculate the uncertainty of the model at 
this point (expressed as the product of the variance of B and D0 in this space). f(t) is the diffusion decay curve, 
and t is the abscissa of the measured data points. The most divergent time point t1 in this curve cluster is selected 
as the first sampling point, and the actual corresponding measurement value f (t1) is obtained by measurement. 
From this measurement dataset, ( t1 , f (t1) ) constitutes the first data point of the dataset, and the initial param-
eter space of B and D0 is constrained under the constraints of this data point (i.e. only the parameter space that 
matches the ( t1 , f (t1) ) data point is retained), which in turn yields the B and D0 parameter subspaces. Similarly, 
the t-f (t) curve cluster is plotted in this parameter subspace, and the model uncertainty is calculated, while the 
point t2 , which makes the curve cluster most divergent, is still selected as the next sampled data point, and the 
measurement is performed. At this time, the data space is expanded to ((t1 , f(t1 ), ( t2 , f(t2))), and the parameter 
space of B and D0 will be further reduced under the constraint of these two measurement data points. The above 
steps are repeated until the model uncertainty no longer significantly decreases; then, the parameter space of B 
and D0 under the data space constraint consisting of all measured data will be close to the true B and D0 values.

The diffusion decay curve f (t) satisfies the following form30:

This equation is correct for the constant gradient case, where the parameter vector A = [D0, B] is to be deter-
mined. t is the abscissa of the measured data points. Considering the form of Eq. (1), if there is no measurement 
error, B should be equal to the peak of the measured echo, and the maximum Max

(
ẏi
)
 , ẏi is the real measurement 

data. Considering the measurement error, the parameter search range can be set to 
[
Max

(
ẏi
)
± 5σ

]
 ; and the D0 of 

common samples is between 0 and 10−8cm2 · s−1 . Therefore, D0 and B are set to obey the uniform distribution 
in their respective intervals:

Multiple random sampling according to the above distribution is performed.

When there are sufficient curves that satisfy the condition of Eq. (3), DYt can be calculated, and then, it can 
be substituted into ṫi+1 = t|DYt = Max(DYt) to obtain ṫi+1 . Td is set to ti+1 to obtain the new measured value 
of ̇ti+1 , and it is fit by least squares to obtain âi+1 . The iterations are stopped when |̂a0(i) − â0(i−1)| < ε is satisfied. 
The measurement of T1 was performed similarly.

The entire algorithm flow is shown in Fig. 3.

Experimental verifications
The equipment used in the experiment was a spectrometer (KEA2, Magritek Inc. New Zealand), RF power ampli-
fier (BT00500 ALPHA-SA, Tomoco Inc., Australia) and unilateral nuclear magnetic resonance sensor (130 mT). 
To verify the effectiveness of the above algorithm, the diffusion coefficient of pure water was measured at points 
taken with the algorithms D0 and T1 . Moreover, ti obtained by the algorithm is inputted into the programmable 
spectrometer, ẏi is obtained from the actual measurement, and then, ẏi is returned to the algorithm to calculate 
ti+1 . This process is shown in Fig. 4.

The upper limit of error ε = 10−10 is set, and the algorithm stops iterating after 12 points are measured. With 
the increase in measurement data, the prediction dataset continues decreasing, giving the prediction dataset 

(1)f (t) = B ∗ e
−

(
t
D0

)3
,

(2)
{

D0 ∼ U
[
0, 10−8

]

B ∼ U
[
Max

(
ẏi
)
− 5σ,Max

(
ẏi
)
+ 5σ

] ,

(3)
∑N

i=1

[
ẏi − B ∗ e

−

(
t
D0

)3]2
< Nσ

2,

Figure 3.   Algorithm flow chart.
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Figure 4.   Measurement flow chart.

Figure 5.   D0 Convergence of the predicted dataset in the measurement with increasing measurement data.
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when the known data are 1, 5, 8, and 12, respectively, as shown in Fig. 5, and the diffusion curve plotted by the 
actual measurement data as shown in Fig. 6.

The same algorithm is used to measure T1 of the pure water, the upper error limit is set to ε = 10−10 , and the 
algorithm stops iterating after measuring 13 points. The predicted dataset with the known number of Data Points 
1, 5, 8, and 13 is shown in Fig. 7, and the actual measured T1 curve is shown in Fig. 8.

Figure 6.   Pure water measured diffusion curve.

Figure 7.   Convergence of the prediction dataset with an increasing measurement data in the T1 measurement.
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Table 1 shows the data of D0 and T1 obtained by the Monte Carlo intelligent algorithm and manual measure-
ments using the same experimental equipment with pure water and glycerol as samples at 20 °C room tempera-
ture, respectively.

To evaluate the accuracy and stability of the Monte Carlo optimization-based algorithm in the D0 and T1 
measurement experiments, 10 repeated D0 and T1 measurements were performed on pure water and glycerol 
samples, respectively. The deviation of the mean value of the 10 replicate measurements relative to the manual 
measurements was used to measure the systematic error of the algorithm, and the standard deviation of the 10 
replicate measurements was used to measure the accuracy of the algorithm30, as shown in Table 2.

The Monte Carlo-based optimization algorithm was experimentally demonstrated to be well adapted to two 
D0, pure water and glycerol, in T1 samples with values tens of times different, and the systematic error relative to 
the manually measured values is less than 1%. Considering the effect of temperature, it can be considered that 
the D0 and T1 parameters of the measured pure water under this algorithm are basically accurate.

In addition, with the algorithm optimization, the D0 and T1 measurement experiments can be completed with 
only 3 to 4 data points and achieves a speed increase of approximately 6 times compared to manual measure-
ments of 15 to 25 data points, even without taking into account the manual process of repeatedly adjusting the 
measurement parameters, greatly improving the measurement efficiency.

In the application of low-field unilateral magnetic resonance, due to its poor magnetic field uniformity and 
low signal-to-noise ratio, the parameters of T2 generally do not need to be selected, and the echo time needs to 
be set as small as possible. Therefore, this study does not involve the adaptive adjustment of the measurement 
parameters in the T2 experiment30.

Conclusion
In this paper, the diffusion and relaxation curves of the samples are estimated by Monte Carlo simulation, and 
the algorithm selects the optimal measurement parameters according to the estimated values to achieve D0 and 
T1 . The algorithm selects the optimal measurement parameters based on the estimated values and automates 

Figure 8.   Pure water actual measurement T1.

Table 1.   D0 and T1 of deionized water and glycerine by the Monte Carlo method and manual, where M-C 
replaced Monte Carlo, and points represents the measurement points in the D0 and T1 experiments.

D0 (mm2/s) Points T1 (ms) Points

M-C Manual M-C Manual M-C Manual M-C Manual

Water 2.49 × 10–3 2.35 × 10–3 4 15 2653 2650 4 15

Glycerine 0.124 × 10–3 0.12 × 10–3 3 15 227 230 3 15

Table 2.   Bias and standard deviation of D0 and T1 by repeating the measurement 10 times.

Bias
Standard 
deviation

D0 T1 D0 T1

Water  − 0.34%  − 0.48% 1.75% 2.68%

Glycerine  − 0.83% 0.96% 1.66% 2.23%
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the parameter setting during the measurement, saves the measurement time, significantly reduces the measure-
ment threshold, and facilitates NMR . The algorithm has been experimentally verified to be able to obtain more 
accurate results than the previous algorithm. The algorithm has been experimentally verified to obtain more 
accurate measurement results. Notably, the proposed intelligent search algorithm is based on the premise of 
single-component samples, and it needs to be extended for multi-component samples, which is also the future 
research direction of our team.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due private reasons 
but are available from the corresponding author on reasonable request.
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