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Demonstration of cross reaction

in hybrid graphene oxide/tantalum
dioxide guided mode resonance
sensor for selective volatile organic
compound
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This paper experimentally demonstrates a crossed reaction of pure and hybrid graphene oxide (GO)/
tantalum dioxide (TaO,) as a volatile organic compound (VOC) absorber in a guided mode resonance
(GMR) sensing platform. The proposed GMR platform has a porous TaO, film as the main guiding layer,
allowing for more molecular adsorption and enhanced sensitivity. GO is applied on top as an additional
VOC absorber to increase the selectivity. The hybrid sensing mechanism is introduced by varying the
concentration of the GO aqueous solution. The experimental results show that the pure TaO,-GMR

has a high tendency to adsorb most of the tested VOC molecules, with the resonance wavelength
shifting accordingly to the physical properties of the VOCs (molecular weight, vapor pressure, etc). The
largest signal appears in the large molecule such as toluene, and its sensitivity is gradually reduced in
the hybrid sensors. At the optimum GO concentration of 3 mg/mL, the hybrid GO/TaO, -GMR is more
sensitive to methanol, while the pure GO sensor coated with GO at 5 mg/mL is highly selective to
ammonia. The sensing mechanisms are verified using the Density Functional Theory (DFT) to simulate
the molecular absorption, along with the measured functional groups measured on the sensor surface
by the Fourier transform infrared spectroscopy (FTIR). The crossed reaction of these sensors is further
analyzed by means of machine learning, specifically the principal component analysis (PCA) method
and decision tree algorithm. The results show that this sensor is a promising candidate for quantitative
and qualitative VOCs detection in sensor array platform.

For the past few decades, the demand on monitoring of volatile organic compounds (VOC) has dramatically
increased and has applied in many fields. VOC originate from both natural (plants, bacteria, etc.) and anthropo-
genic sources (fuel production, fuel combustion, general industries, cosmetics, personal care-products)’. Most
VOC have high toxicities and are harmful to human health with effects ranging from headache, eye, throat, and
nose irritation for short time exposure to long term chronical disease*’. Consequently, many countries have their
own pollution-controlled regulations for each VOCs level and measurement*”. On the other hand, monitoring of
VOC can benefit the food industry for quality control and assessment of food, beverage, and cosmetics®. A study
in the medical field has also associated the detection of specific VOC emission via breath or skin with different
diseases such cancers, rheumatoid arthritis, etc”.

As of today, the gold standard for VOC detection uses gas chromatography coupled with mass spectrometry
(GC-MS)8. This technique provides highly sensitive and accurate analytical measurements of VOC deliver-
ing the detection, identification, and quantification of individual VOC or even mixtures of VOC. While being
highly efficient, GC-MS is a time-consuming and expensive method that requires skilled technicians to operate
it. Hence, on-going research has aimed to develop low-cost, fast, reliable, and sensitive sensors for the detection
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and quantification of VOC’. Many techniques have been investigated such as gravimetric', chemoreceptive'!,
and optical sensor'?>™, etc. Nevertheless, selectivity remains a challenge to identify the VOC especially in a
mixed VOC scenario.

Electronic or optoelectronic nose is one promising platform to recognize the VOC by mimicking mammal’s
olfactory mechanisms®*->*. That requires a cross-reactive sensor array configuration for obtaining the VOC fin-
gerprint and a high throughput data analysis for decision making. For this purpose, various sensing materials
(metal oxide, 2D material, conductive polymer, and carbon, etc.) have been intensively explored to distinguish
the signal for the specific VOC?%. It is worth noting here that increasing the number of sensor arrays can
contribute to more complex signal recognition and therefore improve accuracy in data interpretation. Among
the referred sensing techniques, the optical platform has more advantage as the sensor geometry is less complex
and it is easy to fabricate. In the literature, optoelectronic noses based on colorimetric and fluorescence sensor
array'? have been intensively and practically demonstrated in many applications. However, such sensor is not
reusable, and it has low stability. In order to overcome this fact, a variety of label-free sensing techniques have
been demonstrated, such as fiber optic waveguide array?, surface plasmon resonance (SPR) imaging®, and on-
chip waveguide-array interferometer**. Another promising technique applies guided mode resonance (GMR)
concept in both optical fiber and on-chip configuration'>~*°.

In the GMR sensor, the device configuration comprises of a subwavelength grating embedded in a waveguide
structure. Resonance occurs when the phase matching condition between diffracted waves and guided mode is
met. That introduces strong reflection with spectral and angular selectivity. Resonance relocates proportionally
to the structure’s optical properties and dimensions. Hence, molecular adsorption on the surface can be meas-
ured through the shift of resonance signal using spectrum, angular or intensity interrogation method. GMR has
been constantly demonstrated especially in biomolecular sensing applications”. There exist however few works
in VOC/gas detection'>*°. Recently, Tabassum et al. proposed a GMR fiber sensor made of titanium dioxide
(Ti02) for VOC/gas detection. The sensor was coated with gas adsorption material such as graphene oxide
(GO) nanosheets for demonstration of gaseous ethylene and methanol'® detection and copper (I) complex for
monitoring ethylene-promoted ripening in banana'®. In another experimental work, Lin et al. has integrated the
palladium (Pd) film on a planar TiO, waveguide-GMR for hydrogen gas sensing'’. The sensitivity of the GMR
sensors can be improved by increasing light-matter interaction in alternative designs, such as by inserting VOCs
sensing cavity inside the GMR structure'® or by creating void areas in the main guiding film".

As aforementioned, metal oxide semiconductors, such as tungsten oxide (WO;), tin oxide (SnO), zinc oxide
(ZnO), etc., are well established for gas/VOC sensing. Due to their excellent optical properties, they are also
applied in many of the optical devices. Lately, nanocolumnar tantalum oxide waveguide' has been introduced in
GMR sensor for VOC detection with significant enhancement of sensitivity. The sensor however has low selectiv-
ity. This constraint can be further improved by means of cross reaction in a sensor array form. Additional VOC/
gas sensing materials are required to generate variance in the signal. For this purpose, this paper includes a study
of the cross reaction of hybrid TaO,/GO -GMR sensors. By varying GO concentrations, the TaO, waveguide-
GMR sensors are coated with different percentage coverage generating a unique signal pattern of each VOCs
that can be further classified by means of machine learning.

The sensors in this study were fabricated and tested with different groups of VOCs (isopropanol, ethanol,
methanol, acetone, toluene, ammonia) using the interrogation of resonance wavelength shift. The fabrication
method, materials, and measurement set up are described in detail in Section “Fabrication and experiment”.
Section “Result and discussion” includes the experimental results, as well as the surface and material characteriza-
tions. The sensing mechanisms are clarified using the Density Functional Theory (DFT) to simulate the molecular
absorption along with the measured functional groups on the sensor surface obtained through Fourier transform
infrared spectroscopy (FTIR). Principal component analysis (PCA) was used to confirm distinguish able data
classification, supporting the use of the proposed hybrid sensors in an array platform for optoelectronic nose.

Fabrication and experiment

Hybrid GO/TaO, GMR fabrication. The fabrication of the GMR-based VOC sensor involves a multilayer
grating-waveguide structure on a transparent substrate. As illustrated in Fig. 1, the process starts from a forma-
tion of the subwavelength grating structure on a low refractive index film using a thermal-cured nanoimprint
method. The imprinted grating is then coated with a refractive index film to form a waveguide layer using
a sputtering technique. As illustrated from Fig. 1a,b, the nanoimprint process requires the preparation of an
imprinting mold with a casting method using a polydimethylsiloxane (PDMS) elastomer (Sylgard 184 silicone
elastomer from Dow corning). The one dimensional (1D) grating master mold (Fig. 1a) with sinusoidal profile
has previously fabricated by laser interference lithography (LIL). The PDMS grating replica, shown in Fig. 1c, is
subsequently used as the main mold for further fabrication of the GMR sensors. At the same time, the thermal-
cured nanoimprint resist (spin-on-glass, SOG (400F, Filmtronics Inc.) is then coated on a glass slide substrate by
spin coating method, and the grating structure from the PDMS mold is imprinted on the SOG film as shown in
Fig. 1d and e. A TaO, film is deposited on top of it using a commercial pulsed DC magnetron sputtering tech-
nique (AJA International, Inc. ATC 2000-F). In the sputtering process, tantalum (Ta:99.995%) target is sputtered
by argon (Ar) atoms under the operating pressure of 20 mTorr and oxygen (O2) gas is supplied in the chamber
to create the nanocolumnar tantalum oxide film'. The detailed methods and parameters are described in the
supporting information S1. The GMR sensor is constructed with geometry illustrated in Fig. 1h.

The introduction of graphene oxide (GO) on top of the TaO,-GMR surface creates the hybrid sensors as
shown in Fig. 1g. GO is coated on the TaO,-GMR sensor’s surface in different concentrations, ranging from 1
to 5 mg/mL. Highly concentrated graphene oxide (5 mg/mL and the flake’s size around 0.5-5 pm) purchased
from Graphene Supermarket (part no: SKU-HCGO_W_60) is diluted with deionized (DI) water. The dilution
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Figure 1. Schematics diagram of the hybrid GO/TaO,-GMR fabrication process.

for each of the five concentration is performed by sonicating for 90 min to ensure the homogenous distribution
of GO flakes in a solution. Then, 400 pL of each GO concentration is coated on each TaO,-GMR sensor’s surface
using a spin coater. The surface of the sensor is first activated with an oxygen (O,) plasma to enhance the adhe-
sion before spin coating GO at 2000 rpm for 60 s. All GO-coated GMR sensors are slowly dried out at ambient
environment for 24 h. As a result, different concentrations of GO coated on TaO,-GMR sensors are fabricated.

The deposited films are later characterized using X-ray photoelectron spectroscopy (XPS) and Raman spec-
troscopy (Renishaw InVia Reflex) to confirm the material and molecular structure, while the physical morphol-
ogy is measured using field emission scanning electron microscopy (FE-SEM: HITACHI SU8030).

VOC sensing setup. The sensitivity of the GMR sensor to VOC is measured experimentally using a reso-
nance spectroscopy and a vapor-phase VOC generator/controller as shown in Fig. 2. The optical setup in this
study uses a broadband tungsten-halogen light source (Ocean Optics: HL2000) coupled into bifurcated fiber
bundles. Light beam is first configured using a collimating lens and a linear polarizer before being normally
incident onto the substrate side of the GMR sensor. To ensure high sensitivity. The polarizer is set to excite only
TM resonance mode. The reflected light is coupled back to another core of the fiber probe for real-time detection
of the resonance reflection spectrum using a spectrometer (Thorlabs: CCS200). The resonance signals are later
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Figure 2. VOC -test optical setup showing the VOC feeding in the sensor chamber. (i) Reflection spectrum
without VOC and with 5% toluene exposure.
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extracted and analyzed with the method described in Section "Signal acquisition". The GMR sensor is encapsu-
lated in a tested-VOC vapor flow chamber, where the vapor is formed using a bubbling technique. Two separated
mass flow controls (MFC1 and MFC2) are used to regulate the flow rate of the carrier gas (air zero containing
21% oxygen balance Nitrogen and no water vapor) purging into the chamber directly and into the VOC solution,
respectively. The VOC concentration and sample feeding protocol can be automatically controlled through the
customized MFC graphical user interface software.

To measure the selectivity of each sensor, six type of VOCs (isopropanol, ethanol, methanol, ammonia,
acetone, and toluene) are tested at a fixed concentration of VOC for four measurement loops. Each measurement
loop consists of an exposure to 100% of carrier gas for a period of 5 min followed by an exposure to 5% of VOC
for another period of 5 min. The resonance spectra obtained from the referred spectroscopy is recorded every
3 s during each measurement.

Signal acquisition. The resonance reflection spectra acquired at each time stamp (t;) using Thorlabs OSA
software are processed following the algorithm described in the supporting information S2. First, noise reduc-
tion is performed using a moving average algorithm where the reflectivity at each wavelength is set to the average
of the values from a window of N; points around it. The smoothed data is then cropped according to a manually
selected range of detection with the window of width N around the maximum intensity. The peak of the fitted
data obtained using second order polynomial fitting of the signal indicates the resonance wavelength (o). The
kinetic responses of the sensor during VOC measurements are measured by extracting four parameters (A4,
Aoz, Ados, Adoc(t;)) as shown in Fig. S2ii from the resonance time plot. The processing steps includes noise
reduction from the resonance time plot (4o(t)), baseline subtraction to convert the filtered resonance time plot
(Zo(#)) into the resonance shift (AZy(t)), and auto-detection of desired signal for further computation.

Here, four key points are automatically detected. Ay corresponds to the signal at the starting point when
VOC is injected into the chamber at t;, A o3 refers to the highest signal recorded at t; before releasing VOC from
the chamber, A ¢, having value of 90% of A /g3 represent the point when the signal starts to reach saturation
at t,, and Ao (#;) is the signal at each t; while VOC is fed in the chamber. Using the four detected points, three
metrics (AZ100%, Ao Sc) are then calculated as defined in Eqgs. (1), (2), and (3), respectively.

Ad1o0% = Aoz — Ador. 1)

Adoow = Adgz — Aldor. (2)

S. represents to the kinetic response of the sensor while it is exposed to the VOC. The calculation follows the
Eq. (3), where it takes N-point data from t, to t; to estimate the slope of the signal.

N
1 Aoc(t)) — Adoc(tiz1) )
S. = ﬁi; Siand S, = ¢ lti—ti_lc = wherei = 1,2,..., N (3)

Result and discussion

Device and material characterization. The FE-SEM images in Fig. 3a-f demonstrates the morphol-
ogy of the six fabricated TaO,-GMR sensors, with and without GO coating at varying concentrations from 1 to
5 mg/mL. The detailed layer structure and dimensions are included in the supporting information S3. As shown,
the based TaO,-GMR sensor is constructed with a SOG sinusoidal surface grating having a measured period
of around 360 nm and a measured depth of around 100 nm, where the unpatterned SOG film under the grat-
ing has a thickness of around 350 nm. At high operating pressure deposition, the TaO, film appears to have a
nanocolumnar structure with a measured thickness of around 190 nm. As presented in the previous work'?, the
optical properties and morphology of the film at this condition has a refractive index of 1.996 and a pore size of
4.47 £ 1.1 nm, which represents 14.43% porosity. This allows more VOC molecules to penetrate inside, enhanc-
ing the sensitivity. Furthermore, the XPS measurement in Fig. 3g confirms the formation of TaO, film having a
binding energy at 27.28 and 25.38 eV.

FE-SEM measurements were used to demonstratively confirm the coverage area and thickness of GO coated
on the TaO,-GMR for the hybrid sensors with varying concentrations of GO ranging from 1 to 5 mg/mL. Raman
spectroscopy was employed to ensure the existence of GO. As shown in the inset (ii) to (vi), the results revealed
a non-uniform deposition of GO. At low concentration (GO <4 mg/mL), some void areas without GO deposi-
tion were observed, while the other areas are aggregated with GO. This essentially allows the VOC molecular
interaction with both TaO, and GO. This hybrid sensing mechanism is allowed for enhanced signal recognition
in the sensor array platform. The percentage of GO coverage however was estimated using image processing
methods. Within the calculated area of 500 x 500 um as shown in the processed SEM images in Fig. 4d-g. The
calculations based on image processing indicate that the coverage of GO increases from 23.77%, 48.68%, 67.89%,
and 79.62% on the sensors coated with an increase of GO concentration at 1, 2, 3, and 4 mg/mL, respectively.
The sensor coated with 5 mg/mL GO has full coverage with a film thickness of 48 nm as presented in Fig.S3.
The Raman spectrum in the plot Fig. 3h shows the two Raman peaks of GO located at G (1602 cm™') and D
(1351 cm™) band. The signal intensity in the Raman spectrum decreases with an increase in the number of GO
layers on the sensors®.

It is worth noting here that although GO has small absorption (k <0.1%) in the visible spectrum, deposition
of GO on the TaO,-GMR results in a red-shift of the resonance spectrum as well as decrease in the resonance
intensity especially in the sensor coated with high concentration of GO. The compared resonance spectra of the

Scientific Reports |

(2023) 13:20799 | https://doi.org/10.1038/s41598-023-37795-6 nature portfolio



www.nature.com/scientificreports/

— XPS data
150 4(9) 2538V~ : — Ta4f5/2
;.\ 27.28 eV w ' — Ta4f 7/2
|

g 100 1 TR
2 &
g 501 i\
- 1 1
E ) \J

0 1 1 :

35 30 25 20
Binding energy (eV)
16000 h 1351 em™, 4602 cmet | — 120

s ( ) % a —GO 1mg/mL
5 5 —GO 2mg/mL
5’; 12000 —GO 3mg/mL
> —GO 4mg/mL
= —GO 5mg/mL
s
£

1200 1500 1800 2100
Wavenumber (cm-')

Figure 3. FE-SEM images (top and bird-eye view) of each sensor (a) pure TaO, (b-f) GO 1, 2, 3, 4, 5 mg/mL
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Figure 4. Compared time plots of the resonance shift in single-loop measurement of methanol, toluene, and
ammonia using the sensor with (a) pure TaO, (b) GO 3 mg/mL coated on TaO, (c) GO 5 mg/mL coated on
TaO,. The processed SEM images to show GO coverage of (d) 23.77% (e) 48.63% (f) 677.89% and (g) 76.62% on
the sensors with GO coating of 1, 2, 3, and 4, respectively. (h) The shift of the resonance versus percentage of GO
coverage when testing with methanol, toluene, and ammonia.

fabricated sensors are included in the supporting information S4. The signal processing approach presented in
Section "Signal acquisition" is hence necessary to extract the signal accurately for further analysis.

VOC optical measurement. As mentioned in the Section "VOC sensing setup”, the six sensors are indi-
vidually tested with six different types of VOC at fixed concentration of 5% and four measurement cycles. The
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time plots of all measurements are included in the supporting information S5. Here, only relevant measurements
are demonstrated in the plots Fig. 4 to verify the sensing ability in the pure and hybrid sensors. The resonance
time plots in Fig. 4a—c demonstrate the change of the resonance wavelength in a single-loop measurement of
three VOCs (methanol, toluene, and ammonia) in comparison for the pure TaO, sensor without GO coated, the
hybrid sensor with 3 mg/mL GO coated, and the pure GO sensor with full coverage of GO, respectively.

As demonstrated, the pure TaO, sensor is highly sensitive to the toluene, with a large resonance wavelength
shifted up to 4 nm is measured. Meanwhile, the sensor is less sensitive to methanol and ammonia, with a simi-
lar signal level. On the other hand, the hybrid sensor with 67.89% GO coverage (3 mg/mL) appears to detect
methanol more efficiently but it is less sensitive to toluene. For the pure GO sensor, the ammonia signal is
dramatically enhanced, while the toluene signal continues to decrease. Following the signal acquisition method
in Section "Signal acquisition", the resonance shifts (A4jp9%) are estimated and plotted against the percentage
of GO coverage in each sensor, as shown in Fig. 4h. The results confirm the reduction of toluene signal in the
presence of more GO coverage. In this regard, toluene seems to have better molecular adsorption on the TaO,
surface. The applied GO has a high tendency to prevent molecular penetration into the waveguide surface. On
the other hand, GO is highly sensitive to ammonia. The hybrid sensor, however, does not show an increase in
the ammonia signal, but rather an increase in the methanol signal at the optimum concentration.

The sensitivity of these sensors when tested with the three VOCs is determined with a similar feeding
sequence but varying the vapor concentrations (2.5, 5, 7.5, 10, 15 and 20%). The resonance wavelength shifts
proportional to the VOC concentrations as depicted in Fig. S6a. As shown, at concentrations higher than 10%,
the graphs become nonlinear. The sensitivity and the limit of detection (LOD) are then calculated using the
data in the linear range for concentrations less than 10%. The calculated results are plotted in Fig. S6b-d. It is
shown that pure TaO, sensor (S1), hybrid sensor (S4), and pure GO sensor (S6) are the most sensitive to toluene,
methanol, and ammonia with LOD of 0.089%, 0.0192%, and 0.0297%, respectively.

Theoretically, the resonance in the GMR sensor shifts proportionally to the change in optical properties of the
film, caused by molecular adsorption and variations in the environment. The number of the adsorbed molecules
and their physical properties (molecular weight, vapor pressure, and refractive index, etc.) contribute to the sen-
sitivity of the sensor. Additional binding sites are necessary to enhance the selectivity. In the pure TaO,-GMR, the
nanocolumnar TaO, film allows more VOC to diffuse inside the waveguide film introducing more light-matter
interaction and hence increase in sensitivity. However, there does not exist dominant functional group on the
TaO, film as presented in FT-IR measurement in Fig. 5. Thus, the physical absorption becomes more dominant.
The experimental results show detectable signals with the magnitude corresponding to the physical properties
of VOC:s (see the supporting information S7).

Meanwhile, GO is well known as an excellent candidate for VOC/gas sensors due to its intrinsic functional
groups®. These functional groups enhance molecular interactions, leading to increased adsorption during VOC/
gas exposure. To verify the functional groups of the GO deposited at each concentration, the sensors are char-
acterized by ATR measurement in FT-IR spectroscopy as plotted in Fig. 5. The result shows a strong signal of
hydroxyl (O-H) and carboxyl (C=0) group observed from the absorbance located at 3200-3400 cm™ and
1600-1750 cm ™, respectively. As shown, the absorbance value at each band increases proportionally to the GO
concentration. Another dominant signal representing the epoxy (C-O-C) group at 750-950 cm™ is strengthened
with respect to the concentration and maximized at 3 mg/ml. However, the epoxy group becomes diminished
at higher concentration of 4 and 5 mg/ml.

To clarify this, Density Functional Theory (DFT) is used to further analyze the VOCs molecular adsorption
distance on GO with hydroxyl, epoxy and carboxyl groups. In this work, the generalized gradient approximation
(GGA) is used to mainly describe the van der Waals interaction®'. To simplify the computation, the interaction
of each functional group and only relevant VOC molecules (ammonia and methanol) based on the measurement
is simulated individually. According to Fig. 6, NH; is attached to the hydroxyl, epoxy, and carboxyl in GO with

——GO 1 mg/mL
—— GO 2 mg/mL
C-0O-C —— GO 3 mg/mL

: —— GO 4 mg/mL

—— GO 5 mg/mL
c=0 O-H

©
-
»

©
-
N

Absorbance
o
o
[e5]

0.00

I
500 1000 1500 2000 2500 3000 3500 4000

Wavenumber (cm™)

Figure 5. FT-IR (ATR mode) measurement for different GO concentration showing functional groups
appeared on the fabricated GMR sensors.
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distances of 1.674 A, 2.174, and 2.538 A, respectively. The DFT indicates that N atom of NHj easily adsorbs to
H atom in hydroxyl group in GO. The results from FT-IR and DFT show similar trend with the experimental
results. The sensor with GO concentration of 5 mg/mL covered on TaO, exhibited the highest NHj sensitivity,
attributed to the presence of hydroxyl functional groups in GO, as shown in Fig. 4. Additionally, methanol mol-
ecule absorption is observed through the same method. The methanol molecule demonstrates a preference for
epoxy group, specifically towards the oxygen atom of epoxy group in GO, with a minimum distance of 4.092 A.
This DFT result is consistent with the FTIR function group analysis and experimental findings. The sensor with
a GO concentration of 3 mg/mL exhibits the highest epoxy functional group and maximum methanol sensitivity.
In contrast, sensors with the larger GO concentrations (i.e. 4 and 5 mg/mL.) that have fewer epoxy group show
lower methanol sensitivity.

Data classification. To further analyze the sensors’ selectivity, this section examines the crossed reaction of
the proposed pure and hybrid sensors. The time plots of all measurements (as noted in the supporting informa-
tion S5) are processed using the methods described in Section "Signal acquisition". In addition, the effect from
humidity is investigated by replacing the VOC solution with deionized (DI) water. The measurement is then
proceeded with similar method at fixed concentration of 5% and four measurement cycles. Following Egs. (1),
(2), and (3), three parameters which A4;90%, A ooy and S; are then obtained for further analysis. The mean val-
ues of AZjgo% from each sensor and each VOC measurement are plotted in the 3D-bar plot Fig. 7a to illustrate
distinguishable signal pattern, particularly for NH;, acetone, toluene, and DI water. To support this analysis, two
approaches of machine learning are employed. First, unsupervised principal component analysis (PCA)*? is used
to verify cluster discrimination between the VOCs, ensuring that they can be differentiated. This allows for the
use of decision tree algorithm* (supervised machine learning) for data prediction.

A 28 x 18 matrix is constructed using the three extracted parameters from each six sensors and six VOC. The
PCA function in MATLAB was utilized to generate PCA scores and clusters (see Fig. 7b). The results indicate
clear separation among all VOCs and DI water using three principal components (PC1: 73.29%, PC2: 21.48%,
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Figure 6. DFT simulation results of (a) NH; adsorption on the GO with hydroxyl, epoxy and carboxyl group
(b) methanol adsorption on the GO with epoxy group.
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Figure 7. (a) 3D bar plot demonstrating the mean values A 419py, of six sensors (S1: no GO, S2: 1 mg/ mL,
S$3:2 mg/ mL, S4: 3 mg/ mL, S5: 4 mg/ mL, and S6: 5 mg/ mL) when measuring 6 VOCs and DI water at
5% concentrations with 4 record data. (b) 3D scatter plot of PCA scores to show classification of the VOC
measurements based on the six sensors.

PC3: 3.65%). It is worth noting here that the humidity interference may affect the sensor performance, this
however can be neglected by the proposed sensor array platform.

Based on the clear separation of VOC clusters, a decision tree algorithm is employed to classify the VOCs
based on the sensor metrics. The algorithm is implemented in Python using scikit-learn®*. As presented in the
supporting information S8, the final decision tree relies on 5 metrics of 4 sensors to accurately classify VOCs.
The decision tree utilized a 70% training set and a 30% test set with default parameter (Gini impurity criterion)
and a depth of 5. The decision tree achieves a 100% accuracy, demonstrating that the developed system can be
used for VOC detection.

Conclusion

In this paper, the hybrid GMR sensing platform by integrating two sensing materials, TaO, and GO, is proposed
to enhance the VOC detection. The sensors are formed by spin coating the colloidal GO on the nanocolumnar
TaO, GMR sensor. By varying GO concentration, GO is coated on the sensor with different percentage of cover-
age. This introduces the combination of two sensing mechanisms with and without the assistance of addition
functional groups on the sensor. In VOC measurement, the pure TaO,-GMR sensor indicates low selectivity,
however the signal is directly proportional to the VOC physical properties (molecular weight, vapor pressure,
etc.). The hybrid sensors on the other hand become higher selective to methanol when ~70% of GO is covered
on TaO, waveguide film. At the sensor (3 mg/mL GO coating), the FTIR measurement reports the strong absorb-
ance of epoxy group. The DFT calculations of methanol adsorption on the GO also confirm the close adsorption
distance to the epoxy group. For the sensor coated with 5 mg/mL of GO, the sensing mechanisms mainly rely
on GO due to 100% GO coverage. The sensor is highly responsive to the NH;. Two major functional groups
(hydroxyl and carboxyl group) with strong signal are measured by FTIR, while the epoxy group is weakened
in comparison to the hybrid sensor of 3 mg/mL GO. The DFT calculations guarantee the NH; adsorption with
closest distance to the hydroxyl group. By combining the extracted resonance shift from the proposed sensors,
the VOC signals with distinguishable fingerprint is observed. The data classification using principal component
analysis (PCA) method indicates the clear data separation. That allows the use of unsupervised machine learn-
ing for data prediction. With a decision tree method, the results show 100% accuracy based on 24 data (70%
training set and a 30% test set). However, it is important to note the small number of data in this study may have
affected the results. Further validation using a larger dataset is recommended to confirm the system accuracy.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary
information files].
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