
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10751  | https://doi.org/10.1038/s41598-023-38046-4

www.nature.com/scientificreports

Identification of novel biomarkers 
and immune infiltration features 
of recurrent pregnancy loss 
by machine learning
Yujia Luo 1 & Yuanyuan Zhou 2*

Recurrent pregnancy loss (RPL) is a complex reproductive disorder. The incompletely understood 
pathophysiology of RPL makes early detection and exact treatment difficult. The purpose of this 
work was to discover optimally characterized genes (OFGs) of RPL and to investigate immune cell 
infiltration in RPL. It will aid in better understanding the etiology of RPL and in the early detection 
of RPL. The RPL-related datasets were obtained from the Gene Expression Omnibus (GEO), 
namely GSE165004 and GSE26787. We performed functional enrichment analysis on the screened 
differentially expressed genes (DEGs). Three machine learning techniques are used to generate the 
OFGs. A CIBERSORT analysis was conducted to examine the immune infiltration in RPL patients 
compared with normal controls and to investigate the correlation between OFGs and immune cells. 
Between the RPL and control groups, 42 DEGs were discovered. These DEGs were found to be involved 
in cell signal transduction, cytokine receptor interactions, and immunological response, according 
to the functional enrichment analysis. By integrating OFGs from the LASSO, SVM-REF, and RF 
algorithms (AUC > 0.880), we screened for three down-regulated genes: ZNF90, TPT1P8, FGF2, and 
an up-regulated FAM166B. Immune infiltration study revealed that RPL samples had more monocytes 
(P < 0.001) and fewer T cells (P = 0.005) than controls, which may contribute to RPL pathogenesis. 
Additionally, all OFGs linked with various invading immune cells to varying degrees. In conclusion, 
ZNF90, TPT1P8, FGF2, and FAM166B are potential RPL biomarkers, offering new avenues for research 
into the molecular mechanisms of RPL immune modulation and early detection.

Recurrent pregnancy loss (RPL) is a distressing pregnancy disorder defined as the presence of two or more 
clinically recognized pregnancy losses before 20–24 weeks of gestation1. RPL affects about 2.5% of women who 
are trying to get pregnant. Recurrent miscarriages can be caused by a variety of conditions, including genetic, 
anatomical, endocrine, and immune-related illnesses2. However, the cause of about 50% of RPL instances is still 
unknown, and the etiology of RPL has not yet been thoroughly clarified3. As a result, progress in the development 
of accurate diagnosis and early prediction of recurrent miscarriage is stymied.

A woman’s endometrial immune system is essential to the success of her pregnancy because it functions as 
a semi-allograft of the maternal host. Early in pregnancy, roughly 40% of the decidua’s cells are endometrium-
resident immune cells, which serve regulatory roles during embryo implantation to guarantee maternal tolerance 
of the embryo4. Decidual lymphocytes play a crucial role in the early stages of pregnancy, among other things by 
removing apoptotic cells, spotting infections, encouraging trophoblast invasion, and controlling decidualization. 
Activated natural killer (NK) cells release growth-promoting factors that promote fetal maturation, and CD49a+ 
Emos+ NK cells recognize HLA-G expressed on extravillous trophoblasts5,6. Depletion of CD4+CD25+Treg 
cells results in pregnancy loss in mice because regulatory T (T reg) cells promote tolerance between fetal and 
maternal cells4,7. Furthermore, the quantity of tolerogenic dendritic cells (DCs) in the endometrium was dra-
matically decreased in the mid-luteal phase of RPL women, which induced the differentiation of Treg cells in 
the endometrium and other tissues8,9. At the same time, depletion of DCs in the endometrium also interferes 
with embryo implantation and leads to early embryo resorption, which is related to impaired decidualiza-
tion and reduced vasodilation10. Circulating monocytes infiltrate into the decidua mediated by cytokines and 
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chemokines. They differentiate into macrophages or DCs at the onset of pregnancy, participating in regulat-
ing maternal–fetal immunity11. Collectively, RPL is hypothesized to have a common etiology of compromised 
endometrial immunity.

Recently, major functional genes in several diseases have been discovered using microarray technology and 
thorough bioinformatics analysis, which can then be employed as diagnostic and predictive biomarkers12–14. 
Finding illness biomarkers is frequently done using machine learning (ML) techniques. We can account for 
the magnitude and direction of interactions between predictors and outcomes using Support Vector Machines-
Recursive Feature Elimination (SVM-RFE) in machine learning15. A gene expression-based deconvolution 
technique called CIBERSORT is employed to evaluate immune cell infiltration16. To the best of our knowledge, 
however, the combination study of SVM-RFE, LASSO, Random Forest (RF), and CIBERSORT has not been used 
to identify putative biomarkers of RPL and forecast immune cell infiltration in RPL patients.

The purpose of this study was to screen for novel biomarkers in the endometrium associated with RPL using 
ML techniques. In addition, we used the CIBERSORT algorithm to assess immune cell infiltration in RPL and 
analyzed the relationship between biomarker expression and immune cell infiltration.

Materials and methods
Preprocessing and collection of data.  In Fig. 1, we can see the workflow of the research. GSE165004 
and GSE26787 were downloaded from the Gene Expression Omnibus (GEO) database in NCBI17. GSE165004 
was based on the GPL16699 platform, which contained endometrial tissues of 24 RPL women and 24 controls. 
And GSE26787 was based on GPL570, consisting of 5 RPL patients and 5 control endometrial samples. With R 

Figure 1.   The workflow of the study.
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packages “limma” and “sva”, two datasets were then merged and batch-normalized18. With the help of R software, 
40 RPL and 18 healthy women were randomly divided into the training and testing cohorts in a ratio of two to 
one for the following analysis.

Calculation of differentially expressed genes.  Using the "limma" R package, we gained differences in 
gene expression between RPL and control tissues, and DEGs were set to |log2FC|> 1.0 along with P-value < 0.05. 
For visualizations of DEGs, heatmaps and volcano graphs were produced by "ggplot2" and "pheatmap" packages 
in R.

Enrichment assessment of DEGs.  The Gene Ontology (GO), Disease Ontology (DO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways19 were assessed for functional enrichment using the "cluster-
Profiler" package of R to discover the underlying biological functions of DEGs.

Selection of optimal feature genes (OFGs).  To identify OFGs, we selected three different machine 
learning (ML) algorithms. "Glmnet", an R package, constructed the Least absolute shrinkage and selection oper-
ator (LASSO) binary logistic regression model. The optimal penalty parameter was determined and used in 
every signature using a tenfold cross-validation minimum20. The SVM-RFE, a nonlinear support vector machine 
implemented in the R package "e1071", "kernlab", and "caret", is applied to determine the OFGs15. To filter OFGs, 
we used the R package "randomforest" to generate 500 trees for every datapoint and retained the top 5 key 
genes21. Furthermore, the venn graph exhibited the OFGs of the intersection of three machine learning.

Diagnostic quality verification of OFGs.  A testing set was applied to verify screened OFGs as a vali-
dation step. To visualize the expression of crucial OFGs in the RPL and control women of testing set, we con-
structed boxplots using the R packages "ggplot2″ and "ggpubr”. Area under curve (AUC) was applied to assess 
the predictive value of OFGs using the receiver operating characteristic (ROC) curve computed by the "pROC" 
package in R22. Considering this, OFGs were recognized as prospective biomarkers with highly predictive and 
diagnostic capabilities once the AUC exceeded 0.85.

Assessment of immune cell Infiltration.  Utilizing the CIBERSORT algorithm (https://​ciber​sort.​stanf​
ord.​edu/), we computed the infiltrating abundances and differences of 22 immune cells. The outcomes were 
visualized with heatmap, and violin graph produced with the "corrplot" and "ggplot2" packages in R16. The rela-
tionship between OFGs and immune cells was estimated by spearman correlation coefficient.

Statistical analysis.  Every statistical calculation and graph were executed by R (version 4.2.2). It was con-
firmed once p-value less than 0.05 as statistically significant.

Results
Identification of DEGs.  Here is a diagram of the study’s workflow (Fig. 1). DEGs were generated based on 
the training dataset, which contained endometrium tissues from 20 RPL patients and 20 controls. A comparison 
between RPL and control women revealed 42 DEGs with 28 upregulated and 14 downregulated genes. Heatmaps 
and volcano graphs were produced correspondingly to display the consequences (Fig. 2).

Enrichment assessment of DEGs.  To complete the enrichment analysis of DEGs by GO/DO/KEGG, 
we applied the "clusterProfiler" package in R. For GO analysis, In RPL patients, the biological process, cellular 
component, and molecular function associated with anion transport, collagen–containing extracellular matrix 
and receptor-ligand activity were identified as the most enriched functions (Fig. 3A). KEGG analysis primar-
ily targeted on Ras signalling pathway, and PI3K–Akt signalling pathway (Fig. 3B). Furthermore, DO analysis 
revealed tight associations of DEGs with myocardial infarction, bone remodelling disease and peptic ulcer dis-
ease in RPL women (Fig. 3C).

Screening and validating OFGs.  In the RPL-related DEGs, the LASSO and RF algorithms each screened 
five valuable genes. Additionally, the SVM-REF algorithm was applied to filter six crucial genes. The four inter-
secting OFGs are known as zinc finger protein 90 (ZNF90), putative translationally controlled tumor protein-
like protein TPT1P8 (TPT1P8), fibroblast growth factor 2 (FGF2) and family with sequence similarity 166, 
member B (FAM166B) (Fig. 4). In the RPL, ZNF90, TPT1P8, and FGF2 are down-regulated and FAM166B is 
up-regulated. As verified by the testing set, the expression of OFGs were noticeably decreased in RPL women, 
except for FAM166B (Fig. 5A–D). To assess their diagnostic effectiveness, we produced ROC curves for the 
OFGs in testing cohort. All OFGs displayed excellent diagnostic results with AUCs exceeding 0.88 (Fig. 5E–H). 
Consequently, ZNF90, TPT1P8, FGF2 and FAM166B were identified to be promising biomarkers for diagnosing 
RPL.

Assessment of immune cell infiltration.  In further analysis, we applied the CIBERSORT algorithm to 
discover the pertinent proportions of 22 different immune cell types. As shown in the bar chart, each sample has 
a different proportion of immune cell subpopulations (Fig. 6A). The violin graph demonstrated that infiltration 
of monocytes was strongly significant in the RPL group, whereas infiltration of γδ T cells exhibited remarkably 
significant in control dataset (Fig. 6B). Moreover, the interaction among immune cells revealed that regulatory 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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T cells exhibited the most positive correlation with M0 macrophages, although CD8 T cells negatively exhibited 
relationship with CD4 memory resting T cells (Fig. 6C).

Relationships between immune cells and biomarkers.  Correlation analyses were executed to estimate 
the connections between immune cells and biomarkers. We discovered that the down-regulated genes: ZNF90 
and TPT1P8 were positively related to γδ T cells (ZNF90: R = 0.324, P = 0.041; TPT1P8: R = 0.328, P = 0.034), 
but negatively associated with monocytes (ZNF90: R = -0.649, P < 0.001; TPT1P8: R =  − 0.418, P = 0.007). M2 
macrophages and plasma cells were positively linked to down-regulated FGF2 and negatively connected to up-
regulated FAM166B, whereas CD4 resting memory T cells were inversely related to these two genes. In addition, 
ZNF90 was also concerned with eosinophils and naive B cells; FAM166B was associated with monocytes and 
resting dendritic cells (Fig. 7).

Discussion
RPL is still a major health concern in reproductive medicine, creating a significant psychological burden to 
individuals because 50% of RPL is idiopathic and evidence-based therapy is restricted. Currently, machine 
learning algorithms are excellent tools for analyzing underlying linkages and selecting ideal parameters for gene 
selection among all DEGs of biological significance in high-dimensional data. The discovery of new genes as 
potential biomarkers, as well as the study of immune cell infiltration features, will have a substantial impact on 

Figure 4.   Screening underlying OFGs by machine learning. (A) Identifying biomarkers by LASSO algorithm. 
(B) Random Forest algorithm treated the top 5 genes in terms of MeanDecreaseGini score as OFGs. (C) SVM-
RFE algorithm filters out 8 OFGs. (D) Venn diagram displaying four OFGs intersected by machine learning 
algorithms.
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the early diagnosis and prediction of RPL. In this study, we identified a total of 42 DEGs, of which 28 genes were 
upregulated, and 14 were downregulated, based on the gene expression datasets of RPL and normal controls. 
Multifunctional enrichment analysis showed that these DEGs were related to MAPK signaling pathway, PI3K-
Akt signaling pathway, inflammation and immune responses. Then based on three machine learning algorithms 
(LASSO regression model, RF algorithm and SVM-RFE algorithm), we screened out 4 best eigengenes (FGF2, 
FAM166B, ZNF90 and TPT1P8). Finally, we revealed the relationship between the 4 OFGs and immune cells 
using the CIBERSORT algorithm.

Fibroblast growth factor (FGF) regulates cell fate, angiogenesis, immunity, and metabolism through signalling 
through its receptors FGFR1, FGFR2, FGFR3 or FGFR4. According to research, dysregulation of FGF signaling 
causes human diseases such as lung, breast, and stomach cancer, as well as achondroplasia23. Furthermore, 
FGF and its receptors are major factors in fetal and placental angiogenesis. The FGF signaling process regulates 

Figure 7.   Visualization of Spearman correlation between 4 OFGs and immune cells in RPL patients. (A) 
ZNF90. (B) TPT1P8. (C) FGF2. (D) FAM166B.
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immunity dynamically as well as regulating inflammation and tissue repair by immune cells. After FGFR1/2 
signaling and VEGF/ANGPT2 secretion, FGF2 can promote endothelial cell proliferation and migration, for 
example24,25. FGF1 and FGF2 promote neutrophil chemotaxis to damaged tissues through FGFR2 signaling26. 
In addition, Cox reported that implantation of exogenous FGF-2 into the quail embryonic environment induced 
angiogenic cells and patterned blood vessel formation27. Thus, low FGF2 expression may contribute to RPL by 
hindering embryonic angiogenesis. FAM166B is a gene that has yet to be studied in depth. Previous studies 
involving FAM166B, which focused more on expression in multiple symmetric lipidosis and skeletal muscle, 
showed that FAM166B is highly expressed in adrenal glands and ciliated cells, but its precise function remains 
unclear28. A recent study showed that FAM166B expression correlates with breast cancer prognosis. The 
study found that the expression level of FAM166B in breast cancer was negatively correlated with the level of 
macrophage infiltration and positively correlated with the expression of CD 4+ T cells, which suggesting that 
the recruitment and regulation of immune infiltrating cells may be mediated by FAM166B in breast cancer29. 
Zinc finger proteins (ZFPs) are the largest family of transcription factors characterized by finger-like DNA-
binding domains that play an important role in metabolic processes, autophagy, apoptosis, immune responses, 
differentiation, and stem cell maintenance30. However, only a few studies have reported the involvement of 
ZFPs in immune-related processes, such as immune response, immune homeostasis, and cytokine production 
recently31,32. ZFPs bind to Zinc, which is involved in the developmental process of oocytes. Abu-Soud reported 
that zinc deficiency leads to high ROS production in oocytes, which affects oocyte quality and female fertility by 
interfering with physiological antioxidant mechanisms that act on biomolecular, protein and cellular processes33. 
In the present study, low expression of ZFPs caused a decrease in binding efficiency to zinc, which may lead 
to RPL. Currently, there are few studies on TPT1P8, also known as FKSG2. The latest literature found that the 
significantly lower expression of TPT1P8 in the anterior cingulate cortex (ACC) of Cushing’s disease (CD) 
patients was associated with immune function34. Accordingly, the OFGs screened in this study are involved in 
signaling transduction, inflammation and immune responses, which may contribute to RPL occurrence and 
progression.

Based on the CIBERSORT analysis, we found that RPL and the control group had significantly different 
levels of immune cell infiltration, especially monocytes and γδ T cells. Our study found that RPL samples 
had higher levels of monocyte infiltration. Consistent with our conclusions, previous studies also showed 
that women with RPL had higher monocyte concentrations detected in peripheral blood than normal fertile 
controls35. During normal pregnancy, immune cells at the fetal-maternal interface increase, such as uterine 
NK cells and macrophages. Monocytes are short-lived cells that arise from monocyte precursors in the bone 
marrow and makeup approximately 5–10% of the total number of circulating white blood cells36. Accumulating 
evidence suggests that circulating monocytes are recruited to the decidua at the onset of pregnancy to generate 
macrophages with essential immune functions. Thus, decidual macrophages contribute to maternal tolerance 
to fetal antigens11. Monocytes also present antigens to T cells, which regulate the adaptive immune response. 
In addition, they are involved in fundamental processes of a successful pregnancy, such as trophoblast invasion 
and tissue and vascular remodeling37. In addition, our results also showed that γδ T cells were decreased in RPL 
samples compared with normal controls. According to the T cell receptor (TCR), T cells are divided into αβ T 
and γδ T cells, which express αβ TCR and γδ TCR, respectively38. γδ T cells play numerous roles in establishing 
and maintaining immune tolerance in early pregnancy but are often overlooked. γδT cells are increased in the 
early decidua of normal pregnancy. They secrete anti-inflammatory cytokines such as IL-10 and TGF-β and 
transduce negative signals by expressing regulatory molecules such as PD-1, Tim-3, and CD 16039,40. From this, 
we speculate that dysregulation of endometrial monocytes and γδ T cells in women with RPL biases the maternal 
immune system towards pro-inflammatory properties, which may ultimately lead to RPL.

In our study, according to the correlation analysis, the four characteristic genes screened are related to 
immune cell infiltration of RPL. In Fig. 7, the expression of four candidate genes showed strong correlation 
with monocytes, but weak correlation with other differentially infiltrated immune cells. Comins-Boo suggests 
that monocyte dysregulation is a major factor contributing to RPL. We therefore hypothesize that key genes 
interacting with monocytes may promote the development of RPL. However, the specific mechanism for the weak 
correlation of γδ T cells and plasma cells with key genes is unknown and may be related to the small sample size.

The integration of microarray technology, bioinformatics analysis, and ML algorithms has become a hotbed 
for biomarker screening, diagnosis prediction, and prognosis evaluation of complicated diseases in recent years. 
Moreover, computational biology methods can provide the basis for further basic experimental design. In this 
study, the combination of the LASSO model, RF algorithm and SVM-RFE algorithm was applied to identify 
potential biomarkers of RPL, as it has rarely been done before. This study, however, has limited data, and more 
external data, clinical samples, and prospective clinical trials are needed in the future to verify the results.

Conclusion
In this study, we found that ZNF90, TPT1P8, FGF2 and FAM166B could serve as candidate biomarkers for RPL, 
and we explored their correlations with immune cells in the pathogenesis of RPL. In addition, the differential 
infiltration of monocytes and γδ T cells is related to the onset and progression of RPL. Future studies with larger 
sample sizes and more predictive clinical measures are necessary for validating these results.

Data availability
The datasets supporting the conclusions of this article are available in the GEO database, including GSE165004 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​5004) and GSE26787 (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc = GSE26787).
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10751  | https://doi.org/10.1038/s41598-023-38046-4

www.nature.com/scientificreports/

Received: 20 March 2023; Accepted: 1 July 2023

References
	 1.	 RPL EGGo et al. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open. 2018(2), hoy004 (2018).
	 2.	 Dimitriadis, E., Menkhorst, E., Saito, S., Kutteh, W. H. & Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Prim. 6(1), 98 (2020).
	 3.	 van Dijk, M. M. et al. Recurrent pregnancy loss: Diagnostic workup after two or three pregnancy losses? A systematic review of 

the literature and meta-analysis. Hum Reprod Update. 26(3), 356–367 (2020).
	 4.	 Ticconi, C., Pietropolli, A., Di Simone, N., Piccione, E. & Fazleabas, A. Endometrial immune dysfunction in recurrent pregnancy 

loss. Int. J. Mol. Sci. 20(21), 5332 (2019).
	 5.	 Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47(6), 

1100–1113 (2017).
	 6.	 Gamliel, M. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity 48(5), 

951–962 (2018).
	 7.	 Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5(3), 

266–271 (2004).
	 8.	 Lu, Y. et al. IFN-gamma and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus 

host and graft versus leukemia activity. Blood 119(4), 1075–1085 (2012).
	 9.	 Li, Y. et al. RNA sequencing of decidua reveals differentially expressed genes in recurrent pregnancy loss. Reprod. Sci. 28(8), 

2261–2269 (2021).
	10.	 Plaks, V. et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J. Clin. Invest. 118(12), 

3954–3965 (2008).
	11.	 Nagamatsu, T. & Schust, D. J. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod. Sci. 17(3), 

209–218 (2010).
	12.	 Na, Z. et al. Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome. J. Ovarian Res. 

15(1), 80 (2022).
	13.	 Tian, Y. et al. Identification of diagnostic signatures associated with immune infiltration in Alzheimer’s disease by integrating 

bioinformatic analysis and machine-learning strategies. Front. Aging Neurosci. 14, 919614 (2022).
	14.	 Huang, K. K., Zheng, H. L., Li, S. & Zeng, Z. Y. Identification of hub genes and their correlation with immune infiltration in 

coronary artery disease through bioinformatics and machine learning methods. J. Thorac. Dis. 14(7), 2621–2634 (2022).
	15.	 Mi, X., Zou, B., Zou, F. & Hu, J. Permutation-based identification of important biomarkers for complex diseases via machine 

learning models. Nat. Commun. 12(1), 3008 (2021).
	16.	 Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 12(5), 453–457 (2015).
	17.	 Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets–update. Nucl. Acids Res. 41(Database issue), D991–D995 

(2013).
	18.	 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted 

variation in high-throughput experiments. Bioinformatics 28(6), 882–883 (2012).
	19.	 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28(1), 27–30 (2000).
	20.	 Frost, H. R. & Amos, C. I. Gene set selection via LASSO penalized regression (SLPR). Nucl. Acids Res. 45(12), e114 (2017).
	21.	 Kursa, M. B. Robustness of Random Forest-based gene selection methods. BMC Bioinf. 15, 8 (2014).
	22.	 Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf. 12, 77 (2011).
	23.	 Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 37(12), 1081–1096 (2016).
	24.	 Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. 

Med. 38(1), 3–15 (2016).
	25.	 House, S. L. et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac 

ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 310(5), H559–H571 (2016).
	26.	 Haddad, L. E., Khzam, L. B., Hajjar, F., Merhi, Y. & Sirois, M. G. Characterization of FGF receptor expression in human neutrophils 

and their contribution to chemotaxis. Am. J. Physiol. Cell Physiol. 301(5), C1036–C1045 (2011).
	27.	 Cox, C. M. & Poole, T. J. Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns 

vessel formation in the quail embryo. Dev. Dyn. 218(2), 371–382 (2000).
	28.	 Shamseldin, H. E. et al. The morbid genome of ciliopathies: An update. Genet. Med. 22(6), 1051–1060 (2020).
	29.	 Zhou, Y., Zhu, H., He, G., Zhang, H., Cheng, X., Liu, X. Overexpressed FAM166B predicts favorable prognosis and associated with 

metabolic pathways and tumor immune infiltrates in BRCA. (2021).
	30.	 Li, X. et al. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res. 

10(1), 2 (2022).
	31.	 Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in 

innate immunity. Nat. Rev. Immunol. 14(6), 361–376 (2014).
	32.	 Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9(10), 692–703 (2009).
	33.	 Camp, O. G., Bembenek, J. N., Goud, P. T., Awonuga, A. O., Abu-Soud, H. M. The implications of insufficient zinc on the genera-

tion of oxidative stress leading to decreased oocyte quality. Reprod. Sci. (2023).
	34.	 Bauduin, S. et al. Potential associations between immune signaling genes, deactivated microglia, and oligodendrocytes and cortical 

gray matter loss in patients with long-term remitted Cushing’s disease. Psychoneuroendocrinology 132, 105334 (2021).
	35.	 Comins-Boo, A. et al. Immunophenotyping of peripheral blood monocytes could help identify a baseline pro-inflammatory profile 

in women with recurrent reproductive failure. J. Reprod. Immunol. 154, 103735 (2022).
	36.	 Faas, M. M. & de Vos, P. Uterine NK cells and macrophages in pregnancy. Placenta 56, 44–52 (2017).
	37.	 Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. 

Immunol. 11, 575197 (2020).
	38.	 Xu, Q. H. et al. Roles of gammadeltaT cells in pregnancy and pregnancy-related complications. Am. J. Reprod. Immunol. 86(5), 

e13487 (2021).
	39.	 Talukdar, A., Rai, R., Aparna Sharma, K., Rao, D. N. & Sharma, A. Peripheral Gamma Delta T cells secrete inflammatory cytokines 

in women with idiopathic recurrent pregnancy loss. Cytokine 102, 117–122 (2018).
	40.	 Polgar, B., Barakonyi, A., Xynos, I. & Szekeres-Bartho, J. The role of gamma/delta T cell receptor positive cells in pregnancy. Am. 

J. Reprod. Immunol. 41(4), 239–244 (1999).

Author contributions
Conceptualization, Z.Y.Y.; Formal analysis, L.Y.J.; Writing—original draft, L.Y.J.; Writing—review and editing, 
Z.Y.Y. All authors have read and agreed to the published version of the manuscript. All authors reviewed the 
manuscript.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10751  | https://doi.org/10.1038/s41598-023-38046-4

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification of novel biomarkers and immune infiltration features of recurrent pregnancy loss by machine learning
	Materials and methods
	Preprocessing and collection of data. 
	Calculation of differentially expressed genes. 
	Enrichment assessment of DEGs. 
	Selection of optimal feature genes (OFGs). 
	Diagnostic quality verification of OFGs. 
	Assessment of immune cell Infiltration. 
	Statistical analysis. 

	Results
	Identification of DEGs. 
	Enrichment assessment of DEGs. 
	Screening and validating OFGs. 
	Assessment of immune cell infiltration. 
	Relationships between immune cells and biomarkers. 

	Discussion
	Conclusion
	References


