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Automated detection 
of intracranial aneurysms using 
skeleton‑based 3D patches, 
semantic segmentation, 
and auxiliary classification 
for overcoming data imbalance 
in brain TOF‑MRA
Sungwon Ham 1, Jiyeon Seo 2, Jihye Yun 3, Yun Jung Bae 4, Tackeun Kim 5, Leonard Sunwoo 6, 
Sooyoung Yoo 7, Seung Chai Jung 3, Jeong‑Whun Kim 8* & Namkug Kim 2,3*

Accurate and reliable detection of intracranial aneurysms is vital for subsequent treatment to 
prevent bleeding. However, the detection of intracranial aneurysms can be time-consuming and even 
challenging, and there is great variability among experts, especially in the case of small aneurysms. 
This study aimed to detect intracranial aneurysms accurately using a convolutional neural network 
(CNN) with 3D time-of-flight magnetic resonance angiography (TOF-MRA). A total of 154 3D TOF-MRA 
datasets with intracranial aneurysms were acquired, and the gold standards were manually drawn by 
neuroradiologists. We also obtained 113 subjects from a public dataset for external validation. These 
angiograms were pre-processed by using skull-stripping, signal intensity normalization, and N4 bias 
correction. The 3D patches along the vessel skeleton from MRA were extracted. Values of the ratio 
between the aneurysmal and the normal patches ranged from 1:1 to 1:5. The semantic segmentation 
on intracranial aneurysms was trained using a 3D U-Net with an auxiliary classifier to overcome the 
imbalance in patches. The proposed method achieved an accuracy of 0.910 in internal validation and 
external validation accuracy of 0.883 with a 2:1 ratio of normal to aneurysmal patches. This multi-task 
learning method showed that the aneurysm segmentation performance was sufficient to be helpful in 
an actual clinical setting.

Cerebral aneurysms are bulges in cerebral blood vessels that can leak or rupture, causing subarachnoid hemor-
rhage (SAH). An unruptured intracranial aneurysm is an abnormal focal expansion of an artery in the brain 
caused by the weakening of the vascular wall. Approximately 3% of healthy adults have an intracranial aneurysm1. 
Aneurysms account for 85% of all SAHs, with an average mortality rate of 51%, and one-third of survivors 
have long-term disabilities2. Rupturing of an intracranial aneurysm is a serious event with high mortality and 
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morbidity3. There is active research into the identification of factors contributing to the risk of intracranial 
aneurysms developing, growing, and rupturing4–6.

Genetic factors, family history, female sex, and age are associated with an increased risk of aneurysm develop-
ment. Additionally, the site, size, and shape of the intracranial aneurysm are more closely related to the risk of 
rupture2,7,8. Automated detection of intracranial aneurysms before symptoms occur can prevent death or other 
complications through intravascular or surgical treatment; however, detection of small aneurysms has proved 
difficult. Owing to the recent rapid development of deep-learning-based models, the ability to automatically 
detect and segment intraarterial aneurysms would be especially helpful in reducing the fatigue and increased 
workloads of radiologists.

Studies have proposed several approaches with conventional image processing techniques for the semi-
automatic detection of aneurysms9–12. Convolutional neural networks (CNN) have demonstrated excellent per-
formance in various visual tasks, including medical image analysis13,14. Several medical imaging tasks, includ-
ing detection and segmentation, have been revolutionized by the application of deep learning algorithms, and 
they have shown dramatic improvements in multiple computer vision tasks. Additionally, several studies have 
investigated the automated detection of brain aneurysms with deep learning algorithms. Ueda et al. used a 
2D patch-based ResNet architecture to detect aneurysms with time-of-flight magnetic resonance angiography 
(TOF-MRA)15. Stember et al. proposed a method to build a model that would predict the size of aneurysms after 
training the U-net architecture with 250 maximum intensity projections (MIPs) of MRA16. Nakao et al. developed 
a computer-assisted detection (CAD) system for intracranial aneurysms in MIPs of TOF-MRA images based on 
a CNN classifier17. Most methods have been developed using 2D or 2D-projection-like MIPs, which could be a 
limitation for detecting 3D aneurysms using 3D MRA.

Therefore, our study aims to develop and validate a CNN model with 3D patches for automatic detection and 
segmentation of intracranial aneurysms using TOF-MRA and a multi-center cohort. In addition, a preliminary 
assessment of the accuracy and clinical usefulness of the model was conducted.

Materials and methods
Dataset.  This retrospective study was conducted in accordance with the Declaration of Helsinki and current 
scientific guidelines. The study protocol was approved by the Institutional Review Board Committee of Seoul 
National University Bundang Hospital (SNUBH), Seoul, Korea, which also waived the requirement for informed 
patient consent. Candidate patients were identified by searching the picture archive and communication system 
from May 2011 to December 2017. A contrast agent was used to obtain all angiographic data. The final dataset 
included studies collected using two different modalities: a Siemens Axiom Artis (Siemens Healthcare, Erlangen, 
Germany), and a GE Innova IGS 630 (GE Healthcare, Chicago, US). The acquisition parameters were as follows: 
rage of slice thickness, 0.2–0.5 mm, matrix size, 1024 × 1024 and range of voxel size, 0.2–0.7 mm3.

A total of 154 3D TOF-MRA datasets with intracranial aneurysms were acquired from SNUBH. Out of a total 
of 154 patients, we divided into 120 for training, 19 for validation, and 15 for testing. The patient’s ages ranged 
from 32 to 76 years (with a mean age 53.90 ± 12.97 years.) The gender distribution was 70% female and 30% 
male. According to the Korean Classification of Diseases (KCD) diagnostic codes, the majority of patients (150 
individuals) were diagnosed with unruptured cerebral aneurysms. There was also one case of non-aneurysmal 
anatomical variant and three cases of subarachnoid hemorrhage due to posterior communicating artery aneu-
rysms. The size of the aneurysms ranged from 1.8–32.6 mm, with a mean size of 2.6 mm ± 1.9. The distribution 
included 130 patients with very small aneurysms of less than 5 mm, 21 patients with small aneurysms ranging 
from 5 to 10 mm, and 3 patients with large aneurysms greater than 10 mm in size. The ground-truth masks of 
the intracranial aneurysm regions were delineated by a neuroradiologist (> 10 years of experience) who semi-
automatically defined masks on the 3D contrast-enhanced T1 weighted images using manual segmentation with 
a segmentation threshold using MITK software (MITK, www.​mitk.​org, German Cancer Research Center)18. All 
segmented images were validated by a neuroradiologist (> 18 years of experience). It took 15–20 min to make 
the reference mask for each patient. To generate the training dataset, both negative (no aneurysm) and positive 
(with aneurysm) patches were extracted from the vessel skeleton of TOF-MRA volume. Specifically, positive 
patches for each aneurysm were randomly extracted in a non-centered fashion around the aneurysm center, 
always ensuring that the manual mask was completely included in the patch. The patch size was 64 × 64 × 64, 
and values of the ratio of patches with and without aneurysms ranged from 1:1 to 1:5 for evaluating ablation 
studies on imbalances. Our patch size was determined experimentally, the results of which can be found in Sup-
plementary Table S1. We have sourced a robust collection of 113 external datasets from TOF-MRA, as part of 
the Aneurysm Detection And segMentation (ADAM) challenge. This ADAM datasets consisted of individuals 
aged 24–75 years, with a median age of 55. Notably, females represented a substantial 75% of these subjects. The 
patient cohort for this challenge was thoughtfully curated from a larger pool at the University Medical Center 
(UMC) in Utrecht. The MRI scans in this study were conducted at UMC Utrecht in the Netherlands using a 
range of Philips scanners with field strengths of 1, 1.5 or 3 T. The TOF-MRAs provided variable voxel spacings 
in the image plane, between 0.195 to 1.04 mm, and a slice thickness that ranged from 0.4 to 0.7 mm. It should 
be noted that the acquisition protocol was not standardized, reflecting the clinical nature of the data, which 
was collected from various studies spanning the period from 2001 to 2019. The data included subjects with at 
least one untreated, unruptured intracranial aneurysm (UIA), as well as those without any intracranial aneu-
rysm. The sample also contained subsets of individuals who were screened for UIAs due to a familial history of 
aneurysmal subarachnoid hemorrhage (aSAH). An interventional neuro-radiologist (> 10 years of experience) 
created the protocol for aneurysm annotation. The outline of every aneurysm was contoured on each axial slice 
of the TOF-MRA image. The annotated lines were always drawn from the neck level to the aneurysm’s dome. 
All voxels whose volume was greater than 50% of the manually drawn contour’s volume were included when 
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the contours were transformed into binary masks. Untreated, undisrupted aneurysms were labelled 1, whereas 
the background was labelled 0.

Pre‑processing.  To enhance the learning capabilities of the deep learning model, pre-processing of brain 
MRA images is necessary. Additionally, in order to minimize the domain gap between the internal and external 
datasets, we performed the following preprocessing steps. First, signal intensity normalization was performed. 
The signal intensity of all MRA datasets was clipped to the [0.5, 99.5] percentiles of these intensity values, and 
then the mean and standard deviation of each dataset’s intensity values were used to standardize the z-score for 
normalization. Second, to correct any intensity inhomogeneities caused by variations in scanner characteristics, 
patient positioning, N4 bias correction was applied. Last, the study of MR brain images requires preliminary 
processing to isolate the brain from extracranial or non-brain tissue, commonly referred to as skull stripping. 
This provides better detection or segmentation and direct visualization19,20. We removed the skull using a trained 
deep-learning bet model. Voxel spacing was resampled from an average value of 0.3 × 0.3 × 0.3 mm isotropic 
voxel size, and 3D patches sized 64 × 64 × 64 were extracted along the vessel skeleton in MRA21, as shown in 
Fig. 1. The vessel skeletonization proceeded as follows. A thresholding was applied to the original image and 
converted to binary format to isolate the region of interest and exclude the background, connected component 
labeling was used to identify and group large structures within the image, approximately 3000 pixels in size, and 
a region growth algorithm was run to iteratively add adjacent pixels to identify all pixels that comprise the same 
structure. To ensure structural continuity, we used a morphological closure operation to fill existing holes within 
the image. We concluded the procedure by iteratively applying the algorithm to each pixel and its 26 neighbors 
until no more pixels could be removed, completing the 3D skeletal representation of the image. To overcome the 
extreme imbalance between normal and aneurysm patches, these patches were augmented with horizontal and 
vertical flips, zooming, Rician and Gaussian noise, rotation, blurring, contrast, and gamma correction.

Development of deep learning model.  Network architecture.  Several approaches were adopted to im-
prove model performance. First, the proposed model was built based on the U-Net22, a well-proven network 
structure that has been used widely in medical image segmentation. Second, we employed a basic block structure 
rather than the stacked convolution layer; as a result, the residual connection improved the performance of the 
deep conventional network. Finally, the dual attention block was employed to force the network to focus on the 
informative region and features. We also compared the performance of the model to that of the most frequently 
employed 3D U-Net using the same training and testing data (Internal cohort 1), and our model had a signifi-
cantly better performance, as shown in Table 1. 3D U-Net is a popular architecture for semantic segmentation23. 
It consists of a contracting and an expansive path. The contracting path adheres to the standard convolutional 
network architecture.

Two 3 × 3 × 3 convolutions (unpadded convolutions) are applied twice, one after the other, each time being 
followed by a rectified linear unit (ReLU) and a 2 × 2 × 2 max pooling operation with stride 2 for down-sampling. 
We must double the number of feature channels for each down-sampling step. The feature map is up-sampled for 
each step in the expansive path, then two 3 × 3 × 3 convolutions, each followed by a ReLU, a 2 × 2 × 2 convolutions 
(“up-convolution”) to cut the number of feature channels in half, and a concatenation with the correspondingly 
cropped feature map from the contracting path. The loss of boundary pixels in every convolution necessitates 
cropping. Each 64-component feature vector is mapped to the desired number of classes using a 1 × 1 × 1 con-
volution at the final layer. In total, the network has 23 convolutional layers. The nnU-Net increases the general 
applicability of U-Net to perform automated configuration for arbitrary new datasets24,25.

The nnU-Net architecture closely follows the original U-Net architecture, including various techniques such 
as cascaded strategy, residual connection, attention mechanisms, squeeze and excitation, and dilated convolu-
tions. For the cascaded strategy, the first U-Net operates on down-sampled images, and the second is trained to 
refine the segmentation maps created by the former at full resolution. There are two main differences between 
the original U-Net and nnU-Net: first, it uses up-sampled layers in the decoding branch rather than transpose 
convolutions; second, nnU-Net does not include batch normalization layers.

Figure 1.   Vessel segmentation in the brain reduces dimensionality by pre-processing.
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To compare the nnU-Net and original U-Net, our modified 3D U-Net with dense blocks and auxiliary loss for 
classification was proposed. The auxiliary loss function and stochastic gradient descent algorithms could solve 
the problem of vanishing features26. Our network contains three loss functions, including two auxiliary losses 
and the principal loss. Auxiliary functions were used to train sub-models by extracting essential features to add 
loss functions to the intermediate layers in the deep neural network27.

Implementation details.  In our network, auxiliary classifiers are used to prevent gradient loss during training 
and to improve convergence and learning results. This auxiliary classifier adds a loss function with binary-cross-
entropy loss to the nodes along the decoder network of U-Net. The output mask derives the learned result using 
dice loss. At the last inference time, the loss used for the classifier and that used for segmentation are averaged. 
Additionally, we tuned our hyperparameters as follows: the training batch size was set to 16, batch normaliza-
tion was used, the parametric ReLU was used as the activation function, Dice similarity coefficient (DSC) and 
Tversky focal loss and cross-entropy loss were provided as the loss function, and the number of training epochs 
was set to 500. Additionally, backpropagation algorithms along with optimization algorithms used ADAM set 
to 0.001. From the full dataset, a training set was created by adjusting the ratio of the patches with aneurysms 
to those without aneurysms from 1:1 to 1:5. The validation set was used to evaluate model performance during 
training and at the end of each epoch for hyperparameter optimization, and the test set was used for evaluation 
of the trained model, but not in training or validation.

Statistical analysis.  To assess the performance of automatic segmentation of intracranial aneurysms, eval-
uation metrics such as accuracy, sensitivity, positive predictive value (PPV), negative predictive value (NPV), 
and DSC were used. DSC is defined in Eq. (1), where VGTandVCNN are the volume of ground truth and model 
prediction results, respectively. Sensitivity (also known as recall) is defined in Eq. (2), where TP is true positives 
and FM is false negatives28. PPV and NPV are defined in Eqs. (3) and (4)29.

Results
For internal validation, 154 TOF-MRA images from SNUBH that used contrast agents were included. For exter-
nal validation, 113 TOF-MRA images were included from the ADAM challenge datasets. The overall flowchart 
of our algorithm is shown in Fig. 2. The evaluation results for the detection and segmentation of intracranial 
aneurysms in internal datasets are shown in Table 1. The external validation results are described in Table 2. To 
accurately evaluate the model performance, we used accuracy, sensitivity, PPV, NPV, and DSC on both internal 
and external datasets. The highest accuracy was obtained when the ratio of normal to abnormal patches was 2:1 
in internal datasets, as shown in Table 1. The accuracy, specificity, PPV, NPV, sensitivity, and DSC for the normal 
to abnormal ratio of 2:1 were 0.910, 0.893, 0.896, 0.909, 0.926, and 0.701 ± 0.217, respectively. After attaching 
an auxiliary classifier, the accuracy was improved relative to that without an auxiliary classifier. DSC increased 

(1)DSC :
2|VGT ∩ VCNN |

|VGT | + |VCNN |

( 2)Sensitivity :
TP

TP + FN
∗ 100

(3)PPV :
TP

TP + FP
∗ 100

(4)NPV :
TN

TN + FN
∗ 100

Table 1.   Evaluation results of the internal dataset. For comparisons between groups, t-tests were performed 
based on a 1:2 ratio, with p-values less than 0.05 denoted by ** and p-values less than 0.5 denoted by *to 
indicate statistical significance. Results with p-values less than 0.05 are considered statistically significant. 
Accuracy (Acc); predictive value (PPV); negative predictive value (NPV); dice similarity coefficients (DSC); 
three-dimensional (3D).

Model Acc Specificity PPV NPV Sensitivity DSC

3D U-Net 0.785** 0.668** 0.695** 0.798** 0.882* 0.277 ± 0.126

3D U-Net with auxiliary loss

1:1 0.885* 0.745** 0.798** 0.834* 0.884* 0.584 ± 0.122

1:2 0.910 0.893 0.896 0.909 0.926 0.701 ± 0.217

1:3 0.898 0.878 0.879 0.880 0.887* 0.775 ± 0.060

1:4 0.887 0.864* 0.870 0.879* 0.885* 0.780 ± 0.177

1:5 0.887 0.869* 0.875* 0.880 0.885* 0.767 ± 0.152

nnU-Net 0.802** 0.782** 0.786** 0.794** 0.798** 0.678 ± 0.175
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as the normal to abnormal ratio increased from 1:1 and then decreased again at the 5:1 ratio30,31. In addition, 
to verify the robustness of the model against various aneurysm sizes, we calculated the mean accuracy for each 
aneurysm size in the external dataset as shown Table 3. Consistent with the model where the ratio of aneurysm 
to normal patch was 1:2, the highest accuracy of 0.885 was observed for sizes less than 5 mm.

External validation results are shown in Table 2. Similar to the internal dataset results, model accuracy 
increased when the auxiliary loss was attached, and the highest accuracy was achieved when the ratio between 
normal and abnormal was 2:1. Examples of aneurysm detection are shown in Figs. 3 and 4 for internal and 
external validation datasets, respectively.

Discussion
According to our study, CNNs have great potential for the reliable detection of intracranial aneurysms in 3D 
TOF-MRA. The model evaluated on a per-patient basis, with an overall mean DSC of our model was 0.755 ± 0.09, 
the sensitivity was 0.882, and the false positives (FP) was 0.305. The 3D patch-level technique demonstrated 
adequate aneurysm segmentation performance in terms of good sensitivity and minimal FP, which is applicable 
in the real-world clinical context. Segmentation of intracranial aneurysms, especially in smaller cases, is dif-
ficult, and misdiagnosis may result in poor clinical outcomes. Therefore, our deep learning model of automatic 
segmentation of intracranial aneurysms will be valuable to radiologists, who experience an increased workload 

Figure 2.   The proposed deep learning model (convolution; Conv).

Table 2.   Evaluation results of the external datasets. For comparisons between groups, t-tests were performed 
based on a 1:2 ratio, with p-values less than 0.05 denoted by ** and p-values less than 0.5 denoted by *to 
indicate statistical significance. Results with p-values less than 0.05 are considered statistically significant. 
Accuracy (Acc); predictive value (PPV); negative predictive value (NPV); dice similarity coefficients (DSC); 
three-dimensional (3D).

Model Acc Specificity PPV NPV Sensitivity DSC

3D U-Net 0.772 0.641 0.651 0.754 0.772 0.226 ± 0.301

3D U-Net with auxiliary loss

1:1 0.860 0.703 0.727 0.817 0.834 0.559 ± 0.209

1:2 0.883 0.856 0.857 0.872 0.879 0.682 ± 0.114

1:3 0.874 0.841 0.848 0.851 0.853 0.753 ± 0.106

1:4 0.872 0.822 0.846 0.857 0.862 0.750 ± 0.194

1:5 0.873 0.824 0.834 0.842 0.858 0.748 ± 0.173

nnU-Net 0.791 0.738 0.748 0.759 0.768 0.623 ± 0.198

Table 3.   The mean segmentation accuracy of the model by aneurysm size in the external validation set. For 
comparisons between groups, t-tests were performed based on a 1:2 ratio, with p-values less than 0.05 denoted 
by ** and p-values less than 0.5 denoted by *to indicate statistical significance. Results with p-values less than 
0.05 are considered statistically significant.

Aneurysm Size 3D U-Net

3D U-Net with auxiliary loss nnU-Net

1:1 1:2 1:3 1:4 1:5

 < 5 mm 0.778** 0.859* 0.885 0.875 0.870 0.871 0.798**

 < 5–10 mm <  0.769** 0.859* 0.884 0.874 0.873* 0.875 0.787**

10 mm <  0.768** 0.861 0.881 0.874 0.873 0.873* 0.788**



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12018  | https://doi.org/10.1038/s41598-023-38586-9

www.nature.com/scientificreports/

and consequent fatigue. Fully automated CAD on intracranial aneurysms can help prevent diagnostic errors 
that are caused by fatigue or a lack of concentration in experts. We have demonstrated that our algorithm with 
multi-task learning can reliably detect aneurysms in non-invasive cranial imaging and requires only a limited 
number of training samples.

While previous studies only trained models on data with aneurysms16, this study applied training with mixed 
datasets that included individuals with and without aneurysms. Due to the severe data imbalance, the investiga-
tion was conducted while varying the ratio of aneurysmal to normal to patches from 1:1 to 1:5. Data ratios for 
stable learning that were saturated at 1:3 were also found. For aneurysms smaller than 10 mm12, the mean sensi-
tivity of computed tomography angiography (CTA) was 70.4%; however, this study found an average sensitivity 
greater than 80%, even for small-sized aneurysms. Most aneurysms larger than 15 mm were segmented and 
detected17, but we were also able to detect and segment very small aneurysms (< 10 mm in size). Additionally, in 

Figure 3.   Example results of aneurysm segmentation in internal test datasets.

Figure 4.   Example results of aneurysm segmentation in external datasets.
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order to assess the model’s robustness in relation to various aneurysm sizes, we evaluated the mean accuracy for 
each aneurysm size within the external dataset, as detailed in Table 3. Consistent with the model’s performance 
when the ratio of aneurysm to normal patch was 1:2, the highest accuracy (0.885) was observed for aneurysm 
sizes smaller than 5 mm. Especially, our dataset predominantly comprised of very small aneurysms, typically 
within the 2-3 mm range. The distribution can also be seen in the ROI size histogram shown in Supplement 
Figure S1. However, we still achieved accuracy of approximately 80% for aneurysms that were smaller than 2 mm.

To overcome the inherent imbalances in the datasets, skeletonization of cerebral blood vessels was used to 
reduce patch level imbalances between aneurysms and normal regions from the 3D brain-level to 1D skeleton-
level. Based on the skeleton, 3D patches were extracted from aneurysms and normal regions. Multi-task learning, 
which simultaneously executes semantic segmentation and multi-class classification, was proposed to overcome 
this 1D imbalance between large normal and rare aneurysm regions on the skeletons. While training the U-Net, a 
semantic segmentation network, with an auxiliary classifier added to the bridge block of U-Net for classification, 
was used. For training semantic segmentation, the regions with aneurysms, excluding the normal areas, were 
needed because the segmentation network only learns the aneurysm region. However, there are large regions 
of normal areas in the skeleton. To overcome this 1D imbalance, we added an auxiliary classifier to differenti-
ate aneurysms from normal patches to improve the differentiation by the deep-learning-based model. Because 
there is no segmentation region where the auxiliary classifier considers the normal region, a segmentation was 
performed for those with an annulus region to increase the accuracy. Therefore, the ratio of the normal patches 
to the aneurysm patches was gradually increased from 1:1 to 5:1. These results ultimately show that segmenta-
tion and classification can be taught together in a multi-task learning manner, overcoming the imbalanced 
datasets. Inserting normal patches without dropping the segmentation accuracy is possible because several 
normal patches can be shown. Additionally, the external datasets showed no significant difference, with robust 
model accuracy performance.

However, as shown in Fig. 5, there were also cases of poor prediction that resulted in false positives and false 
negatives on the test set. The causes of the false positives and false negatives appear to be that the size of the 
aneurysms was much smaller than the trained average size, which may have confused the model and resulted in 
missed detections, and that the brightness and contrast difference of the aneurysms was not prominent, which 
caused it to have difficulty detecting the aneurysms.

This study has some theoretical contributions. First, the current study contributes to academia in that it takes a 
new approach to semantic-segmentation-assisted classification. Previous studies simply performed detection and 
segmentation on the whole brain image or segmented the aneurysm using pre-processing, for example by using 
a threshold. In this study, blood vessel segmentation was first performed to detect aneurysms existing along the 
brain vessels and to access them more easily than by finding 3D points. By combining the labeling of aneurysms 
along brain vessels with prior anatomical knowledge, we were able to build a powerful deep-learning model. 
Second, the multi-tasking method enables stable learning for aneurysm images with severe data imbalance. If 
the data imbalance is severe, most models tend to not learn well, but that did not happen in this experiment. 
We also strategically analyzed the model’s external dataset results by size. This granular analysis allowed us to 
understand the model’s performance in different scenarios, which helped support its generalization performance 
even when trained with smaller sample sizes.

Our study had several limitations. First, the dataset used in this study is drawn from a single center. In the 
future, we plan to conduct multi-center studies to test our model across various institutions and devices. This will 

Figure 5.   Examples of false positive (top) and false negative (bottom) results.
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involve aggregating datasets that were acquired using different imaging protocols and machines, allowing us to 
investigate the model’s performance in a diverse and clinically relevant set of conditions. We anticipate that this 
will provide a more robust assessment of the model’s generalizability and its potential for real-world application. 
New 3D encoding–decoding network variations should be tested to draw more in-depth implications. Second, 
the amount of patient data collected for use in the experiment was relatively small. Although severe augmentation 
was used to increase the training datasets of the aneurysm, more patients should be enrolled for more robust 
training. Future research should focus on additional training with more patients.

Conclusion
We generated semantic segmentation models for intracranial aneurysms using 3D patches in brain 3D TOF-
MRA via CNN and solved the data imbalance problem. The present study has several implications for the clinical 
setting. This study supports the possibility of determining the presence of aneurysms along the brain vessels, 
identifying the boundaries in a short time, and performing segmentation. This 3D patch-level multi-task learn-
ing technique, with semantic segmentation and auxiliary classification, showed accurate aneurysm detection 
in 3D TOF-MRA datasets with good sensitivity and a small FP. Therefore, this model will be helpful for rapid 
diagnosis in clinical practice.

Data availability
The datasets generated and analyzed during the current study are not publicly available for privacy reasons, but 
are available from the corresponding author on reasonable request.
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