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Emphysema subtyping on thoracic 
computed tomography scans using 
deep neural networks
Weiyi Xie 1, Colin Jacobs 1, Jean‑Paul Charbonnier 2, Dirk Jan Slebos 3 & Bram van Ginneken 1*

Accurate identification of emphysema subtypes and severity is crucial for effective management of 
COPD and the study of disease heterogeneity. Manual analysis of emphysema subtypes and severity 
is laborious and subjective. To address this challenge, we present a deep learning-based approach 
for automating the Fleischner Society’s visual score system for emphysema subtyping and severity 
analysis. We trained and evaluated our algorithm using 9650 subjects from the COPDGene study. Our 
algorithm achieved the predictive accuracy at 52%, outperforming a previously published method’s 
accuracy of 45%. In addition, the agreement between the predicted scores of our method and the 
visual scores was good, where the previous method obtained only moderate agreement. Our approach 
employs a regression training strategy to generate categorical labels while simultaneously producing 
high-resolution localized activation maps for visualizing the network predictions. By leveraging 
these dense activation maps, our method possesses the capability to compute the percentage 
of emphysema involvement per lung in addition to categorical severity scores. Furthermore, the 
proposed method extends its predictive capabilities beyond centrilobular emphysema to include 
paraseptal emphysema subtypes.

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, causing 3.23 
million deaths in 20191. COPD is characterized by irreversible airway obstruction, which can be caused by 
small airway diseases and emphysema. However, the extent to which each contributes to airflow obstruction 
varies among individuals, leading to significant heterogeneity among COPD patients2. To better understand 
this heterogeneity, researchers have used computed tomography (CT) scans to assess the distribution, severity, 
and progression of the disease in vivo3,4. Additionally, many studies have attempted to identify COPD subtypes 
based on patterns observed on CT scans5–8.

The Fleischner Society has developed a structured scoring system for classifying subtypes of centrilobular 
and paraseptal emphysema based on the severity of the disease as observed on chest CT scans8. This scoring 
system, which we refer to in this work as the Fleischner system, utilizes six ordinal scales to evaluate centrilobular 
emphysema as absent, trace, mild, moderate, confluent, or advanced destructive, and paraseptal emphysema as 
absent, mild, or substantial. Previous studies of the Fleischner system9,10 have primarily focused on centrilobu-
lar emphysema and have reported good reader agreement in scoring centrilobular emphysema among human 
readers on scans from 3171 participants in the COPDGene study cohort11 (a subset of the data used in our 
current study). These studies also demonstrated that visual scores of centrilobular emphysema are associated 
with mortality. To improve the efficiency of using the Fleischner system in research and clinical practice, a deep 
learning algorithm10, referred to in this work as the Humphries algorithm, has been developed to automatically 
score centrilobular emphysema according to the Fleischner system. When comparing the predicted scores of the 
Humphries algorithm with visual scores for 7143 subjects from the COPDGene study, the Humphries algorithm 
achieved a linear weighted kappa statistic of 0.60 and a classification accuracy of 45%. Furthermore, the scores 
produced by the Humphries algorithm were found to be associated with mortality10.

In this paper, we present a novel method that addresses two limitations of the existing Humphries algorithm: 
its focus on centrilobular scores and its lack of model interpretability. Our proposed method not only calculates 
severity scores for centrilobular emphysema, but also for paraseptal emphysema, enabling the analysis of both 
subtypes. Furthermore, it generates more interpretable high-resolution emphysema activation maps, allowing 
for the quantification of the percentage of emphysema per lung for further analysis.
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Methods
Data collection and partitioning.  In this study, we utilized chest CT scans from the COPDGene clinical 
trial, which included data from 21 imaging centers in the United States and enrolled 10,192 subjects between 
2008 and 2011. From this dataset, we used a subset of 9650 subjects for analysis, which is the same data as used in 
the previous study by Humphries et al.10. Using the common data set (including the partitioning) enabling us to 
directly compare our algorithm with the Humphries’s algorithm10. The cohort of 9650 subjects includes all avail-
able COPDGene subjects having a baseline inspiration CT scan, the Fleischner visual scores, and mortality data 
during the Humphries’s study. The lungs of these subjects on their inspiration CT scans were then segmented 
semi-automatically by trained analysts from Thirona, a company specializing in chest CT analysis.

Following the Humphries’s study10, 9650 subjects were partitioned into a development set ( n = 2507 ) and 
an evaluation set ( n = 7143 ), with the development set further divided into a training set ( n = 2407 ) and a 
validation set ( n = 100 ). Only 2507 subjects were used as the development set because these were all available 
subjects with inspiration CT scans and Fleischner visual scores, excluding those previously included in an earlier 
analysis9. The evaluation set was used for statistical analysis and the reporting of performance metrics. The slice 
thickness of the CT scans ranged from 0.625 to 0.9 mm and the pixel spacing ranged from 0.478 to 1.0 mm. Most 
scans were performed using a tube voltage of 120 kVp, a tube current of 200 mAs, and reconstruction kernels 
B31f and B35f. The full CT protocols are detailed in Rega et al.11.

Table 1 provides the distribution of COPD GOLD stages and Fleischner visual scores in the data selection, 
as well as the expected range of emphysema percentage per lung for each severity score. For example, a centri-
lobular emphysema score of 1 indicates an estimated emphysema percentage per lung between 1 and 5%. These 
percentage ranges were used to train our algorithm to capture the differences in disease severity scores. Patient 
demographics and lung functional parameters for the evaluation set ( n = 7143 ) can be found in the previous 
study by Humphries et al.10.

Reference standard.  CT scans were visually scored according to the Fleischner system by analysts who did not 
have prior experience in radiology interpretation. The annotation process is described in more detail in previous 
research by Lynch et al.8,9. A reader study conducted on 3171 scans from our data selection by two analysts found 
good agreement in scoring centrilobular emphysema using the Fleischner system9.

Table 1.   Distribution of GOLD stages11 and the Fleischner visual scores8 in our data selection in the 
development set (dev) and the evaluation set (eval). No PFT spirometry data not available, PRISM preserved 
ratio impaired spirometry12.

(a) GOLD stages

GOLD stages #subjects (dev) #subjects (eval)

GOLD0 981 3178

GOLD1 182 570

GOLD2 440 1371

GOLD3 305 771

GOLD4 205 337

Non PFT 0 63

Non Smoking 70 36

PRISm 324 817

Total 2507 7143

(b) Centrilobular scores

Score
#subjects
(dev)

#subjects
(eval)

0 (0–1%) 782 2499

1 (1–5%) 431 1322

2 (5–10%) 478 1409

3 (10–20%) 430 1049

4 (20–30%) 275 656

5 (30–100%) 111 208

Total 2507 7143

(c) Paramseptal scores

Score
#subjects
(dev)

#subjects
(eval)

0 (0–1%) 1145 3857

1 (1–5%) 739 1865

2 (5–100%) 623 1421

Total 2507 7143
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Lung segmentation.  The lungs were extracted using commercialized software (LungQ, Thirona, Nijmegen, NL), 
followed by manual refinement if needed. We used lung segmentations for preprocessing CT scans in developing 
our algorithm.

Algorithm design.  Pre‑processing of CT scans.  All CT scans in this work were preprocessed by clamping 
the intensity values between [−1150 ∼ −300] , rescaling to [0 ∼ 1] , cropping using lung segmentations, and re-
sizing using trilinear interpolation to 128× 224× 288 in the axial, coronal, and sagittal dimensions, respectively. 
Note that the spacing may not be isotropic following this resizing process. The primary goal of resizing the im-
ages to a fixed input size is to maintain consistent GPU memory consumption throughout the inference process, 
thereby enhancing the practical utility of the proposed algorithm. By utilizing an input size of 128× 224× 288 , 
we can accommodate a batch size of 4 within our network architecture while adhering to our computational 
budget (NVDIA A100 GPU with 40 gigabytes GPU memory). And the lung segmentations were used to set 
values outside of the lungs to zero, allowing the algorithm to focus on learning features within the lungs.

Neural network architecture.  In building our algorithm, we chose to use the ResNet variant with 34 layers13 as 
the backbone, as ResNet is a widely used convolutional neural network architecture in image recognition. As 
shown in Fig. 1, the network begins with a 3D convolution operation (kernel size = 7, stride = 2) using 64 filters 
to reduce the spatial size of the input by half. All convolutions in our network are isotropic, followed by batch 
normalization and a rectifier linear unit (ReLU) activation function, unless otherwise specified. We then reduce 
the spatial resolution by half using a max pooling layer (kernel size = 3, stride = 2). The pooled features serve as 
the input to four stacked ResNet layers, each consisting of several ResNet blocks. The number of ResNet blocks 
per layer increases from the first to the fourth layer, with 3, 4, 6, and 3 blocks, respectively. Each ResNet block 
includes two convolution operations with kernel size 3. From the second layer onwards, the first convolution in 
each block doubles the number of filters and, at the second layer, also reduces the spatial resolution by half using 
a stride of 2. This results in the input size being reduced by a factor of 8.

The Resnet backbone generates convolutional features at a resolution that is eight times lower than the input 
resolution, which can compromise the interpretability of the model using standard techniques such as class 
activation maps (as demonstrated in the Humphries algorithm10). To address this limitation, we propose the 
inclusion of a reconstruction network on top of the ResNet backbone for the generation of dense features. As 
shown in Fig. 2, the reconstruction network takes features extracted from the Resnet backbone as the inputs 
and comprises two upsampling layers, each of which includes one trilinear upsampling operation and two 3x3 
convolution filters to reduce upsampling artifacts. The upsampled features are then concatenated with the features 
from the ResNet backbone using a skip connection, as the one utilized in 3D-UNet14. The reconstruction network 
serves the same purpose as the decoder in 3D-UNet, where the ResNet backbone can be seen as the encoder.

On top of the reconstruction head, we utilize two output heads depending on the training strategy.

Figure 1.   The overview of our ResNet-based backbone with 34 layers (a), consisting of four stacked ResNet 
layers (b). Each layer consists of 3, 4, 6, and 3 ResNet blocks (c), respectively, from top to bottom.
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For classification training, the dense features from the reconstruction network are reshaped to have the appro-
priate number of channels for the number of target classes. Two 1× 1× 1 convolutions are employed to reshape 
the features, one for predicting centrilobular scores and the other for predicting paraseptal scores. The reshaped 
feature maps are then processed using global average pooling and activated using the softmax function to pro-
duce class probabilities. We refer to the reshaped dense features before pooling as dense class activation maps.

For regression training, the reconstructed features are reshaped into two single-channel feature maps using 
1× 1× 1 convolutions, one for predicting the percentage of centrilobular emphysema per lung and the other 
for predicting the percentage of paraseptal emphysema per lung. The sigmoid function is then applied to both 
feature maps, and the resulting features are averaged inside the lung segmentation to produce two floating 
numbers (emphysema percentages per lung). The sigmoid-activated dense features before pooling are referred 
to as the dense regression activation maps.

Algorithm training.  We refer to the network with the classification output head as the classification network, 
and the network with the regression output head as the regression network. We train each network separately 
and compare their results with the Humphries algorithm as the baseline.

In the classification output head, we utilize a two-way convolutional layer with 1× 1× 1 kernels to predict 
two targets, following the definitions of the Fleischner system. This is depicted in Fig. 2a. The first target is to 
classify six levels of centrilobular severity: absent (0), trace (1), mild (2), moderate (3), confluent (4), or advanced 
destructive (5). The second target is to classify three levels of paraseptal severity: absent (0), mild (1), and sub-
stantial (2). During the training phase, we employ a weighted cross-entropy loss function, where the weights are 
initially determined by the inverse frequency of the target classes and are subsequently updated at the conclusion 
of each epoch in order to penalize classes with low per-class accuracy.

Training a convolutional neural network to classify emphysema severity scores in a multi-class classification 
setup may appear counter-intuitive. By definition, severity scores reflect the degree of involvement of emphysema 
in the lung and are directly correlated with the volume measurements of emphysematous regions. To correctly 
predict a severity score, the sum of the corresponding channel for that score in the class activation maps must be 
larger than the sum in the other channels, resulting in one channel suppressing activations in the other channels 
(being discriminative). As a result, the class activation maps generated by the trained network may not necessar-
ily represent the underlying disease, emphysema, but rather highlight areas that were used to make the correct 
classification. For example, the zero-indexed channel corresponding to the “absent” class is expected to be more 
heavily activated than the other channels when there is no emphysema present in the image.

Figure 2.   The reconstruction network on top of the ResNet backbone for producing dense features. The output 
of the reconstruction network is fed into either classification or the regression output head depending on the 
training strategy for predicting centrilobular scores (CLE out) and paraseptal scores (PSE out). Note that we do 
not use both output heads together for multi-tasking.
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Therefore, instead of directly predicting visual scores, we propose a regression training strategy to estimate 
the percentage of emphysema involvement per lung using the interval regression loss proposed in previous 
research15. In the Fleischner system8, severity scores are defined based on the percentage of emphysema involve-
ment in the lung. Therefore, we convert the severity scores into intervals of emphysema percentage per lung using 
a predefined mapping table. For example, a centrilobular severity score of 2 (mild) indicates that the estimated 
centrilobular emphysema-affected region should occupy between 1 and 5% of the lung. In this way, each visual 
score corresponds to an interval of emphysema percentage in the lung. We use the mapping in Table 1b, c to 
convert visual scores into percentage intervals for training, and subsequently map the predicted percentage back 
to visual scores for evaluation. The regression output head produces two single-channel dense feature maps 
using a two-way convolution layer with 1× 1× 1 kernels for estimating the emphysema percentage in the lung 
for centrilobular and paraseptal subtypes, respectively. Denoting the estimated percentage as p, and the target 
emphysema percentage range (rl , ru) , the interval regression loss LINT can be written as:

The dense regression activation maps, which are sigmoid-activated single-channel dense feature maps before the 
lung-wise mean pooling, represent the probability of emphysema. During training, we impose two constraints 
on the dense regression activation maps. The first constraint is the overlapping loss, which ensures that the dense 
regression activation maps for two emphysema subtypes do not overlap, as each voxel can only be assigned to 
one subtype (either centrilobular or paraseptal). Denoting the dense regression activation map for centrilobular 
emphysema as piC and the dense regression activation map for paraseptal emphysema as piS where i is the location 
index, the overlapping loss LOL can be written as:

The overlapping loss is used to compute the soft Dice coefficient between two dense regression activation maps 
(probability maps).

The second constraint is the segmentation loss. To generate the segmentation pseudo labels, we identify the 
low-attenuation areas (LAA-950) in the lungs by applying an intensity threshold of − 950 HU to CT images. This 
threshold is commonly used in the analysis of emphysema on CT scans8. The segmentation loss ensures that 
the union of dense regression activation maps from both subtypes matches the LAA-950. Using the previous 
notations, the segmentation loss LSEG can be written as:

where ti is the segmentation target indexed at the voxel location i, and s is the smoothness factor. The segmen-
tation loss is a binary cross-entropy loss with label smoothing16. We apply label smoothing to encourage the 
network to be less confident in the target pseudo labels. The joint emphysema probability map is then generated 
by clamping the values of the summation of two dense regression activation maps between 0 and 1. The final loss 
L for regression training is the sum of the interval regression loss, the overlapping loss, and the segmentation 
loss as L = LINT + LOL + LSEG.

We used a variety of data augmentation techniques in training both networks, including flips and rotations, 
intensity and contrast jittering, cropping, Gaussian smoothing, and additive noise. These augmentations were 
applied randomly and all spatial transforms were preserved using trilinear interpolation to maintain the original 
size of the images.

Both networks were trained for a maximum of 200 epochs with an initial learning rate of 1e−5, using an Adam 
optimizer and a learning rate scheduler with exponential decay of 0.9. Training was terminate if there was no 
improvement in the validation set performance for 10 consecutive epochs.

Evaluation metrics and statistical analysis.  To assess the classification performance, we use classification accu-
racy (ACC), the F-measurement (harmonic mean of precision and recall), and linear weighted kappa (K sta-
tistics) as evaluation metrics. The ACC and F-measurement are calculated using the Sklearn python package 
(version 1.1.2)17, while the K statistics are calculated using the rel software package in R (version 3.6.2). We also 
create confusion matrices and compute per-class metrics for each method. The level of agreement between algo-
rithm predictions and visual scores is classified as slight, fair, moderate, good, or excellent based on K values of 
0.20 or less, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81 or higher, respectively18.

Results
We compared the performance of our classification and regression networks in predicting both centrilobular and 
paraseptal visual scores on an evaluation set. We also compared our results to those obtained using the Hum-
phries algorithm for classifying centrilobular severity scores on the same evaluation set. As shown in Table 2, 
both the classification and regression networks outperformed the Humphries algorithm in terms of overall 
classification accuracy for predicting centrilobular severity scores. Both networks achieved predictive accuracy 
above 51%, while the Humphries algorithm only reached 45%. In terms of kappa statistics, the agreements 
between automated scores and visual scores for both the classification and regression networks were good for 
centrilobular emphysema, slightly better than the moderate agreement reported by the Humphries algorithm. The 
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agreements between our networks and paraseptal visual scores were moderate. The Humphries algorithm did not 
report results for paraseptal emphysema. Interestingly, the comparison between the classification and regression 
networks showed that the classification network outperformed the regression network in predicting centrilobular 
severity scores, but underperformed when predicting paraseptal scores in terms of overall accuracy and kappa 
statistics. These findings suggest that the two models may fit differently into the underlying target distribution.

Examining the confusion matrices in Table 3a, b, we observed that the classification network performed 
poorly in recognizing trace levels of centrilobular emphysema, with 31.15% precision and 34.11% recall. Analysis 
of the results revealed that most of these errors were caused by mislabeling trace emphysema as absent or vice 
versa. Similarly, in distinguishing paraseptal severity scores, the classification network had a high error rate for 
mild emphysema, with 36.90% precision and 50.51% recall. Furthermore, the regression network also exhibited 
a high rate of mislabeling between absence, trace and mild centrilobular emphysema. Specifically, the regression 
network performed the worst when labeling trace and mild centrilobular emphysema, with 29.43% precision 
and 48.03% recall in trace, and 43.19% precision and 27.89% recall in mild. In distinguishing paraseptal severity 
scores, the regression network also had the worst performance for mild emphysema, with 38.57% precision and 
41.72% recall. The suboptimal performance observed in the lighter grades of emphysema severity may be attrib-
uted to the nuanced distinctions in lung involvement that define these grades (scores less than 2), resulting in a 
high degree of ambiguity in the scoring process. This challenge is also reflected in the results of the Humphries 
algorithm (Table 4), highlighting the prevalent difficulty in accurately assessing the severity of emphysema. 
We identified a discrepancy in the performance of the Humphries algorithm and our methods in classifying 
the severity of centrilobular emphysema. Specifically, the Humphries algorithm demonstrated a tendency to 
overestimate the presence of emphysema in cases where it is actually absent, with 1495 cases being mislabeled 
as trace. Conversely, our methods tended to underestimate the severity in cases where it is present in minimal 
levels (trace), resulting in 536 cases of trace emphysema being mislabeled as absence by the regression network.

The regression network has an advantage in terms of error distribution in confusion matrices, as it produces 
a percentage of lung involvement by averaging the dense regression maps within the lung volume. This improves 
its consistency in predicting severity scores. We observed a consistent shift in the error distribution in the confu-
sion matrix, with the network more often mislabeling the target as one grade lower (Table 3c, d). For example, 
in the case of centrilobular classification, the regression network classified 536 scans as absent and 121 scans as 
mild emphysema when they were manually scored as trace emphysema, and mislabeled 682 scans as trace and 
117 scans as moderate when the actual labels were mild emphysema. In contrast, the error distribution was not 
consistent in the results of the classification network, which made more errors on one grade higher in the conflu-
ent centrilobular emphysema, with 141 scans mislabeled as moderate and 189 scans as advanced emphysema. 
However, for other grades, errors were made by mislabeling them as one grade lower.

In the extreme cases, the classification network mislabeled one case of absent centrilobular emphysema 
as advanced emphysema and classified 205 cases as substantial paraseptal emphysema when the visual score 
indicated absent. These critical errors suggest that the classification network was sometimes confused between 
centrilobular and paraseptal CT patterns, possibly due to the co-existence of both subtypes in some training 
scans. We also noticed that the regression network produced fewer critical errors in paraseptal classification, 
mistakenly labeling 97 scans as substantial when they were manually scored as absent. This number was 205 in 
the result of the classification network. This improvement may be due to the introduction of training constraints 
in the regression training, which enforce that dense predictions for centrilobular and paraseptal emphysema are 
mutually exclusive. However, we also observed that the regression network labeled 104 scans as absent when 
the visual scores indicated substantial paraseptal emphysema. This suggests that the regression network may 
under-segment or completely miss paraseptal emphysema in some cases.

Visual interpretation.  We utilized dense activation maps to visualize the features that correspond to the 
classification decisions. As shown in Fig. 3, we present the dense class and regression activation maps on two 
examples of predicting centrilobular and paraseptal emphysema subtypes. Each example consists of two images, 
with 3× 3 tiles, where the left image displays the dense class activation maps and the right image displays the 
dense regression activation maps. The three columns in each image are sampled axial slices from the input CT 
scan. For each image, the rows represent the preprocessed input CT scan, the activation map for centrilobular 
emphysema, and the activation map corresponding to paraseptal emphysema.

Table 2.   Results of the classification and regression networks on the evaluation set ( n = 7143). The 
classification accuracy (ACC), F-measurements (F-measure), and linear weighted kappa are calculated against 
the visual scores. We also list the results from the Humphries algorithm, obtained on the same test set, where 
only ACC and kappa were reported for predicting centrilobular emphysema severity scores.

Method Subtype ACC(%) F-measure Linear weighted kappa (95% CI)

The Humphries algorithm10 Centrilobular 45 – 60

Ours (classification) Centrilobular 52.23 51.00 64.29 (63.16–65.42)

Ours (classification) Paraseptal 59.12 57.12 42.03 (40.21–43.85)

Ours (regression) Centrilobular 51.32 49.61 64.24 (63.14–65.35)

Ours (regression) Paraseptal 64.62 60.74 52.06 (50.40–53.73)
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Table 3.   Confusion metrics of the classification and regression network for classifying centrilobular and 
paraseptal emphysema severity scores against the visual scores on the evaluation set ( n = 7143). Advanced 
destructive emphysema is denoted as Advanced.

(a) Classification network in predicting centrilobular emphysema severity

Predict

Visual scores

Precision (%)Absent Trace Mild Moderate Confluence Advanced

Absent 1621 530 259 21 0 0 66.68

Trace 625 451 322 50 0 0 31.15

Mild 230 294 664 288 4 0 44.86

Moderate 22 42 142 514 141 7 59.22

Confluence 0 3 15 153 322 42 60.19

Advanced 1 2 7 23 189 159 41.73

Recall (%) 64.87 34.11 47.13 49.00 49.09 76.44 52.23 (ACC%)

(b) Classification network in predicting 
paraseptal emphysema severity

Predict

Visual scores

Precision (%)Absent Mild Substantial

Absent 2508 740 181 73.14

Mild 1144 942 467 36.90

Substantial 205 183 773 66.58

Recall (%) 65.02 50.51 54.40 59.12 (ACC%)

(c) Regression network in predicting centrilobular emphysema severity

Predict

Visual scores

Precision (%)Absent Trace Mild Moderate Confluence Advanced

Absent 1734 536 206 17 0 0 69.55

Trace 696 635 682 142 2 0 29.43

Mild 56 121 393 319 21 0 43.19

Moderate 11 26 117 453 192 8 56.13

Confluence 2 3 10 112 334 83 61.09

Advanced 0 1 1 5 107 117 50.65

Recall (%) 69.39 48.03 27.89 43.18 50.91 56.25 51.32 (ACC%)

(d) Regression network in predicting paraseptal emphysema severity

Predict

Visual scores

Precision (%)Absent Mild Substantial

Absent 2976 839 104 75.94

Mild 784 778 455 38.57

Substantial 97 248 862 71.42

Recall (%) 77.16 41.72 60.66 64.62 (ACC%)

Table 4.   Confusion matrix of the Humphries algorithm for classifying centrilobular emphysema severity 
scores against the visual scores on the evaluation set ( n = 7143). Advanced destructive emphysema is denoted 
as Advanced.

Predict

Visual scores

Precision (%)Absent Trace Mild Moderate Confluence Advanced

Absent 637 126 35 2 0 0 79.62

Trace 1495 751 380 23 1 0 28.82

Mild 324 377 678 166 4 0 43.77

Moderate 41 66 296 643 154 8 53.22

Confluence 2 2 20 211 428 108 55.51

Advanced 0 0 0 4 69 92 55.57

Recall (%) 25.49 56.80 48.11 61.29 65.24 44.23 45.21 (ACC%)
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In general, the dense class activation maps do not necessarily align with object contours, e.g., blobs of parasep-
tal emphysema in the second case (Fig. 3 Case II-a). Naturally, class activation maps only reflect discriminative 
regions responsible for classification. By utilizing the reconstruction network to generate dense features, our 
network’s dense class activation maps already provide improved localization compared to the class activation 
maps generated by the Fleischer algorithm (which tend to be blurry blobs, as seen in their publication). The 
application of regression training further improves lesion localization, as can be seen in the subpleural paraseptal 
emphysema in the second case (Fig. 3, Case II-b) and small blobs following the secondary lobular structures in 

Figure 3.   Dense class activation maps (left) versus dense regression activation maps (right), We show two 
cases, and each consists of three rows. The first row shows the input image (cropped and masked by the lung 
segmentation), the second row illustrates the activation maps for the centrilobular emphysema, and the third 
row shows the activation maps for the paraseptal emphysema.
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the first case (Fig. 3, Case I-b). Additionally, due to the use of the overlapping loss (Eq. 2), the centrilobular and 
paraseptal activations do not overlap in the dense regression activation maps (Fig. 3, Case II-b), unlike in the 
class activation maps. For instance, in the first case, both class activation maps responded to the same regions in 
the right lobe (Fig. 3, Case I-a). This highlights the effectiveness of our proposed method in providing improved 
lesion localization compared to the Fleischer algorithm.

Ablation study on neural network architecture.  In our ablation study, we assessed three variants of 
ResNet architectures as the backbone network. ResNet18 comprised 2, 2, 2, and 2 ResNet layers. Both ResNet34 
and ResNet50 consisted of 3, 4, 6, and 3 ResNet layers. ResNet50 uses BottleNeck blocks, while ResNet34 uses 
the basic ResNet blocks13. As reported in Table 5, ResNet34 has the largest number of parameters (64.79 mil-
lion) compared with the ResNet18 (34.48 million) and ResNet50 (47.86 million). ResNet50 has more convolu-
tion operations than ResNet34 but has fewer number of parameters because of replacing ResNet blocks (two 
3× 3× 3 convolutions) in ResNet34 with BottleNeck blocks (one 3× 3× 3 convolutions connecting two 
1× 1× 1 convolutions). BottleNeck blocks employed in the ResNet50-based networks greatly reduce the num-
ber of parameters in 3D convolutions. However, the use of BottleNeck blocks in the ResNet50-based network 
leads to convolution features at the lowest resolution having a significantly larger number of channels (2048) 
compared to the ResNet34-based network (512). As a consequence, there is a substantial increase in the number 
of GMACs in the first upsampling layer, thereby contributing to an overall increase in GMACs for the ResNet50-
based network when compared to the ResNet34-based network. Details regarding the BottleNeck blocks can 
be found elsewhere13. Among the tested ResNet architectures, ResNet50 exhibited the highest computational 
intensity, reaching approximately 1702 GMACs (Giga Multiply-Add Operations).

ResNet34 demonstrates superior predictive accuracy compared to ResNet18 and ResNet50 in both the clas-
sification and regression networks. This suggests that volumetric data may necessitate higher complexity (more 
parameters) for optimal fitting. Notably, the regression networks generally attained higher performance (espe-
cially in linear weighted Kappa values) than the classification networks in predicting paraseptal labels. This 
improvement could be attributed to the incorporation of mutual exclusive constraints in regression training, as 
discussed in "Methods" section. ResNet18 exhibits the lowest performance, indicating that the smaller network’s 
complexity may not be adequate for effectively addressing the subtyping problem. We also observed that the 
linear-weighted kappa values are generally higher than accuracy and F-measure in centrilobular predictions, 
while kappa values are lower than accuracy and F-measure in paraseptal predictions. These disparities are par-
ticularly pronounced in the results of the classification networks. This indicates a heightened occurrence of 
critical errors when attempting to predict paraseptal labels, as also evidenced by the observed confusion matrices 
(refer to Table 3) in the results of ResNet34.

Discussion
In this study, we propose a novel approach for automating the Fleischer scoring system for identifying emphy-
sema subtypes on CT images using deep neural networks. Our method incorporates a reconstruction sub-
network, which is utilized to generate high-resolution activation maps, providing more localized information 
for model interpretation in comparison to the low-resolution heatmaps produced by the Fleischer algorithm. 
Additionally, our regression-based training strategy offers an estimation of emphysema percentage in the lungs 
and generates the regression activation maps which offer improved emphysema localization. The regression 
training approach is more intuitive as it utilizes the semantic link between severity scores and emphysema 
involvement in the lungs, compared to the classification approach which only aims to identify discriminative 
features between different severity grades.

Table 5.   Results of Ablation Study of three variants (ResNet18, ResNet34, and ResNet50) of ResNet as our 
backbone network.

Backbone Subtype Accuracy (%) F-measure Linear weighted kappa (95% CI) #Param (M) GMACs

(a) Classification network in predicting paraseptal emphysema severity

 ResNet18
Centrilobular 48.55 47.58 62.50 (61.83–63.63)

34.48 1148.05
Paraseptal 54.81 51.68 33.63 (31.77–35.49)

 ResNet34
Centrilobular 52.33 51.00 64.29 (63.16–65.42)

64.79 1661.95
Paraseptal 59.12 57.12 42.03 (40.21–43.85)

 ResNet50
Centrilobular 51.31 51.00 63.00 (61.84–64.16)

47.86 1702.69
Paraseptal 54.79 52.22 34.62 (32.76–36.48)

(b) Regression network in predicting emphysema severity

 ResNet18
Centrilobular 49.91 47.08 62.53 (61.39–63.67)

34.48 1147.81
Paraseptal 55.87 53.92 39.16 (37.40–40.92)

 ResNet34
Centrilobular 51.32 49.61 64.24 (63.14–65.35)

64.79 1661.72
Paraseptal 64.62 60.74 52.06 (50.40–53.73)

 ResNet50
Centrilobular 51.03 46.70 62.15 (60.98–63.31)

47.86 1702.45
Paraseptal 62.21 56.22 47.21 (45.45–48.97)
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The target labels for regression training are percentage intervals translated from categorical scores using 
a predefined mapping table, and the network is trained using an interval regression loss to ensure that the 
predicted percentage falls within the target interval. This approach could be used for automating many other 
scoring systems used in radiology based on visual assessment of the (relative) size of the affected volume. We 
use lung-wise average pooling to aggregate the sigmoid-activated dense features (dense regression activation 
maps) to estimate the emphysema percentage per lung, and we incorporate the overlapping loss to ensure that 
each voxel is only assigned to one of the two emphysema subtypes (centrilobular or paraseptal). Additionally, 
we use low-attenuation areas in the lung (LAA-950) as visual cues in the regression training to provide localized 
information to the network.

Our method generates both categorical visual scores and estimated emphysema percentages for both centri-
lobular and paraseptal subtypes, offering additional features in comparison to the existing method, which can 
only produce centrilobular severity scores. The dense regression activation maps generated by our approach 
provide detailed emphysema localization, potentially enabling further clinical research in this field.

The results of our study showed that our method (both the classification and regression networks) outper-
formed the Fleischer algorithm in terms of classification accuracy for predicting centrilobular severity grades 
(52% vs. 45%). Our method also had better reader agreement as measured by kappa statistics.

The regression approach has several advantages compared to the classification approaches. It resulted in fewer 
critical errors in the confusion matrix comparison, such as mislabeling heavily diseased cases as disease-free. 
In addition, the errors were distributed more consistently, with a shift to a lower severity grade in the confusion 
matrix (Table 3c), which is not observed in the results of the classification approach (Table 3a).

The ablation study (Refer to Table 5) showcased consistent observations regarding the classification perfor-
mances and their patterns across various subtyping tasks using different ResNet backbones.

In terms of qualitative analysis, the dense regression activation maps were observed to provide superior 
localization, particularly in the case of paraseptal emphysema with sub-pleural bullae. In contrast, the dense 
class activation maps were observed to be less specific, as they included many surrounding regions, and were 
not able to distinguish different emphysema subtypes.

There are several limitations to consider in this study. First, our systems were only trained using CT scans from 
the COPDGene study, which had a specific data acquisition protocol and carefully curated scans. This may limit 
the generalizability of our algorithms to other datasets with different CT acquisition processes. We attempted to 
mitigate this risk by using data augmentation techniques that introduce common noise patterns and using early 
stopping to prevent overfitting. Second, our algorithms require the availability of lung segmentation for both 
training and inference, which may be a challenge to implement in clinical practice, although fast and accurate 
publicly available systems for CT lung segmentation are available15,19. Third, we did not validate the segmentation 
performance using the generated dense regression activation maps, although these maps appear to be capable 
of localizing emphysema patterns based on visual inspection. This was due to the lack of voxel-wise annotations 
of emphysema patterns with different subtypes.

Data availability
To access the COPDGene data used in this study for research purposes, please visit https://​www.​ncbi.​nlm.​
nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​0179.​v6.​p2 and submit an ancillary study proposal. We 
received approval for this work under the ANC-251 proposal. To submit your proposal, contact the COPDGene 
Administrative Core Executive Secretary, Sara Penchev, at PenchevS@NJHealth.org. The corresponding author 
(bram.vanginneken@radboudumc.nl) may be reached for data inquiry. Our algorithms are available at GitHub 
(https://​github.​com/​DIAGN​ijmeg​en/​bodyct-​dram-​emph-​subty​pe). We integrated our trained regression network 
as a ready-to-use web service hosted on the Grand-challenge platform (https://​grand-​chall​enge.​org/​algor​ithms/​
weakly-​super​vised-​emphy​sema-​subty​ping/).
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