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Nilotinib hydrochloride monohydrate (NHM) is an anti-cancer drug whose solubility was statically
determined in supercritical carbon dioxide (SC-CO,) for the first time at various temperatures
(308-338 K) and pressures (120-270 bar). The mole fraction of the drug dissolved in SC-CO, ranged
from 0.1x107° to 0.59 x 1075, corresponding to the solubility range of 0.016-0.094 g/L. Four sets

of models were employed to evaluate the correlation of experimental data; (1) ten empirical and
semi-empirical models with three to six adjustable parameters, such as Chrastil, Bartle, Sparks,
Sodeifian, Mendez-Santiago and Teja (MST), Bian, Jouyban, Garlapati-Madras, Gordillo, and Jafari-
Nejad; (2) Peng-Robinson equation of state (Van der Waals mixing rule, had an AARD% of 10.73); (3)
expanded liquid theory (modified Wilson model, on average, the AARD of this model was 11.28%);
and (4) machine learning (ML) algorithms (random forest, decision trees, multilayer perceptron, and
deep neural network with respective R? values of 0.9933, 0.9799, 0.9724 and 0.9701). All the models
showed an acceptable agreement with the experimental data, among them, the Bian model exhibited
excellent performance with an AARD% of 8.11. Finally, the vaporization (73.49 kJ/mol) and solvation
(- 21.14 kJ/mol) enthalpies were also calculated for the first time.

List of symbols

AARD  Absolute average relative deviation
Rgj Adjusted R

M, Molecular weight

T Melting point

P Pressure of sublimation

ELT Expanded liquid theory
SC-CO, Supercritical carbon dioxide
EoS Equation of state

SSe Error sum of squares

P, Critical pressure

P, Reduced pressure

T, Critical temperature

ADF Augmented Dickey-Fuller
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AH,,, Solvation enthalpy

AH,,, Vaporization enthalpy

Y, Solubility in mole fractions
ay-as Adjustable parameters

R Gas constant, J/(mol K)
PR Peng-Robinson

vdW Van der Waals
ANN Artificial neural network
NIST National institute of standards and technology

Greek symbols

A Difference

pum Micrometer

P Density

P; Reduced density

A nax Wavelength with strongest photon absorption
w Acentric factor

k; EoS mixing rule parameter

[ EoS mixing rule parameter

A2 Ay Wilson model parameters

Sub and superscripts

exp Experimental
cal Calculated

C Critical

m Melting

r Reduced

sub Sublimation
ref Reference state

Nilotinib hydrochloride monohydrate (NHM) lacks a chiral center, making it incapable of tautomerism. NHM is
a chemical compound with the following name: 4-methyl-N-[3-(4-methyl-1H-imidazol1-yl)-5-(trifluoromethyl)
phenyl]-3-[(4-pyridin-3-ylpyrimidin-2-yl) amino] benzamide hydrochloride monohydrate. It is a white powder
with a slight yellowish or greenish-yellowish shade. At 25 °C, the aqueous solubility of NHM markedly decreases
with pH. Moreover, it is almost insoluble in buffer solutions with pH values higher than 4.5. NHM shows slight
solubility in ethanol and methanol. Further information can be found in Supplementary information.

According to scientific studies, a genetic mutation with unclear reasons in bone marrow hematopoietic
(myeloid) cells leads to the formation of a malfunctioning chromosome known as the Philadelphia chromosome'.
This defective chromosome is present in over 90% of individuals diagnosed with chronic myeloid leukemia
(CML). The mentioned genetic abnormality sets in a chain of activities that eventually triggers the growth and
reproduction of these cells and their carcinomic progression®.

The solubility rate is a critical factor affecting the bioavailability of the active components in orally adminis-
tered drugs. The poor bioavailability of NHM can be due to its low water solubility, which influences its efficiency
in the body. Chemotherapy is a conservative treatment in medical science which involves the use of low doses of
drug due to its potential harm to the tumor-adjacent organs. Solubility enhancement avoids the long-term side
effects of the drug while considerably reducing the required dosage. Bioavailability increment generally improves
the efficacy of the drug in the body’. To this end, various techniques such as the utilization of amorphous solid
dispersions and RESS can be employed to enhance the bioavailability of the drug. Among these strategies, the
reduction of particle size is a prevalent and pragmatic approach.

Particle size reduction is a unique technique in the enhancement of drug solubility. Conventional processes
such as sublimation and crystallization have been utilized in the pharmaceutical industry for this purpose.
SC-CO, technology is also a promising approach for producing nano-sized and micro-sized particles*. The
use of SC-CO, solvent in industrial plants has been increasing due to its non-toxicity and high effectiveness in
extracting compounds. Additionally, it exhibits greater stability in various process and requires lower tempera-
tures compared to alternative solvents. Supercritical fluids (SCFs) are similar to liquids in dissolving power and
resemble gases in transfer characteristics (high permeability and low viscosity). The supercritical extraction also
enjoys other advantages such as shorter processing time, high selectivity, sensitivity to temperature and pressure
variations, and concentration of the solvent to achieve the ideal degrees of freedom for sorting or monitoring
the strength of solubility, the sensitivity of the solvent to reach the desired degrees of freedom, better output
quality, lower solvent usage, and temperature tolerance for components sensitive to high temperatures’. SCFs
are characterized by their temperature and pressure exceeding the critical temperature (T,) and critical pressure
(P.), respectively, enabling them to exhibit the properties of both a liquid and a gas. In the proximity of critical
temperatures, SCFs demonstrate substantial compressibility, which facilitates moderate variations in pressure
density and mass transport features that significantly influence their solvent capacity. Furthermore, the environ-
mental concerns of toxic solvents can be resolved by the use of CO, gas as a solvent in supercritical procedures
due to its neutrality. As an example, organic solvents, particularly chlorinated solvents, are highly hazardous to
the environment. Chlorinated solvents and several other industrial solvents, such as chlorofluorocarbons, have
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been shown to be harmful for the ozone layer. The substitution of chlorofluorocarbon with CO, is an instance of
resolving the issue of toxic and polluting solvents through the use of CO, solvent. Other advantages of SC-CO,
process include its cost-effectiveness and availability at high purity and low critical pressure and temperature
(Pc=73.8 bar and T =304.18 K), chemical neutrality desirable for use in food and pharmaceutical industries,
suitability in critical conditions, and non-toxicity and non-flammability'’. The researchers select the temperature
and pressure based on previous studies and the constraints of the laboratory equipment®!'2,

The solubility data presented in this study are valuable for evaluating the applicability of SCFs in a specific
industrial process. Additionally, these data can aid in identifying the optimal conditions, in terms of tempera-
ture, pressure, and experimental measurement technique, for effective use of these fluids. Knowledge regarding
the solubility of medicinal substances and their correlation with thermodynamic models in SC-CO, can help in
the development of pharmaceutical processes. This is due to the fact that the determination of solubility under
various temperature conditions and high pressures can be monetarily costly and time-intensive.

As mentioned before, the experimental measurement of solubility in SC-CO, is a valuable but time-con-
suming, complex, and costly task. Therefore, there is a need for alternative approaches, such as computational
techniques, to replace experimental assessments. To this end, several theoretical methods have been proposed
and developed for predicting the solubility of drugs in SC-CO,. Several situations influence molecular charac-
teristics in liquid systems, which are connected to all nearby molecules in motion. Describing these specifica-
tions needs an efficient experiment and thermodynamic modeling of all potential solvent and soluble molecule
configurations”!’. Empirical and semi-empirical, equations of state (EoSs), solid-liquid equilibrium models, and
machine learning algorithms are the four most popular forms of thermodynamic models, each with a unique vari-
ety of ranges and notable scopes. Modeling with experimental and semi-empirical approaches requires no defi-
nition of the critical characteristics. These models rely on the SCF temperature, pressure, and volumetric mass.
Models with three to six adjustable parameters, such as Bian'*, Chrastil', Jafari-Nejad'®, Jouyban', Sparks's,
Sodeifian'?, Mendez-Santiago and Teja'®, Garlapati-Madras®, Bartle?', and Gordillo** offer proper analysis for
evaluating the reliability of experimental data. Different mixing rules are also employed in EoS models which
enjoy applicability across a wide range of temperatures and pressures for fluids with various densities, from
low-density gases to dense liquids. These equations are also applicable to gases, liquids, and SCFs. In addition,
activity coefficient models, such as ELT, are commonly used to model solubility in SCFs. This approach assumes
that the fugacity of the solid phase is equivalent to the SCF*.

Machine learning refers to a constantly developing group of computing instructions to simulate intelligence
by learning from the surroundings. This strategy is now regarded as a means of communication with big data
in the modern era. Machine learning-based algorithms have been successful in diverse fields, including pattern
recognition, biomedical and medical applications, spacecraft engineering, computational biology, financial sec-
tors, and entertainment®*. Ionizing radiation (radiotherapy) is used to treat more than half of cancer cases; it is
also the primary method in the treatment of advanced stages of localized diseases. Radiation therapy involves
a variety of steps that extend not just from consultation through treatment but even beyond. Machine learning
should be used to guarantee that patients receive the appropriate quantity of radiation and respond properly to
the therapy. These instructions are easily programmable as they naturally modify their structure via repetitions
(i.e., experience) for better production of the desired output. An effective approach presents two primary ben-
efits: the ability to supplant laborious and repetitive human duties, and more importantly, capability of detecting
complex patterns of incoming data which exceeds the ability of an average human observer. The significance
of these benefits is particularly in radiation therapy. However, given the limitations of this approach, the final
results are prone to uncertainty and observer variability. An imaging guide can identify microscopic features of
an organ, immediately synthesizing information from several sources, or combining the knowledge of multiple
observers to achieve low imaging error.

This research presents the first reports on the solubility of NHM in SC-CO, within the temperature and
pressure ranges of 308-338 K and 120-270 bar, respectively. Besides, four types of models were used to evaluate
the correlation of the empirical findings of NHM: (1) ten empirical and semi-empirical density-based models
(Chrastil, Bartle, Sparks, Sodeifian, MST, Bian, Jouyban, Garlapati-Madras, Gordillo, and Jafari-Nejad), (2) PR
EoS model with vdW mixing rule, (3) ELT model (modified-Wilson model) for correlating fugacity, (4) ML
algorithms (RE, DTs, MLP, and DNN) with 17 solubility datasets available in the previously published papers.
The validity assessment of multiple models involved the evaluation of deviations of computed outcomes from
empirical solubility data, utilizing three actual measures: average absolute relative deviation (AARD %), adjusted
correlation coefficient (R,q;), and F-value.

Experimental

Materials. NHM was supplied from Parsian Pharmaceutical Company with a guaranteed purity of 99%
(Tehran-Iran) while CO, (purity >99.99%) was provided by Fadak Company (Kashan, Iran). Analytical grade
dimethyl sulfoxide (DMSO) was also purchased from Merck (Darmstadt, Germany). Table 1 lists the physical
and chemical characteristics of NHM.

Experimental apparatus. This work aimed to determine the equilibrium solubility of NHM using a static
approach. To this end, a UV-Vis spectrophotometer was utilized along with the equipment described in our
previous research'>*7?’. The experimental setup comprised various components, including gas cylinders, filters,
sampler, refrigeration, heating elements, flow meter, 6-way valve, and a micrometer valve. All valves, connec-
tions, and piping were 1/8" in size. The process is fully described in the previous work of the authors; however, a
quick review is also provided here. Figure 1 depicts the experimental setup.
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Table 1. Molecular structure and physicochemical specifications of NHM.

Figure 1. Schematic of the used laboratory equipment for measuring solubility.
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The operation began with liquefying CO, (the required temperature for CO, liquefication ranges between — 15
to — 20 °C), which is an important section in CO, preparation for pumping. A pressure gauge was employed to
monitor pressure with an accuracy of+ 1 bar (EN 837-1, WIKA, Germany), while an oven was used to maintain
the temperature of CO, around the desired temperature within a tolerance of + 0.1 K. Then, NHM (1 g) was placed
inside a 70-mL equilibrium tube with 2 mm glass beads and sintering filters (1 pm, keeps undissolved drugs in
the container) on both surfaces. The glass beads were used to homogeneously mix the drug and reduce chan-
neling to enhance the interaction areas between the sample and SCF, following this, the container was exposed
to SC-CO,. Based on previous publications, the present study achieved the equilibrium state within 60 min of
equilibration'"'3*>%8, Afterward, 600 pL of SC-CO, (at saturation level) was introduced to the injection cycle
through a 6-port, 2-position valve. Upon releasing the injection valve, the aforementioned substance moved
toward the gathering vial, which had been already filled with a specific quantity of DMSO. Subsequently, the
gathered DMSO (1 mL) in the vial was employed to clean the cycle. The total volume of the solution was 5 mL.
The solubility of NHM in SC-CO, was determined through maximum absorption observations, using a double-
beam UV-Vis spectrophotometer (Unico, SQ-4802, USA) and 1-cm route silica cells. The solid pharmaceuti-
cal was dissolved in DMSO to achieve a final concentration of 100 pg L™". Various dilutions were obtained by
utilizing the standard solution within acceptable limits. The condensation of the drug in the collecting vial was
determined using a standard curve with a regression ratio of 0.99. The UV spectral data were collected at 270 nm
on a UV-Vis spectrophotometer to investigate NHM?. The equilibrium values of mole fraction (y,) and solubil-
ity (S (g/L)) in SC-CO, were computed for various pressures and temperatures, using the following equations:

Nsolute

=,

3 Nsolute + NCO, (1)
where:

_ GV

Nsolute = MS(LIT > (2)
mo

Vith)p (1)
nco, = ——— ¢ - 3
P Mco, () ®

In which, #15p1¢¢ and nco, show the moles of solute (NHM) and CO, in the measurement cycle, respectively.
C; is the solute content (g/L) in the gathering vial according to the standard curve; while V(L) = 5x 10~* and
Vi(L) = 600 x 10~® denote the volume of the gathering vial and measuring cycle, respectively. M; and Mco, also
represent the molecular weights of the solute and CO,. Equation (4) was used to estimate the equilibrium solu-
bility of the solute, S (g/L), in SC-CO,*.

=D (4)

g
S(g) = (\5,)(‘;)@)

Theoretical background

In this work, the solubility of NHM was correlated with four types of models: (1) Empirical and semi-empirical
models such as Chrastil, Bian, Sodeifian, etc. with 3-6 adjustable parameters; (2) EoS based model like Peng-
Robinson with vdW mixing rule; (3) ELT (modified Wilson model) and (4) ML algorithms such as random
forests, decision trees, MLP, and DNN. Details of the mentioned models can be found in the continue.

EoS-based model. The solubility of a solid solute in a SC-CO, can be expressed as follows:

_ P33 (P —P5)v,
V2= Pd’é exp[ RT s

where P shows the pressure at the system temperature, P; denotes the pressure required for the sublimation of the
pure solute. The molar volume of the solute is also represented by v,, while the universal gas constant is denoted
by R. Furthermore, the pure solute fugacity coefficient, denoted by ¢3, is assumed to be 1.

In the present research, PR-E0S'*?>?3! can be described as follows*>*;

RT a(T)

P = T T vt b —b) ©)

(5)

vdW2 is represented as:

a=ylan + y3a2 + 2192012, (7)

b= y%b“ +}/§bzz + 2y192b12. (8)

In addition, Table 1S (supplementary information) presents a summary of the EoS-based model.
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Model Formula References
Chrastil c = pPexp(F +az) 15
Bian y2 = p@FT P exp(% + %2 + ay) H
Gordillo Iny = ag +a1P + a,P? 4 a3PT + a4 T + asT? 2

Jafari-nejad

Iny = ap + a1P? 4+ a, T? + azlnp

Garlapati-Madras

Iny; = ao + (a1 + azp)lnp + % + agln(pT)

MST

Tin(y,P) = ag + a1p + a2 T

Jouyban Inyy = ag + a1p + a;P? + a3PT + “4T +as ?" Y
Sparks o= pf°+a'p”exp(a2 +a) 18
Bartle ln(%) =ag+ F +ax(p — pref) *
Sodeifian Iny, = ap + a ; + axln(pT) + asz(plnp) + a4 PInT + asln%}) 12

Table 2. Summary of empirical models applied in present work.

ap = (1 — kiz)/anaz, )

(b11 + b2)
by =(1- ll”#' (10)
k12 and I, are interaction parameters whose values were determined by an objective function (OF) aimed at
minimizing the resulting output. Thus, kj2 and I;; can be obtained through the minimization of the mentioned
objective function.

exp calc

y21 y21

N
poy B ay

i=1 Yo

ELT model. The ELT takes SCFs as expanded liquids since their density is closer to that of a liquid rather
than a gas. Therefore, this theory establishes thermodynamic phase equilibrium between solute and SCF as the
solid-liquid equilibrium relevance and contractual activity coefficients. Accurate estimation of solid solubility in
the supercritical (SC) phase relies on proper knowledge on these activity coefficients, which can be determined
by understanding the fugacity of the composites. When the equilibrium and the fugacity are equivalent in two
steps, the coefficients can be obtained by**:

f=f. (12)

Here, the Modified Wilson model was employed to determine the activity coeflicient of the solid solute.
Furthermore, the dimensionless energies of interaction can be determined by:

12

Y

My = ——,

2= RT (13)
r_ /121

21 = R (14)

An empirical expression was introduced to modify the Wilson model, considering the impact of high pres-
sures. The modified model facilitates the prediction by establishing a linear correlation between the molar volume
and density reduction.

vy = apr + B. (15)

The regressed parameters of the model are given by a, B, 1},, and 1},. Detailed information is available in
supplementary information. Genetic algorithm (GA), nonlinear regression® and simulated annealing (SA) algo-
rithms were utilized to obtain optimum double interaction and regressed parameters of the ELT.

Semi-empirical models. The solubility data of NHM in SC-CO, were compared with ten semi-empiri-
cal models. Researchers such as Garlapati-Madras, Chrastil, Bartle, MST, Sparks, Jouyban, Bian, and Sodeifian
worked in this field and presented different models, as listed in Table 2.

The discussion is focused on evaluating several models based on their AARD%, R,q;, and F-value to identify
the models with acceptable accuracy. The least squares method (LSM) was utilized for calculating curve-fitting
variables. AARD% was utilized as a criterion to ensure comparable analyses, since the number of curve-fitting

Scientific Reports |

(2023) 13:12906 |

https://doi.org/10.1038/s41598-023-40231-4 nature portfolio



www.nature.com/scientificreports/

Drug name Structure Data points | Temperature range (K) | Pressure range (bar) | References
Amlodipine besylate C,6H;,CIN,O4S 24 308-338 120-270 3
Azathioprine CoH,N,0,8 24 308-338 120-270 3l
Clemastine fumarate C,5H;,CINO; 24 308-338 120-270 10
Dasatinib monohydrate Cy,H,,CIN, 0,8 24 308-338 120-270 %
Empagliflozin C,3H,,ClO, 24 308-338 120-270 »
Imatinib mesylate C;H;5N,0,8 24 308-338 120-270 12
Losartan potassium C,,H,,CIKN,O 24 308-338 120-270 13
Metochloropramide HCI C,,H,;CLLN;0, 24 308-338 120-270 3
g';‘;‘e"f’raz"le sodium sesquiby- | ¢ 11 | NNa,O,.S, |24 308-338 120-270 w0
Pholcodine Cy3HyN,0, 24 308-338 120-270 7
Prazosin HCI C1oHpCIN;O, 24 308-338 120-270 8
Quetiapine hemifumarate C,,H,5N50,8 24 308-338 120-270 o
Sorafenib tosylate C,sH,,CIF;N,OS 24 308-338 120-270 i
Sulfabenzamide C;5H,N,058 24 308-338 120-270 2
Sunitinib malate CyeHysFN,O, 24 308-338 120-270 B
Triflunomide CLH,FN,0, 24 308-338 120-270 z
Palbociclib Cy,HyN,0, 24 308-338 120-270 I

Table 3. Solubility data sets used in this work.

parameters is closely related to correlation precision. The value of AARD% was determined by the following

equation, where Z represents the number of curve-fitting variables for the given model***:
N; calc __ , €Xp
100 L2 Y2
AARD% = (16)
’ N;—ngg o
The models were further evaluated by a criterion known as R,q; with the following definition:
Ragi = \/|R2 — (Q(1 — R2) /(N — Q@ — ). (17)

In the above equation, "N" denotes the number of sample points within each set. "Q" refers to the number of
self-determining changeable elements in each equation and "R*" represents the correlation analysis®**. F-value is
another criterion in the assessment of the capacity of the models to match solubility data, which can be described
as follows™.

SSr

MS
F-value = % = M—SR. (18)
N—-Q-D E

As seen, SS; indicates the total of square summation, SSy represents the sum of squares of the regression, while
MS;, pertains to the average square of regression. Furthermore, MSg concerns with the average square of residuals.
The F-value operates similar to the distribution and is characterized by Q and N-Q-1 grades of independence.

ML algorithms. Four ML algorithms were employed in this work to examine and evaluate the solubility of
NHM. To this end, 432 data samples were used including data of 17 other drugs (published in the literature).
These 17 drugs are described in Table 3.

Seventy-five percent of the samples were used for training (324), while 25% of them (108) were used for test-
ing. Six basic parameters, including operating temperature and pressure, CO, density, fusion enthalpy, fusion
temperature, and sublimation pressure, were taken as effective factors of solubility. Drug solubility is influenced
by various factors, among which, temperature, pressure, and CO, density have been identified as key factors
in numerous experimental and semi-experimental relationships. Solubility decreases by enhancing molecular
weight due to the higher fusion enthalpy and temperature. Additionally, an increase in sublimation pressure
results in greater solubility. This data set was evaluated by four algorithms: random forest, decision trees, multi-
layer perceptron, and deep neural networks. A summary of the applied algorithms can be found below:

Decision trees (DTs). Data mining refers to a vast field of research dealing with pattern identification and cat-
egorization of massive and unclear data, in various formats such as text, audio, and video. Sometimes the pre-
sented data are insufficient, noisy, or destroyed. One strategy for dealing with this sort of data is classification.
Decision trees are employed in data discovery and machine learning to provide an approximate answer. The DT
algorithm is a highly effective and powerful tool for data mining capable of handling diverse input data, includ-
ing nominal, numerical, and alphabetical which is one of the strengths of this algorithm.
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Figure 2. Solubility S (g/kg) of a-tocopherol in CO,: Our setup, Pereira et al.* and Johannsen and Brunner® all
are shown by symbols.

This method is capable of processing incomplete data which encompass errors through various platforms
and available data packages. DTs extract data from a huge deal of accessible information using decision rules. A
DT merely categorizes data to be readily saved and classed again***.

Random forest (RF). The RF algorithm is a sort of ensemble learning that can be utilized for both assortment
and regression test. RF was first developed by Breiman to combine his bagged sampling methodology with the
random selection of features* originally described by Ho*, Amit and Garden®. This approach results in a set
of decision trees with controlled variance. Bagging is used to randomly select training data with replacement to
construct each tree. Studies have shown that approximately 64% of all occurrences will be represented within
this selection. The residual samples (near 36%) are considered out-of-bag samples. In the RF model, each tree
operates as a classification algorithm and specifies the class tag of an untagged sample using majority verdict®'.
Each classifier generates a model of its vote for the class tag it expects, and the tag with the maximum votes will
be chosen as the category of the sample. Further information is available in supplementary section.

Multilayer perceptron (MLP). The MLP can be classified as a feedforward and fully connected artificial neural
network (ANN). It commonly refers to any feedforward ANN and sometimes a network consisting of multiple
perceptron layers which may raise the confusion. In cases with only one hidden layer, the multilayer perceptron
is often referred to as a "vanilla" neural network. The MLP includes at least three node substrates: entry, under-
cover, and output substrates. Apart from the input nodes, each node represents a neuron with a nonlinear activa-
tion duty. A supervised learning approach labeled as backpropagation is utilized to train the MLP. The MLP dif-
fers from the linear perceptron in its use of multiple layers and nonlinear activation, enabling the identification
of data which cannot be separated linearly™.

If all neurons in a MLP utilize a linear activation function to connect the weighted inputs to the output of
every neuron, any number of layers can be reduced to a two-layer input-output model using linear algebra.
However, some neurons in MLPs utilize a nonlinear activation function that imitates the modulation of action
possibilities or firing in actual neurons®.

Deep neural network (DNN). The deep neural network (DNN) is a neural network with a significant number
of layers, known as "deep" layers. Utilizing advanced algorithms and structures, the DNN model can be con-
sidered a variant of the multilayer perceptron neural network (MLP). Comprising many layers of nodes, DNN
is arranged using algorithms to extract deputations from datasets with no need for manual design of feature
extractors. As its name implies, deep learning has a larger or deeper number of processing layers compared to
the shallow learning with less units. The transition from surface to deep learning enables the planning of more
complicated and nonlinear functions, which could not be efficiently mapped using external architectures. Vari-
ous designs have addressed the difficulties in multiple fields or applied cases®*>>.

Results and discussion

Experimental data. The reliability and validity of the solubility system and experimental outcomes were
assessed in a recent article which evaluated the solubility of Riluzole in SC-CO,**-%%. Examination of the methods
and equipment utilized in the experiments requires evaluation of the solubility of a "prototype solute"®. Our
prior research involved measuring the solubility of naphthalene and a-tocopherol, which was then compared
to previously reported data to confirm the dependability of both the apparatus and experimental findings*"*".
Furthermore, the apparatus underwent a secondary validation process utilizing a-tocopherol in a CO, environ-
ment prior to drug solubility measurements whose validation outcomes are illustrated in Fig. 2. The current
investigation exhibits a satisfactory consistency with other references®"® In this work, the equilibrium solu-
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Standard deviation of the mean, SD Expanded uncertainty of mole

Temperature (K)* | Pressure (bar)* | Density (kg/m?)® | y,x10° (mole fraction) |S(g/L) | (§)x 10° fraction (10° U)

308 120 769 0.104 0.016 | 0.002 0.006

308 150 817 0.125 0.02 0.001 0.006

308 180 849 0.151 0.025 | 0.002 0.007

308 210 875 0.195 0.034 | 0.001 0.009

308 240 896 0.219 0.039 | 0.003 0.011

308 270 914 0.27 0.049 | 0.002 0.012

318 120 661 0.071 0.009 | 0.002 0.005

318 150 744 0.141 0.021 | 0.002 0.007

318 180 791 0.199 0.031 | 0.002 0.009

318 210 824 0.228 0.037 | 0.003 0.011

318 240 851 0.269 0.046 | 0.003 0.013

318 270 872 0.313 0.054 | 0.004 0.016

328 120 509 0.051 0.005 | 0.002 0.004

328 150 656 0.191 0.025 | 0.001 0.008

328 180 725 0.239 0.034 | 0.002 0.011

328 210 769 0.313 0.048 | 0.003 0.015

328 240 802 0.433 0.069 | 0.004 0.02

328 270 829 0.514 0.085 | 0.004 0.024

338 120 388 0.032 0.002 | 0.001 0.002

338 150 557 0.252 0.028 | 0.001 0.011

338 180 652 0.355 0.046 | 0.003 0.017

338 210 710 0.424 0.06 0.004 0.021

338 240 751 0.563 0.084 | 0.004 0.026

338 270 783 0.599 0.094 | 0.006 0.029
Table 4. Solubility of NHM in SC-CO, at different temperatures and pressures. The experimental standard
deviation was calculated by ucompined/y = 1/ 5\1:1 (Piu(x;)/ x,-)Z.Expanded uncertainty (U) and the relative
combined standard uncertainty (U.,mpinea/y) are determined, respectively, as follows: (U) = k*uompinea(k =2)
and Ucombined /Y = Zf\lzl (Piu(x;)/x:)*. In this work, u(x;) was considered as standard uncertainties of
temperature, pressure, mole fraction, volumes and absorption. P, sensitivity coefficients, are equivalent to
the partial derivatives of y equation (Eq. 1) with respect to the x;. *Standard uncertainty u are u(T) = £0.1 K;
u(p) = £ 1 bar. The value of the coverage factor k=2 was selected according to the level of confidence of almost
95 percent for computing the expanded uncertainty. °CO, density, is taken from NIST chemistry web-book
(http://webbook.nist.gov/chemistry/).

Model a, a, a, a, a, as AARD% Ry F-value

Chrastil 5.2519 - 6296.2307 - 19.0748 - - - 12.29 0.9688 118.37

Bian 4.3527 -0.0077 -21,319.037 19.0798 18.1565 8.11 0.9763 235.17

Gordillo - 28.9404 -0.7702 - 0.0084 0.0038 0.1243 - 0.0003 20.92 0.9321 51.79

Jafarinejad -20.936 0.000005 0.000084 3.9564 - - 11.6 0.9581 86.82

Garlapati-Madras | - 19.963 1.1013 0.0044 —5933.1954 12715 - 12.28 0.9607 138.75

Sparks 4.2903 0.7552 8.4564 -22328 - - 11.67 0.9635 150.25

MST ~11,606.114 144,574.41 20.4106 - - - 11.38 0.9608 933

Jouyban 8.7283 -21.1732 ~0.000001 0.000008 - 1.5291 12.1285 14.7 0.9789 177.44

Sodeifian —22.5789 - 0.1889 1.9462 0.0014 0.0009 — 1050.0384 14.38 0.9472 68.04

Bartle 19.0268 — 8839.0557 0.0097 - - - 12.57 0.9575 85.56

Table 5. AARD% and correlation parameters of empirical and semi-empirical models for NHM solubility in

SC-CO.,.
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bility S (g/L) and related mole fraction values of NHM were calculated at several pressures and temperatures
(120-270 bar and 308-338 K, respectively) as summarized in Table 4.

Noteworthy, the data points were measured three times to ensure the reliability and maintain the relative
standard uncertainties below 5%. Further information on the mole fractions uncertainties can be found in Table 5.
The Span-Wagner equation (a CO,-specific EoS) was also employed to define the density of SC-CO,%. The mole
fraction (y) and solubility (S (g/L)) values of NHM ranged from 0.1 x 107 to 0.59 x 10~ and 0.016-0.094, respec-
tively. The highest and lowest values for the solubility of the solid medicine were detected at 338 and 338 K and
pressures of 270 and 120 bar, respectively. The fundamental mechanism of drug solubility entails the disruption of
intermolecular or inters ionic bonds among solute molecules. This provides enough room for solvent molecules to
penetrate the solute molecules and facilitates particle wetting, which enables the required solvent-solute interac-
tions for dissolution. As illustrated by the isotherms in Fig. 3, the solubility of NHM increased by enhancing the
pressure at fixed temperatures. At a specific temperature, an increase in pressure leads to greater gas dissolution
in a solvent, whereas a decrease in pressure reduces the gas solubility in a liquid. For example, when producing
carbonated drinks, additional pressure is applied to the solute to enhance the solubility of CO, in the liquid.
The pressure enhancement compresses gas molecules within the solute, which creates more space for extra gas
molecules, increasing the solubility of CO, in the liquid. Therefore, the solubility of gases in liquids increases with
pressure increment. From another point of view, when a gas molecule in the vapor phase makes contact with a
liquid surface, it can either be repelled back into the gas or dissolved into the liquid to become a solute particle.
Upon reaching the liquid surface, dissolved molecules will gain enough kinetic energy to escape into the gas
phase. Therefore, there will be a constant exchange of particles across the gas-liquid boundary. Equilibrium is
achieved at equal entry and exit rates of the gas phase, resulting in constant concentrations in each phase. Solu-
bility is a measure of the concentration of dissolved gas particles in the liquid and is dependent on gas pressure.
An increase in pressure leads to an increment in the collision frequency, increasing the solubility. Conversely,
a decrease in pressure decrements the solubility. Such an increase in solubility can be assigned to the enhanced
density and improved solvating power of SC-CO, at higher pressures. The temperature has a dual impact on the
solubility in SC-CO, depending on the variations of vapor pressure of the solute and solvent density. The effect
of temperature on solubility is contingent upon the characteristics of both the solute and solvent, including
their interactions; while the behavior of solid and gaseous solutes differs. Solid solutes show solubility incre-
ment with raising the temperature, whereas gas solutes tend to become less soluble. This effect can be attributed
to the heightened kinetic energy that is accompanied by an increase in temperature. Specifically, gas molecules
possess greater kinetic energy at higher temperatures, which promotes the dissociation of intermolecular bonds
between the gas solute and solvent. An increment in the solution temperature can augment the vapor pressure
of the solute, further enhancing the solvation ability of SCF®*¢46,

Conversely, elevated temperatures may decrease the density of SC-CO,, reducing its overall solvating capac-
ity. Based on Fig. 3, the pressure range of 120-150 bar corresponds to the crossover pressure zone for NHM.
Density and solute vapor pressure are the dominant variables at pressures above and below the crossover pres-
sure. At pressures under (beyond) the crossover pressure area, solubility drops (rises) with temperature. Other
individuals have also reported similar findings regarding the dual effect of temperature on SC-CO, solubility®.

Regarding the challenges in fully guaranteeing the accuracy of experimental data, their agreement with
specific thermodynamic relationships can be checked to confirm their thermodynamic consistency or incon-
sistency. The MST model is a commonly employed thermodynamic relationship for analyzing the consistency
of experimental phase equilibrium data. In addition to its correlational capacity, the potential for extrapolation
is a crucial advantage of any model or correlation. As such, the Mendez-Santiago and Teja model (MST), also
known as the self-consistency test (Fig. 4), was conducted to assess the extrapolative capabilities of the models
under examination. The findings indicated the linear behavior of all the isotherms and isobars in this study,
thus enabling the solubility results to be estimated beyond their currently calculated range®®®”. Therefore, NHM
solubility can be predicted in temperatures and pressures beyond the current range due to their simple linear
behavior. The experimental data, represented by a solid line for all temperatures, were internally consistent when
considering solubility.

Figure 4 demonstrates the stability of the experimental data obtained via the MST model.
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Figure 3. NHM solubility in SC-CO, vs. pressure.
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Figure 4. Self-consistency trend obtained by MST model, dotted line presents prediction made by MST model
and symbols refer to solubility data of NHM.

Solubility correlation.  Four commonly utilized models were applied to define the correlation between the
solubility data of NHM in SC-CO,. These models include EoS-based, modified Wilson (ELT), and density-based
semi-empirical models as well as machine learning algorithms. The results were compared based on AARD%,
R.g and F-value.

Empirical and semi-empirical models. Table 5 lists the outputs of the semi-empirical models used in this
research. As shown, the mean values of AARD% for Chrastil, Gordillo, Sparks, Garlapati-Madras, Jafari-Nejad,
Bian, Bartle, MST, Jouyban, and Sodeifian models were 12.29%, 11.67%, 12.28%, 8.11%, 12.57%, 11.38%,
14.70%, 20.92%, 11.60%, and 14.38%, respectively. Consequently, MST (Radj =0.9608, F-value =150.25) and Bian
(Rq4qj=0.9763, F-value =235.17) models are the best in characterizing the solubility data of NHM (some of results
are summarized below in Fig. 5 at 338 K).

The models with six adjustable parameters had the lowest correlation with the experimental data, while the
models with 3, 4, and 5 parameters exhibited almost the same performance in terms of correlation with the solu-
bility data. In addition, all the models in this study demonstrated satisfactory accuracy in fitting the solubility
data. Further information is available in supplementary section (Figs. 15-10).

PR EoS vdW2 model. 'The PR EoS was utilized along with the vdW mixing rule to evaluate the correlation of
solubility data at four distinct temperatures of 308, 318, 328, and 338 K. Additionally, the sublimation pressure
corresponding to each temperature was modified to facilitate the comparison. For modeling the solubility data,
the use of equations of state requires an initial determination of the thermodynamic characteristics of the solid
substance via various methods. These characteristics entail sublimation pressure, volume at critical tempera-
ture, acentric factor, and boiling temperature. The solubility of drugs is under the direct or indirect influence
of various properties. As an illustration, the solubility of a drug can be increased by elevating the sublimation
pressure, which in turn raises the vapor pressure. The sublimation pressure is contingent upon the acentric fac-
tor; on the other hand, the acentric factor is highly dependent on the boiling temperature. All these factors are
interdependent with a remarkable impact on the drug solubility. The Marrero-Gani and Stein Brown methods
were employed to estimate the boiling temperature, while Fedors method was utilized to assess volume at critical
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Figure 5. NHM solubility in SC-CO,. Symbols are experimental points in one temperature (338 K); various
types of line are calculated with empirical and semi-empirical models.
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temperature. The Ambrose-Walton method was also applied for estimation of the sublimation pressure as listed
in Table 6.

According to the results in Table 7 and Fig. 6 (F-value=119.41, Ryg= 0.9896), the best performance was
achieved at 308 K. The correlation with the solubility data decrements with temperature enhancement and
changes in the sublimation pressure. Therefore, the PR model had the lowest correlation with NHM solubility
data at 338 K.

The thermodynamic properties of NHM were estimated using both the Chrastil and Bartle models and the
Chrastil and EoS. In this regard, vaporization (AH,,,), total (AH,.,), and solvation (AH,,) enthalpies were cal-
culated through the following method:

The Chrastil model (a, = AH,,//R=— 6296.2307) results in AH,, of 52.35 kJ/mol (endothermic) while Bartle
model (a,=AH,,,/R=~ 8839.0557) leads to AH,,, of 73.49 k]J/mol (endothermic). These computations can be
expanded to estimate the solvation heat as AH,, =|AH, — AH,,,|=21.14 kJ/mol. Thereupon, the combination
of Bartle and Chrastil models, results in the solvation enthalpy of (AH,) — 21.14 k] mol™. Also, Table 2S (sup-
plementary section) reports the enthalpies obtained in this work.

ap.

ELT model (modified Wilson model). 'The correlation of modified Wilson-predicted solid-liquid equilibrium
was compared with the solubility data of NHM. The results indicated that the ELT model outperformed the
empirical and semi-empirical models of this work (see Table 8 and Fig. 7).

Machine learning algorithms.  In the present investigation, the solubility of NHM was studied and evaluated via
different models, for the first time. Four machine-learning algorithms were also used to compare the experimen-
tal data of various drugs including 17 previously published drugs. Among these algorithms, the RF algorithm
showed the highest correlation with the solubility data. According to the initial results in Table 9, the RF algo-
rithm provided the best performance (R*=0.9933) among all tested algorithms. Figure 8 and 9 also offer more

T (k)

308 [318  [328 [338
Component Ty, (K) T, (K) P, (bar) ) V, (cm*/mol) | P,° (Pa)
Nilotinib.HCL.H,O 725.640° | 936.444° | 11.77822° | 0.5913* |376.8¢ 0.00040739 | 0.0014 | 0.0043 |0.0125
CO, - 304.18 73.8 0.274 - - - - -

Table 6. Evaluated critical values and physicochemical properties of NHM. *Estimated by Stein Brown
method®. "Estimated by Marrero and Gani method®. “Estimated by Ambrose-Walton corresponding states
method”. ¢Estimated by Fedors method”".

Model Parameters | T=308K |T=318K |T=328K |T=338K
K, 0.559 0.565 0.622 0.65
I 0.568 0.561 0.649 0.687
PR-vdW AARD (%) 3.39 6.14 9.42 26.20
F-value 119.41 89.81 32.34 3.63
Ryg 0.9896 0.9862 0.9623 0.7162

Table 7. Correlation outcomes for solubility of NHM in SC-CO, by PR-EoS -vdW model.
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Figure 6. NHM solubility vs. SC-CO, density. Solid lines are calculated solubilities with PR EoS model,
symbols are experimental data.
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Table 8. Correlation outcomes for solubility of NHM in SC-CO,, by ELT, Modified Wilson model.
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Figure 7. NHM solubility vs. SC-CO, density. Solid lines are calculated solubilities with ELT model, symbols
are experimental data.

Algorithm | MAg MS; R?

RF 4.33E-06 | 8.00E-11 |0.9933
DTs 6.78E-06 | 2.47E-10 | 0.9799
MLP 1.18E-05 | 3.32E-10 | 0.9724
DNN 1.29E-05 | 4.44E-10 |0.9701

Table 9. Initial results of machine learning algorithms used in this work.

perspectives about RF model results. Figure 10 also presents the results of all models in one figure. It should be
noted that supplementary figures on some algorithms can be found in supplementary section (Figs. 11S-16S).

To ensure the validity of the machine learning algorithms, two non-parametric tests were employed by
Eviewsl3 software: (1) Augmented Dickey-Fuller (ADF) and (2) Phillips—Perron. The results indicate that the
probe value is less than 1%, thereby, confirming the reliability of the models. Furthermore, as the absolute static
value is higher than 1%, 5%, and 10%, the models with an error coefficient of 1% provide a sufficient degree of
accuracy and precision.

1. In statistics, the ADF test is employed to evaluate the presence of unit root in a given statistical sample. The
null hypothesis is tested against alternative explanations, which can include stationarity or trend-stationarity
depending on the applied specific test. This test has been developed as an advanced prescription of the
Dickey-Fuller test, allowing the analysis of a wider range of time-series models. The ADF statistic produced

R=09933 C_GQ

0.0004

Output values by RF
0.0002

0 0.0002
Experimental Data

0.0004

Figure 8. Regression line of NHM solubility (with 17 other drugs shown by symbols) vs. RF outputs.
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Figure 9. NHM solubility (with 17 other drugs shown as a solid line) vs. RF outputs shown as dots.
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Figure 10. All models in one frame, lines and dots are results of models.

by this test is negative, and the strength of rejection for the unit root hypothesis increases as the value
becomes more negative with a certain level of confidence’.

Similar to the enhanced Dickey-Fuller test, the Phillips—Perron test addresses the concern that the data
producing process for a variable may exhibit a greater level of autocorrelation than that of the test equation,
leading to increased endogeneity and rejection of the Dickey-Fuller t-test. The ADF test resolves this issue
through including lagged variables as regressors in the test equation. In contrast, the Phillips-Perron test
introduces a non-parametric alteration to the t-test statistic. This approach has shown proper robustness
against nonspecific autocorrelation and heteroscedasticity within the disorder process of the test equation.
Davidson and MacKinnon demonstrated that the Phillips-Perron test outperformed the augmented Dickey—
Fuller test in the case of finite samples’*’%. The ADF and Philips-Perron results are shown in Table 10.

1

ADF —8.590281 | —3.498439 | -2.891234 |-2.582678 |0 0.9351 | 0.9293
Philips—Perron —45.54484 | —3.493747 | —2.8892 —2.581596 | 0.0001 |0.8147 |0.813

ADF —8.702216 | —3.498439 | -2.891234 |-2.582678 |0 0.9379 | 0.9323
Philips—Perron —47.32203 | —3.493747 | —2.8892 —2.581596 | 0.0001 |0.8165 |0.8148

ADF —8.588913 | —3.498439 | -2.891234 | -2.582678 |0 0.937 0.9314
Philips—Perron —49.37702 | —3.493747 | —2.8892 —2.581596 | 0.0001 |0.8215 |0.8198

ADF —8.539113 | —3.498439 | -2.891234 | -2.582678 |0 0.9336 | 0.9277
Philips—Perron —45.26102 | —3.493747 | —2.8892 —2.581596 | 0.0001 |0.8163 | 0.8145

Table 10. Non-parametric tests results.
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Conclusion

Enhancing the solubility of poorly water-soluble pharmaceuticals has long been an efficient approach for pro-
ducing more effective nanoparticles. Information on the solubility of drugs in supercritical conditions is highly
essential to achieve this goal. This study thus explored the solubility of nilotinib hydrochloride monohydrate
(NHM) in SC-CO, at 308-338 K and pressure range of 120-270 bar, for the first time. The mole fraction of
the drug dissolved in SC-CO, ranges from 0.1 x 10~° to 0.59 x 10~ corresponding to the solubility range of
0.016-0.094 g/L. The maximum solubility of NHM (0.59 x 10-°) was achieved at 338 K and a pressure of 270 bar.
The experimental data were correlated by four groups of models: (1) empirical and semi-empirical models,
including Bartle (12.57%), Sodeifian (14.38%), Chrastil (12.29%), Sparks (11.67%), Galapati-Madras (12.28%),
Bian (best among others with an AARD% of 8.11), Jouyban (14.70%), Jafari-Nejad (11.60%), MST (11.38%), and
Gordillo (20.92%); (2) Peng-Robinson EoS model with vdW mixing rule (best AARD% in temperature of 308 K
with the value of 3.39); (3) ELT (Modified Wilson model, with an AARD% of 10.73); and (4) machine learning
techniques such as RE, DTs, MLP, and DNN (RF showed the best performance with the R? value of 0.9933). The
Bian and modified Wilson models exhibited the highest correlation with the experimental data. The MST model
was also utilized to evaluate the self-consistency of the experimental results. Based on the correlation results
proposed by Chrastil and Bartle, the NHM-CO, solvation and vaporization enthalpies were estimated to be
—21.14 and 73.49 kJ/mol, respectively, that allows us to determine the thermodynamic characteristics of NHM.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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