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A novel technique for solving 
unsteady three‑dimensional 
brownian motion of a thin film 
nanofluid flow over a rotating 
surface
Payam Jalili 1, Ali Ahmadi Azar 1, Bahram Jalili 1* & Davood Domiri Ganji 2*

The motion of the fluid due to the swirling of a disk/sheet has many applications in engineering 
and industry. Investigating these types of problems is very difficult due to the non-linearity of the 
governing equations, especially when the governing equations are to be solved analytically. Time 
is also considered a challenge in problems, and times dependent problems are rare. This study 
aims to investigate the problem related to a transient rotating angled plate through two analytical 
techniques for the three-dimensional thin film nanomaterials flow. The geometry of research is a 
swirling sheet with a three-dimensional unsteady nanomaterial thin-film moment. The problem’s 
governing equations of the conservation of mass, momentum, energy, and concentration are partial 
differential equations (PDEs). Solving PDEs, especially their analytical solution, is considered a serious 
challenge, but by using similar variables, they can be converted into ordinary differential equations 
(ODEs). The derived ODEs are still nonlinear, but it is possible to approximate them analytically with 
semi-analytical methods. This study transformed the governing PDEs into a set of nonlinear ODEs 
using appropriate similarity variables. The dimensionless parameters such as Prandtl number, Schmidt 
number, Brownian motion parameter, thermophoretic parameter, Nusselt, and Sherwood numbers 
are presented in ODEs, and the impact of these dimensionless parameters was considered in four 
cases. Every case that is considered in this problem was demonstrated with graphs. This study used 
modified AGM (Akbari–Ganji Method) and HAN (Hybrid analytical and numerical) methods to solve 
the ODEs, which are the novelty of the current study. The modified AGM is novel and has made the 
former AGM more complete. The second semi-analytical technique is the HAN method, and because it 
has been solved numerically in previous articles, this method has also been used. The new results were 
obtained using the modified AGM and HAN solutions. The validity of these two analytical solutions 
was proved when compared with the Runge–Kutta fourth-order (RK4) numerical solutions.

In science, especially chemistry, condensate production from a cooling and saturated vapor is very substantial. 
Many researchers investigated this phenomenon under various circumstances. Sparrow and Gregg1 analyzed 
film condensation on a rotating plate on pure saturated steam. The centrifugal field associated with the rotation 
moves the condensate outward along the disc’s surface without requiring gravitational forces. In this problem, 
the governing equations were solved numerically, and finally, results were given for heat transfer and condensate 
layer thickness, torque, temperature, and velocity profiles. Beckett et al.2 investigated the problem of laminar 
condensation on a swirling disk in a large volume of static vapor for low and high cooling rates on the disk 
surface. The governing equations were converted into a set of ODEs using similarity transformation and solved 
numerically, and solutions were compared via previously published results. Chary and Sarma3 considered the 
problem of vapor-to-liquid transition in the presence of constant axial suction at a permeable condensing surface. 
The governing equations were reduced into a set of ODEs. The Runge–Kutta numerical method was used to 
calculate the heat transfer coefficient, and limiting solutions for very thin condensate films were obtained. They 
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determined that the heat transfer coefficient can be increased to any desired level by correctly selecting the suc-
tion parameter value. Attia and Aboul-Hassan4 investigated the transient motion of a viscous conducting fluid 
due to the swirling of an infinite, non-conducting, porous disk with a uniform magnetic field and the Hall effect. 
The governing equations were solved numerically, and the solution showed that including injection or suction 
from the disk surface in addition to the Hall flow gives interesting results. Bachok et al.5 investigated the transient 
boundary layer of a nanofluid flow on a permeable stretching/shrinking sheet. The governing equations are 
reduced into nonlinear ODEs and solved numerically. Freidoonimehr et al.6 studied a nanofluid unsteady MHD 
laminar free convection flow on a perpendicular sheet. The governing equations are reduced into the system of 
ODEs by a suitable similarity transformation and solved numerically with the RK4 method. Makinde et al.7 
investigated the combined effects of thermal radiation, thermophoresis, Brownian motion, magnetic field and 
variable viscosity on boundary layer flow, heat and mass transfer of an electrically conducting nanofluid on a 
radially stretching convectively heated sheet. The governing equations transformed into a system of ODEs by 
using suitable similarity variables and solved numerically with RK4 method. Akbar et al.8 studied the two-
dimensional non-transient incompressible viscous nanofluid flow on a stretching/shrinking plate. The governing 
PDEs were transformed into a set of ODEs by similarity variables and solved numerically via shooting method. 
Ramzan et al.9 studied the non-transient incompressible MHD nanofluid flow due to an infinite swirling disk 
with constant angular velocity, and the various velocity slip conditions are considered either. The governing 
equations were transformed into a set of nonlinear ODEs and solved numerically via the RK4 method. Alshom-
rani and Gul10 studied the nanofluid flow of a liquid film in a porous medium on a stretching sheet via the pres-
ence of velocity slip and thermal slip. The governing equations were transformed into a set of ODEs via suitable 
similarity variables and solved via the Homotopy Analysis Method (HAM). Gul and Sohail11 investigated the 
various Marangoni convection over a thin film flow on a stretching cylinder. The suitable similarity variables 
transformed the governing equations of this study into a set of ODEs and solved numerically via RK4 method. 
Ellahi12 investigated the MHD non-Newtonian nanofluid flow inside a pipe with an assumption that temperature 
of the pipe was higher than fluid temperature and also considered two particular temperature dependent viscosity 
models. The governing equations were transformed into a set of ODEs via suitable similarity variables and solved 
by the HAM. The analytical solutions of velocity field, the temperature distribution, and nano concentration 
have been derived. Khan and Pop13 investigated the steady two-dimensional laminar nano fluid flow and heat 
transfer arising from the stretching of a sheet and Brownian motion and thermophoresis was also considered in 
the problem. The governing equations were solved numerically after transforming the governing PDEs into a set 
of ODEs. Mustafa et al.14 studied the incompressible nanofluid flow, heat and mass transfer in a channel with 
presence of Brownian motion and thermophoresis effects. The governing equations were converted from PDEs 
into ODEs using suitable similarity transformation and then solved with both numerical method of RK4 and 
analytically with HAM. Akbar and Nadeem15 studied the two dimensional incompressible steady peristaltic flow 
of a nanofluid flow, heat, and mass transfer in an endoscope. The governing equations were transformed into 
dimensionless form and solved analytically via the Homotopy Perturbation method (HPM). Lakshmisha et al.16 
investigated the three-dimensional transient laminar motion of a viscous, incompressible MHD fluid flow and 
heat transfer caused by the stretching of an infinite flat surface. The fluid was stationary at infinity, and the no-
slip condition was imposed at the stretching surface in two lateral directions, where suction or injection can be 
applied. The governing equations were reduced into ODEs and solved by three different numerical methods. 
Wang17 investigated three-dimensional fluid flow due to the stretching of a sheet in two directions. The governing 
equations were reduced into a set of ODEs via suitable similarity transformation and then solved by the numeri-
cal method of RK4. Ahmad et al.18 investigated the problem of forced convection boundary layer nanofluid flow 
and heat transfer from a stationary semi-infinite flattish sheet and another problem similar to the previous one, 
but this time the flat sheet was not stationary. The governing equations were converted into a set of ODEs by a 
transformation and then solved with the numerical method of RK4. Chamkha et al.19 investigated the problem 
of boundary-layer nanofluid flow, heat and mass transfer on a dynamic porous media in the presence of magnetic 
field, heat generation or absorption, thermophoresis, Brownian motion, and suction or injection effects. The 
governing equations were reduced into a system of ODEs and solved numerically via the finite difference method 
(FDM). Kandasamy et al.20 studied the problem of three-dimensional unsteady laminar nanofluid flow, heat, and 
mass transfer due to the stretchy perpendicular sheet with changing stream conditions in the presence of Brown-
ian motion and thermophoresis effects. The governing equations were reduced into a system of coupled nonlinear 
ODEs and solved numerically with the Oberbeck–Boussinesq approximation. Berkan et al.21 studied the problem 
of intransient three-dimensional condensation film over an angled swirling disk. The governing equations were 
reduced into a set of ODEs via transformation and solved analytically with AGM. The results were compared 
with the previously published studies. Mirgolbabaee et al.22 studied a two-dimensional intransient MHD laminar 
flow of fluid along parallel porous walls in which fluid is uniformly injected or removed. The governing equations 
were reduced into a set of ODEs via a similarity transformation and solved analytically. Jalili et al.23 studied the 
impacts of angled Lorentz body force and changing viscosity for the flow of non-Newtonian Williamson nano-
fluid over a stretchy sheet. The governing equations were transformed into ODEs via similarity variables and 
solved analytically. Jalili et al.24 studied the flow of an intransient two-dimensional MHD nanofluid over a semi-
infinite stretchy flat plate. The governing equations were reduced into a set of ODEs and solved analytically. Jalili 
et al.25 investigated the problem of two-dimensional steady boundary layer micropolar ferrofluid flow and heat 
transfer due to the constricting plate with presence of thermal radiation and transverse magnetic field. The 
governing equations reduced into system of ODEs and solved analytically and numerically. Jalili et al.26 proposed 
the Hybrid Analytical and Numerical method (the HAN method) for solving a the problem of viscous, incom-
pressible, laminar axisymmetric flow of a micropolar fluid with presence of magnetic field between two stretch-
able disks. The governing equations were reduced into ODEs by similarity variables and solved analytically. Jalili 
et al.27,28 used the same method of HAN in two other studied either. Many problems29–36 related to fluid mechanics 
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were studied and used the similarity transformation to convert the PDEs into ODEs but they solved numerically, 
Meanwhile, the modified HAN or AGM method had the potential to solve these problems analytically. The 
novelty of this article is that these two methods were used and the analytical answer was obtained.

This paper investigates heat and mass transfer in a transient swirling angled sheet analytically with two 
techniques for a 3D thin nanomaterial film flow. The semi-analytical methods used in this study are modified 
AGM and HAN methods. The modified AGM is novel and has made the former AGM more complete. The sec-
ond semi-analytical technique is the HAN method, which is applied because Zeeshan et al. already solved the 
numerical solution to this problem37. The results from these two semi-analytical solutions were compared with 
the previously published RK4 solution.

Mathematical description
The geometry of the study is a swirling sheet with a three-dimensional transient nanomaterial thin-film moment, 
as illustrated in Fig. 1. The plate swirls with the angular velocity of �,  and the inclined plate has an angle of β 
with the horizon. The nanomaterial thickness of the sheet is indicated by h , and the speed of the sprayed fluid is 
denoted by W . The terminal effect is neglected because the thickness of the fluid film in comparison to the radius 
of the disc is not thick enough. The gravitation force exists, and it is denoted by g  , and its direction is illustrated 
in the following figure. The temperature of the film surface is denoted by T0 . The temperature of the inclined 
swirling surface is denoted by Tw . The concentration of the film surface is denoted by C0 . The concentration of 
the inclined swirling surface is denoted by Cw.

The thickness of the fluid film is very thin, and the pressure at the surface of the surface is denoted by p0 and 
it is just a function of z . The viscous dissipation function in the energy equation is negligible. The governing 
equations of the problem are as follows2,3,5,6,8,37:

The equation of conservation of mass:

The equation of conservation of momentum in x direction:

The equation of conservation of momentum in y direction:

The equation of conservation of momentum in z direction:

The equation of conservation of energy:

The equation of conservation of concentration:

(1)∇ · v = 0.

(2)ρf
Du

Dt
= µ∇2u+ ρf gsin(β).

(3)ρf
Dv

Dt
= µ∇2v.

(4)ρf
Dw

Dt
= µ∇2w − ρf gcos(β)− pz .

(5)
DT

Dt
= α∇2T −

(

ρcp
)

p
(

ρcp
)

f

[

DB∇C · ∇T +
DT

T
∇T · ∇T

]

Figure 1.   The geometry of the problem.
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where D/Dt denotes the total derivative to the variable of time, ∇ is the gradient operator, u , v, and z are the 
velocities in the x , y, and z directions, respectively, ∇2 is the Laplacian operator, T is the temperature, C is the 
concentration, ρf  , is the density of the base fluid, µ is the dynamic viscosity, α is the thermal diffusivity, cp , is the 
specific heat capacity at a constant pressure of nanofluid, 

(

ρcp
)

p
/
(

ρcp
)

f
 , is the ratio of nanoparticles’ heat capac-

ity to the base fluid heat capacity, DB is the Brownian diffusion coefficient, and DT , is the thermophoretic diffusion 
coefficient.

The corresponding boundary conditions of Eqs. (1)–(6) are as follows:

The similarity transformations are considered as follows8,11,37:

Here, ν is the kinematic viscosity, θ is the dimensionless temperature, and φ is the dimensionless concentra-
tion. The similarity variables of Eq. (8) can be substituted in Eqs. (2)–(6) for converting a system of nonlinear 
PDEs into a system of nonlinear dimensionless coupled ODEs:

Substituting the similarity variables of Eq. (8) in Eq. (7) will be as follows:

 where Pr is the Prandtl number, Sc is the Schmidt number, Nb is the Brownian motion parameter, S is the 
parameter that depends on the angular velocity of the rotating surface, and Nt is the thermophoretic parameter, 
which is defined as37,38: 

The constant normalized thickness of δ is as follows37:

The dimensionless Nusselt and Sherwood numbers are as follows37:

(6)
DC

Dt
= DB∇2C +

DT

Th
∇2T ,

(7)
u = −�y, v = −�x,w = 0,T = Tw ,C = Cw , atz = 0

u = 0, v = 0,w = −W , p = p0,T = T0,C = C0, atz = h

(8)

u =
−�y

√
1− bt

g(ξ)+
�x

√
1− bt

f ′(ξ)+
g

√
1− bt

k(ξ)sin

(

β

�′

)

,

v =
−�x

√
1− bt

g(ξ)+
�y

√
1− bt

f ′(ξ)+
g

√
1− bt

h(ξ)sin

(

β

�′

)

,

w = −2

√

�ν

1− bt
f (ξ), θ =

T − Tw

Th − Tw
,φ =

C − Cw

Ch − Cw
, ξ = z

√

�

ν(1− bt)
,

(9)f
′′′
−

(

f ′
)2 + g2 + 2ff

′′
− S

(

f ′ +
ξ

2
f
′′
)

= 0,

(10)g
′′
− 2gf ′ + 2f g′ − S

(

g+
ξ

2
g′
)

= 0,

(11)k
′′
− kf ′ + hg+ 2fk′ + 1−

S

2

(

k + ξk′
)

= 0,

(12)h
′′
− kg− hf ′ + 2fh′ −

S

2

(

h− ξh′
)

= 0,

(13)θ
′′
+ 2Prf θ ′ + Nbφ′θ ′ + Nt

(

θ ′
)2 +

S

2

(

ξθ ′ + ξ 2θ ′′
)

= 0,

(14)φ
′′
+ 2Scf φ′ +

(

Nt

Nb

)

θ
′′
+

S

2

(

ξφ′ + ξ 2φ′′) = 0.

(15)
f = 0, f ′ = 0, g = 1, k = 0, h = 0, θ = 0,φ = 0, atξ = 0

f ′′ = 0, g′ = 0, k′ = 0, h′ = 0, θ = 1,φ = 1, atξ = δ

(16)
Pr = ν/α, Sc = µ/DB, Nb =

[

(ρc)pDB(Cw − Ch)

]

/

[

(ρc)f ν
]

,

Nt =
[

(ρc)pDT (Tw − Th)

]

/

[

(ρc)f νTh

]

, S = 1/�

(17)δ = ε

√

�

ν(1− bt)
, (17)
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Methodology.  Description of the HAN method.  Jalili et al.26–28 developed the HAN method for approxi-
mating an analytical solution for a differential equation. In this part, the explanation of the HAN method is as 
follows:

Consider an ODE of the m th order as follow:

Equation (20) is a nonlinear differential equation, and Ŵ is the function of ζ and its derivatives to ξ . The 
parameter ζ is the function of the independent variable ξ . The derivatives of the function ζ (ξ) with respect to ξ 
at ξ = 0 and ξ = L are denoted as follows:

The solution of Eq. (20) is considered as follows:

Here, a0 , a1 , …, an are n+ 1 constant coefficients which n > m . By solving a system of     n+ 1 unknowns and 
n+ 1 equations, constant coefficients will be determined. The boundary conditions of the problem can construct 
some of these equations as follows:

The constructed equations from boundary conditions of the problem as they can be seen in Eqs. (23), (24) 
are limited because we assume the value of n is higher than m earlier in this methodology. But more boundary 
equations are needed, and a numerical method (no matter which numerical method and no matter what kind 
of software package) can approximate these additional boundary conditions for making the remaining needed 
equations. So, the new approximated boundary conditions are as follows:

For instance, the following equations are constructed from approximated boundary conditions of Eq. (25):

(18)Nu =

(

∂T
∂z

)

w

Th − Tw
= δθ ′(0)

(19)Sh =
(

∂C
∂z

)

w

Ch − Cw
= δφ′(0)

(20)Ŵ

(

ζ (ξ), ζ ′(ξ), ζ ′′(ξ), . . . , ζ (m)(ξ)

)

= 0.

(21)
{

ζ (ξ) = ζ0, ζ
′(ξ) = ζ1, . . . , ζ

(m−1)(ξ) = ζm−1 when ξ = 0,

ζ (ξ) = ζL0 , ζ
′(ξ) = ζL1 , . . . , ζ

(m−1)(ξ) = ζLm−1 when ξ = L.

(22)ζ (ξ) =
n

∑

i=0

aiξ
i = a0 + a1ξ

1 + a2ξ
2 + · · · + anξ

n,

(23)



















ζ (0) = a0 = ζ0,
ζ ′(0) = a1 = ζ1,

ζ
′′
(0) = a2 = ζ2,

· · ·
· · ·

(24)



















ζ (L) = a0 + a1L+ a2L
2 + · · · + anL

n = ζL0 ,

ζ ′(L) = a1 + 2a2L+ 3a3L
2 + · · · + nanL

n−1 = ζL1 ,

ζ
′′
(L) = 2a2 + 6a3L+ 12a4L

2 + · · · + n(n− 1)anL
n−2 = ζL2 ,

· · ·
· · ·

(25)



























ζ (ξ) = α0, ζ
′(ξ) = α1, . . . , ζ

(m−1)(ξ) = αm−1atξ = L0,

ζ (ξ) = β0, ζ
′(ξ) = β1, . . . , ζ

(m−1)(ξ) = βm−1atξ = L1,

ζ (ξ) = γ0, ζ
′(ξ) = γ1, . . . , ζ

(m−1)(ξ) = γm−1atξ = L2,

· · ·
· · ·
ζ (ξ) = ε0, ζ

′(ξ) = ε1, . . . , ζ
(m−1)(ξ) = εm−1atξ = Lz .

(26)































ζ (L0) = a0 + a1(L0)+ a2(L0)
2 + · · · + an(L0)

n = α0,

ζ ′(L0) = a1 + 2a2(L0)+ 3a3(L0)
2 + · · · + nan(L0)

n−1 = α1,

ζ
′′
(L0) = 2a2 + 6a3(L0)+ 12a4(L0)

2 + · · · + n(n− 1)an(L0)
n−2 = α2,

· · ·
· · ·
�

ζ (m−1)(ξ)
�

ξ=L0
= αm−1.
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According to Eqs. (26)–(29), it can be derived as many equations as possible are needed to create a system 
with n+ 1 equations and n+ 1 unknowns. The limitation of the HAN method is just in the numerical method 
that is used, and this means that if no numerical method could solve a problem, the HAN method could not be 
used because this method seriously needs a numerical solution. To summarize the mentioned method in a more 
compact form, the following Fig. 2, the flow chart is presented for the HAN method:

Application of the HAN method.  For applying the HAN method, let us assume the following functions 
are the semi-analytical solutions of Eqs. (9)–(14):

Based on Eq. (30), there are 43 unknown coefficients, and 43 equations are needed to obtain them. Equa-
tion (15) makes only 13 equations, and the remaining 30 must be made numerically. This study used the numeri-
cal solution of Zeeshan et al.37. Finally, according to Table 1, the system of ODEs of Eqs. (9)–(14) for 4 cases can 
be solved by calculating the system of 46 equations and 46 unknowns and the solutions of Eqs. (9)–(14) for all 
available cases in Table 1 are as follows:

Solutions of case 1 where Pr = 6.6 , Nt = 0.2 , Nb = 0.2 , Sc = 2.0 , S = 0.0 , δ = 1.0 are are demostrated in 
Eqs. (31)–(36) as follows:

(27)































ζ (L1) = a0 + a1(L1)+ a2(L1)
2 + · · · + an(L1)

n = β0,

ζ ′(L1) = a1 + 2a2(L1)+ 3a3(L1)
2 + · · · + nan(L1)

n−1 = β1,

ζ
′′
(L1) = 2a2 + 6a3(L1)+ 12a4(L1)

2 + · · · + n(n− 1)an(L1)
n−2 = β2,

· · ·
· · ·
�

ζ (m−1)(ξ)
�

ξ=L1
= βm−1.

(28)































ζ (L2) = a0 + a1(L2)+ a2(L2)
2 + · · · + an(L2)

n = γ0,

ζ ′(L2) = a1 + 2a2(L2)+ 3a3(L2)
2 + · · · + nan(L2)

n−1 = γ1,

ζ
′′
(L2) = 2a2 + 6a3(L2)+ 12a4(L2)

2 + · · · + n(n− 1)an(L2)
n−2 = γ2,

· · ·
· · ·
�

ζ (m−1)(ξ)
�

ξ=L2
= γm−1.

(29)































ζ (Lz) = a0 + a1(Lz)+ a2(Lz)
2 + · · · + an(Lz)

n = ε0,

ζ ′(Lz) = a1 + 2a2(Lz)+ 3a3(Lz)
2 + · · · + nan(Lz)

n−1 = ε1,

ζ
′′
(Lz) = 2a2 + 6a3(Lz)+ 12a4(Lz)

2 + · · · + n(n− 1)an(Lz)
n−2 = ε2,

· · ·
· · ·
�

ζ (m−1)(ξ)
�

ξ=Lz
= εm−1.

(30)

f (ξ) =
7

∑

i=0

aiξ
i , g(ξ) =

6
∑

i=0

biξ
i , k(ξ) =

6
∑

i=0

ciξ
i ,

h(ξ) =
6

∑

i=0

diξ
i , θ(ξ) =

6
∑

i=0

eiξ
i , φ(ξ) =

6
∑

i=0

wiξ
i ,

(31)
f (ξ) = 0.0002732904460ξ7 − 0.001130398705ξ6 − 0.002983457929ξ5

+ 0.03142026994ξ4 − 0.1667247673ξ3 + 0.3527041428ξ2

(32)
g(ξ) = −0.001545033804ξ6 + 0.01589724438ξ5 − 0.09880567227ξ4

+ 0.2325237815ξ3 + 0.0005790233777ξ2 − 0.3737227213ξ+ 1

(33)
k(ξ) = −0.002279700115ξ6 + 0.01147406663ξ5 − 0.01381462277ξ4

+ 0.04064226334ξ3 − 0.5005751938ξ2 + 0.8907899562ξ

(34)
h(ξ) = −0.001567686924ξ6 + 0.01446119756ξ5 − 0.07067881448ξ4

+ 0.1490380770ξ3 − 0.0001265692365ξ2 − 0.2270457008ξ

(35)
θ(ξ) = −0.2116669756ξ6 + 0.8465834245ξ5 − 1.029402144ξ4

+ 0.2315199252ξ3 − 0.3564099429ξ2 + 1.519375713ξ
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Solutions of case 2 where Pr = 6.7 , Nt = 0.4 , Nb = 0.4 , Sc = 4.0 , S = 0.3 , δ = 1.0 are are demostrated in 
Eqs. (37)–(42) as follows:

(36)
φ(ξ) = 0.2829625151ξ6 − 1.039481420ξ5 + 1.103469812ξ4

− 0.2898952916ξ3 + 0.3681095391ξ2 + 0.5748348455ξ

(37)
f (ξ) = −0.0002079022321ξ7 + 0.001973475990ξ6

− 0.01470749656ξ5 + 0.05432728425ξ4 − 0.1666873768ξ3 + 0.2959371975ξ2

(38)
g(ξ) = −0.005133576574ξ6 + 0.02908484722ξ5

− 0.09024744620ξ4 + 0.1540695922ξ3 + 0.1508920312ξ2 − 0.5176258308ξ+ 1

Figure 2.   The flow chart of the HAN method.

Table 1.   Different cases of the study.

Case number Pr Nt Nb Sc S δ

1 6.6 0.2 0.2 2.0 0.0 1.0

2 6.7 0.4 0.4 4.0 0.3 1.0

3 7.1 0.6 0.6 6.0 0.5 1.0

4 7.3 0.8 0.8 8.0 0.6 1.0
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Solutions of case 3 where Pr = 7.1 , Nt = 0.6 , Nb = 0.6 , Sc = 6.0 , S = 0.5 , δ = 1.0 are are demostrated in 
Eqs. (43)–(48) as follows:

Solutions of case 4 where Pr = 7.3 , Nt = 0.8 , Nb = 0.8 , Sc = 8.0 , S = 0.6 , δ = 1.0 are are demostrated in 
Eqs. (49)–(54) as follows:

(39)
k(ξ) = −0.001496251208ξ6 + 0.01038296954ξ5

− 0.03189600552ξ4 + 0.07790099004ξ3 − 0.5003734521ξ2 + 0.8516906158ξ

(40)
h(ξ) = −0.002786510359ξ6 + 0.02018172983ξ5

− 0.07691644778ξ4 + 0.1414225437ξ3 + 0.00009716095831ξ2 − 0.2009857489ξ

(41)
θ(ξ) = −0.1359384154ξ6 + 0.4518613532ξ5

− 0.4083916572ξ4 + 0.08938493236ξ3 − 0.7445633333ξ2 + 1.747647120ξ

(42)
φ(ξ) = 0.1778020637ξ6 − 0.4076008170ξ5

+ 0.03931969082ξ4 + 0.03147310942ξ3 + 0.7127832489ξ2 + 0.4462227042ξ

(43)
f (ξ) = −0.0006778087691ξ7 + 0.004625490183ξ6 − 0.02250363290ξ5

+ 0.06737914699ξ4 − 0.1666335480ξ3 + 0.2655137223ξ2

(44)
g(ξ) = −0.006002419664ξ6 + 0.03178524881ξ5 − 0.07449152309ξ4

+ 0.09470427126ξ3 + 0.2511832131ξ2 − 0.6114248738ξ+ 1

(45)
k(ξ) = −0.001619303915ξ6 + 0.01124629570ξ5 − 0.04380530174ξ4

+ 0.1009044393ξ3 − 0.5002496563ξ2 + 0.8264915466ξ

(46)
h(ξ) = −0.003463347867ξ6 + 0.02342157653ξ5 − 0.08036919805ξ4

+ 0.1364751684ξ3 + 0.0002471443773ξ2 − 0.1847707971ξ

(47)
θ(ξ) = −0.05306295007ξ6 + 0.1129913194ξ5

− 0.01888402561ξ4 + 0.2453130864ξ3 − 1.328564902ξ2 + 2.042207471ξ

(48)
φ(ξ) = −0.01401617829ξ6 + 0.3947414707ξ5

− 0.9858640302ξ4 + 0.1284080241ξ3 + 1.244433830ξ2 + 0.2322968833ξ

(49)
f (ξ) = −0.0009410950258ξ7 + 0.006062772127ξ6

− 0.02636138926ξ5 + 0.07333935113ξ4 − 0.1665967652ξ3 + 0.2521894950ξ2

(50)
g(ξ) = −0.006015080732ξ6 + 0.03148047968ξ5

− 0.06385582722ξ4 + 0.06290813817ξ3 + 0.3013300935ξ2 − 0.6572732066ξ+ 1

(51)
k(ξ) = −0.001840200974ξ6 + 0.01208551550ξ5

− 0.04972369728ξ4 + 0.1119001658ξ3 − 0.5001929272ξ2 + 0.8141937745ξ

(52)
h(ξ) = −0.003764560601ξ6 + 0.02487394812ξ5

− 0.08187181977ξ4 + 0.1340475806ξ3 + 0.0003224592621ξ2 − 0.1770827583ξ

(53)
θ(ξ) = 0.02069658406ξ6 − 0.1078814027ξ5

+ 0.01694159650ξ4 + 0.8363701696ξ3 − 2.151877171ξ2 + 2.385750224ξ

(54)
φ(ξ) = −0.2282116667ξ6 + 1.165647340ξ5

− 1.727899009ξ4 − 0.1921012070ξ3 + 2.017808929ξ2 − 0.03524438637ξ
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Description of the modified Akbari–Ganji method.  The Akbari–Ganji Method was developed for 
solving nonlinear differential equations analytically. This method has solved many problems21–25,39,40 for which 
no exact analytical method exists. This paper introduces the modification of this method due to needing more 
accurate solutions.

To explain the main idea of modified AGM, the general form of the m th order differential equation is 
assumed as:

With boundary conditions:

To solve Eq. (55), we can consider the answer as the following polynomial of degree n with unknown constant 
coefficients:

Here, a0 , a1 , …, an are n+ 1 constant coefficients which n > m . By solving a system of     n+ 1 unknowns and 
n+ 1 equations, constant coefficients will be determined. The boundary conditions of the problem can construct 
some of these equations as follows:

The constructed equations from boundary conditions of the problem as they can be seen in Eqs. (58), (59) 
are limited because we assume the value of n is higher than m earlier in this methodology. But more equations 
are needed to construct a system of n+ 1 unknowns and n+ 1 equations. So, the remaining equations can be 
made by substituting Eq. (57) in Eq. (55) as follows:

So, it can be derived as many equations as possible from Eqs. (60)–(62) to construct a system of n+ 1 
unknowns and n+ 1 equations. Finally, series constant coefficients and, thus, the solution to the problem will be 
determined by solving the equations. Unlike the HAN method, AGM does not depend on the numerical solution 
and is more independent, but the limitation of this method is that the more nonlinear the problem, the more 
difficult it is to solve with the AGM method. To summarize the mentioned method in a more compact form, the 
following Fig. 3, the flow chart is presented for the modified AGM:

(55)� : Ŵ
(

ζ , ζ ′, ζ
′′
, . . . , ζ (m)

)

= 0; ζ = ζ (ξ).

(56)
{

ζ (ξ) = ζ0, ζ
′(ξ) = ζ1, . . . , ζ

(m−1)(ξ) = ζm−1, at ξ = 0

ζ (ξ) = ζL0 , ζ
′(ξ) = ζL1 , . . . , ζ

(m−1)(ξ) = ζLm−1 , at ξ = L

(57)ζ (ξ) =
n

∑

i=0

aiξ
i = a0 + a1ξ

1 + a2ξ
2 + · · · + anξ

n,

(58)



















ζ (0) = a0 = ζ0,
ζ ′(0) = a1 = ζ1,

ζ
′′
(0) = a2 = ζ2,

· · ·
· · ·

(59)



















ζ (L) = a0 + a1L+ a2L
2 + · · · + anL

n = ζL0 ,

ζ ′(L) = a1 + 2a2L+ 3a3L
2 + · · · + nanL

n−1 = ζL1 ,

ζ
′′
(L) = 2a2 + 6a3L+ 12a4L

2 + · · · + n(n− 1)anL
n−2 = ζL2 ,

· · ·
· · ·

(60)� :



















Ŵ

�

ζ (0), ζ ′(0), ζ
′′
(0), . . . , ζ (m−1)(0)

�

= 0

Ŵ

�

ζ (L/2), ζ ′(L/2), ζ
′′
(L/2), . . . , ζ (m−1)(L/2)

�

= 0

Ŵ

�

ζ (L), ζ ′(L), ζ
′′
(L), . . . , ζ (m−1)(L)

�

= 0

(61)θ′ :



















Ŵ

�

ζ ′(0), ζ
′′
(0), ζ

′′′
(0), . . . , ζ (m−1)(0)

�

= 0

Ŵ

�

ζ ′(L/2), ζ
′′
(L/2), ζ

′′′
(L/2), . . . , ζ (m−1)(L/2)

�

= 0

Ŵ

�

ζ ′(L), ζ
′′
(L), ζ

′′′
(L), . . . , ζ (m−1)(L)

�

= 0

(62)�′′′ :



















Ŵ

�

ζ ′′(0), ζ
′′′
(0), ζ

′′′′
(0), . . . , ζ (m−1)(0)

�

= 0

Ŵ

�

ζ ′′(L/2), ζ
′′′
(L/2), ζ

′′′′
(L/2), . . . , ζ (m−1)(L/2)

�

= 0

Ŵ

�

ζ ′′(L), ζ
′′′
(L), ζ

′′′′
(L), . . . , ζ (m−1)(L)

�

= 0
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Application of the modified Akbari–Ganji method.  In this part, Eqs. (9)–(14) are solved with the 
modified Akbari–Ganji method for cases (1, 2) according to Table 1. For applying the Modified Akbari–Ganji 
Method, the following functions are to be assumed the semi-analytical solutions of Eqs. (9)–(14) for cases (1, 2):

Based on Eq. (63), there are 31 unknown coefficients, and 43 equations are needed to obtain them. Equa-
tion (15) makes only 13 equations, and the remaining 18 equations must be made through Eq. (60), and the 
solutions for cases (1, 2) are as follows:

Solutions of case 1 where Pr = 6.6 , Nt = 0.2 , Nb = 0.2 , Sc = 2.0 , S = 0.0 , δ = 1.0 are are demostrated in 
Eqs. (64)–(69) as follows:

Solutions of case 2 where Pr = 6.7 , Nt = 0.4 , Nb = 0.4 , Sc = 4.0 , S = 0.3 , δ = 1.0 are are demostrated in 
Eqs. (70)–(75) as follows:

(63)

f (ξ) =
5

∑

i=0

aiξ
i , g(ξ) =

4
∑

i=0

biξ
i , k(ξ) =

4
∑

i=0

ciξ
i ,

h(ξ) =
4

∑

i=0

diξ
i , θ(ξ) =

4
∑

i=0

eiξ
i ,φ(ξ) =

4
∑

i=0

wiξ
i ,

(64)f (ξ) = −0.004692ξ5 + 0.03247ξ4 − 0.1667ξ3 + 0.3521ξ2

(65)g(ξ) = −0.06605ξ4 + 0.2122ξ3 + 0.00005ξ2 − 0.3725ξ+ 1

(66)k(ξ) = 0.004971ξ4 + 0.02976ξ3 − 0.5ξ2 + 0.8908ξ

(67)h(ξ) = −0.04149ξ4 + 0.1308ξ3 − 0.2263ξ

(68)θ(ξ) = 0.1507ξ4 − 0.3825ξ3 − 0.3264ξ2 + 1.558ξ

(69)φ(ξ) = −0.2483ξ4 + 0.3854ξ3 + 0.3264ξ2 + 0.5365ξ

(70)f (ξ) = −0.01005ξ5 + 0.05074ξ4 − 0.1667ξ3 + 0.2961ξ2

(71)g(ξ) = −0.04035ξ4 + 0.1255ξ3 + 0.15ξ2 − 0.515ξ+ 1

(72)k(ξ) = −0.01245ξ4 + 0.06601ξ3 − 0.5ξ2 + 0.8518ξ

Figure 3.   The flow chart of the modified AGM.
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But it can reach more accurate solutions by increasing n in assumed functions. The following functions are 
the semi-analytical solutions of Eqs. (9)–(14) for cases (3, 4):

Based on Eq. (76), 49 unknown coefficients and 49 equations are needed to obtain them. Since the number 
of constant coefficients has increased, the number of equations that we must create to make a system of n equa-
tions and n unknowns increases, and in addition to Eqs. (60), (61) should also be used. Equation (15) makes 
only 13 equations, and the remaining 36 equations must be made through Eqs. (60), (61) and the solutions for 
cases (3, 4) are as follows:

Solutions of case 3 where Pr = 7.1 , Nt = 0.6 , Nb = 0.6 , Sc = 6.0 , S = 0.5 , δ = 1.0 are are demostrated in 
Eqs. (77)–(82) as follows:

Solutions of case 4 where Pr = 7.3 , Nt = 0.8 , Nb = 0.8 , Sc = 8.0 , S = 0.6 , δ = 1.0 are demostrated in Eqs. 
(83)–(88) as follows:

Results and discussion
Heat and mass transfer in an unsteady rotating inclined plane has been investigated using 3D thin film nanoma-
terials flow. The solutions were obtained using the modified AGM and HAN methods. These two analytical solu-
tions’ validity was proved when compared with the Zeeshan et al.37 Runge–Kutta fourth-order (RK4) numerical 
solutions. Figures 4, 5, 6, 7, 8, 9, 10, 11 and 12 show the accuracy of the modified AGM and HAN results. The 
following table relates to the four cases considered in this study.

As the impact of four cases is shown in Figs. 4, 5, 6, 7, 8, 9 and variations of Sherwood number, heat trans-
mission, and radial velocity profiles are illustrated in Figs. 10, 11 and 12. In this study, the average value of some 
arbitrary scalar function of χ(ξ) , is defined as follows:

(73)h(ξ) = −0.03891ξ4 + 0.1186ξ3 − 0.2ξ

(74)θ(ξ) = 0.1074ξ4 − 0.1016ξ3 − 0.7832ξ2 + 1.777ξ

(75)φ(ξ) = −0.1824ξ4 − 0.02673ξ3 + 0.7832ξ2 + 0.4259ξ

(76)

f (ξ) =
8

∑

i=0

aiξ
i , g(ξ) =

7
∑

i=0

biξ
i , k(ξ) =

7
∑

i=0

ciξ
i ,

h(ξ) =
7

∑

i=0

diξ
i , θ(ξ) =

7
∑

i=0

eiξ
i ,φ(ξ) =

7
∑

i=0

wiξ
i ,

(77)f (ξ) = 0.00005792ξ8−0.0009224ξ7+0.00504ξ6−0.02286ξ5+0.06754ξ4−0.1667ξ3+0.2655ξ2

(78)g(ξ) = 0.002465ξ7 − 0.01615ξ6 + 0.0484ξ5 − 0.08819ξ4 + 0.1006ξ3 + 0.25ξ2 − 0.6114ξ+ 1

(79)k(ξ) = −0.0005115ξ7 + 0.0004945ξ6 + 0.00777ξ5 − 0.04093ξ4 + 0.09967ξ3 − 0.5ξ2 + 0.8265ξ

(80)h(ξ) = 0.0005215ξ7 − 0.005633ξ6 + 0.02701ξ5 − 0.08334ξ4 + 0.1377ξ3 − 0.1848ξ

(81)θ(ξ) = 0.1268ξ7 − 0.5709ξ6 + 0.9562ξ5 − 0.7127ξ4 + 0.546ξ3 − 1.392ξ2 + 2.047ξ

(82)φ(ξ) = −0.287ξ7 + 1.156ξ6 − 1.51ξ5 + 0.5827ξ4 − 0.5552ξ3 + 1.392ξ2 + 0.2206ξ

(83)f (ξ) = 0.0001189ξ8−0.001447ξ7+0.006926ξ6−0.02711ξ5+0.07368ξ4−0.1667ξ3+0.2522ξ2

(84)g(ξ) = 0.002773ξ7 − 0.01744ξ6 + 0.05022ξ5 − 0.07932ξ4 + 0.06954ξ3 + 0.3ξ2 − 0.6572ξ+ 1

(85)k(ξ) = −0.0003986ξ7 − 0.0001867ξ6 + 0.009358ξ5 − 0.04747ξ4 + 0.1109ξ3 − 0.5ξ2 + 0.8142ξ

(86)h(ξ) = 0.0006773ξ7 − 0.006581ξ6 + 0.02953ξ5 − 0.08572ξ4 + 0.1357ξ3 − 0.1771ξ

(87)θ(ξ) = 0.1783ξ7 − 0.7272ξ6 + 1.134ξ5 − 1.014ξ4 + 1.279ξ3 − 2.238ξ2 + 2.389ξ

(88)φ(ξ) = −0.4353ξ7 + 1.59ξ6 − 1.846ξ5 + 0.7763ξ4 − 1.276ξ3 + 2.238ξ2 − 0.04631ξ
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where the a and b are integer numbers. According to Eq. (89), the average values of f (ξ) , f ′(ξ),g(ξ) , k(ξ) , h(ξ) , 
θ(ξ) , φ(ξ) , θ′(ξ) , and φ′(ξ) are denoted by f avg , f

′
avg,gavg , kavg , havg , θavg , φavg , θ

′
avg , and φ′

avg , respectively. 
According to Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12, when cases (1–4) related to Table 1 occur, the average values of 
f avg , f

′
avg , gavg , kavg , havg , θavg , φavg , θ

′
avg , and φ′

avg , are given in the following tables:
In Tables 2, 3 and 4, some average results increased when the conditions changed from case 1 to case 4, and 

some decreased. The decrease or increase of these values is calculated using the following relationship:

where � is the amount of percentage increase or decrease values, Z2 is the second value and Z1 is the first value. 
According to Table 2, when the constant coefficients of cases in Table 1 change from case 1 to case 4, the average 
values of the results from Ref.37 change respectively. When the conditions change from case 1 to case 4, f avg , 

(89)χavg =
b

∑

i=a

χ(ξi)

b− a+ 1
,

(90)� =
Z2 − Z1

|Z1|
× 100,

Figure 4.   The impact of different cases on f (ξ).

Figure 5.   The impact of different cases on g(ξ).
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will decrease by 34.71362167%, f ′avg will decrease by 35.78465385%, gavg , will decrease by 8.197818397%, kavg 
will decrease by 9.504907967%, havg will increase by 23.38976383%, θavg will increase by 9.441723369%, θ′avg will 
increase by 7.742384880%, and φ′

avg will decrease by 9.974419462% but according to Table 2, φavg will increase by 
1.541136126% when it changes from case 1 to case 2 but, φavg , will decrease by 1.839033024% when it changes 
from case 2 to case 4. According to Table 3, when the constant coefficients of cases in Table 1 change from case 
1 to case 4, the average values of the results from Modified AGM change respectively. When the conditions 
change from case 1 to case 4, f avg , will decrease by 34.60665497%, f ′avg will decrease by 35.68188954%, gavg , 
will decrease by 8.140379566%, kavg will decrease by 9.388178325%, havg will increase by 23.82760391%, θavg 
will increase by 9.259738964%, θ′avg will increase by 7.367258115%, and φ′

avg will decrease by 9.528160070% but 
according to Table 2, φavg will increase by 1.313715539% when it changes from case 1 to case 2 but, φavg , will 
decrease by 1.109559162% when it changes from case 2 to case 4. According to Table 4, when the constant coef-
ficients of cases in Table 1 change from case 1 to case 4, the average values of the results from the HAN Method 
change respectively. When the conditions change from case 1 to case 4, f avg , will decrease by 34.71362166%, 

Figure 6.   The impact of different cases on h(ξ).

Figure 7.   The impact of different cases on k(ξ).
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f
′
avg will decrease by 35.78461613%, gavg , will decrease by 8.197818386%, kavg will decrease by 9.504907931%, 

havg will increase by 23.38976385%, θavg will increase by 9.441723405%, θ′avg will increase by 7.592028101%, 
and φ′

avg will decrease by 9.661365531% but according to Table 2, φavg will increase by 1.541136126% when it 
changes from case 1 to case 2 but, φavg , will decrease by 1.839033024% when it changes from case 2 to case 4.

Conclusion
This study investigates the problem of heat and mass transfer in an unsteady rotating inclined plane using 3D 
thin film nanomaterial flow. The governing equations were set PDEs, and by using suitable similarity transfor-
mation, the PDEs were reduced into a set of nonlinear ODEs. The ODEs in four cases were solved with two 
semi-analytical techniques of Modified AGM and HAN. The Modified AGM that is used in this study is a novel 
technique, and the novelty of current work is related to solving this problem analytically. Unlike the former 
AGM, the Modified Agm has solved the previous issues and can replace the previous method of AGM. The 
HAN Method is another semi-analytical method that transforms a numerical solution into an analytical one. 
Technically, if the numerical solution exists for some problem, then HAN Method can be applied to obtain an 

Figure 8.   The impact of different cases on θ(ξ).

Figure 9.   The impact of different cases on φ(ξ).
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analytic solution. The results of the HAN solution are very close to the Numerical solutions of Zeeshan et al.37 
when compared with the modified AGM, but at the same time, the modified AGM is not dependent on any 
numerical methods for approximating analytical solutions. So, this paper is concluded that:

•	 A new semi-analytical is introduced by modifying the former AGM technique.
•	 The exact analytic solutions were obtained through HAN Method.
•	 The solutions of both analytical solutions were compared with previously published papers.
•	 The results of both analytical solutions were presented quantitatively.
•	 The Sherwood number of the film surface and inclined swirling surface will decrease as the Schmidt number 

increases and the angular velocity of the rotating surface decreases.

Figure 10.   The impact of different cases on f ′(ξ).

Figure 11.   The impact of different cases on θ′(ξ).
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•	 The Nusselt number of inclined swirling surfaces will increase as the Prandtl number increases and the 
angular velocity of the rotating surface decreases.

•	 The Nusselt number of film surfaces will decrease as the Prandtl number increases and the angular velocity 
of the rotating surface decreases.

Figure 12.   The impact of different cases on φ′(ξ).

Table 3.   The average values of results from Modified AGM in different cases.

Average results Case 1 Case 2 Case3 Case 4

f avg 0.08646285600 0.06943472266 0.06050127950 0.05654095375

f
′
avg

0.2015693760 0.1604994000 0.1391575116 0.1296456139

gavg 0.8601848800 0.8246159600 0.8015207172 0.7901625658

kavg 0.2722924290 0.2591193866 0.2509684823 0.2467291302

havg − 0.08474165600 − 0.07457810400 − 0.06759786558 − 0.06454974986

θavg 0.5839460800 0.5989518933 0.6176979840 0.6380179627

φavg 0.4387271467 0.4444907734 0.4437344534 0.4395588853

θ
′
avg

0.9916900000 1.010920000 1.034355883 1.064750362

φ
′
avg

0.9888800000 0.9608170000 0.9273398934 0.8946579307

Table 4.   The average values of results from the HAN Method in different cases.

Average results Case 1 Case 2 Case3 Case 4

f avg 0.08661520072 0.06960507141 0.06051673148 0.05654792764

f
′
avg

0.2019347938 0.1610516188 0.1392084894 0.1296732030

gavg 0.8607268700 0.8249151010 0.8015399316 0.7901660444

kavg 0.2726459024 0.2595413165 0.2509559059 0.2467311604

havg − 0.08423992760 − 0.07395768083 − 0.06756432789 − 0.06453640747

θavg 0.5831929113 0.5979073646 0.6176815709 0.6382563729

φavg 0.4401036474 0.4468862437 0.4436788906 0.4386678581

θ
′
avg

0.9877082408 1.008678113 1.033180332 1.062695328

φ
′
avg

0.9920285129 0.9605227917 0.9303649948 0.8961850121
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