

OPEN

Publisher Correction: Classification of magnetic order from electronic structure by using machine learning

Published online: 21 August 2023

Yerin Jang, Choong H. Kim & Ara GoCorrection to: *Scientific Reports* <https://doi.org/10.1038/s41598-023-38863-7>, published online 01 August 2023

The original version of this Article contained an error in Figure 4, where a single layer was distorted. The original Figure 4 and accompanying legend appear below.

The original Article has been corrected.

Figure 4. (a) Unfolded band structure to restore the original periodicity for G-type order with $N = 3$ and $U = 2$. Unlike the nonmagnetic bands whose weights are identical over all momenta, the unfolded bands are weighted ranging from 0 to 1. The color and the size of circle indicate the weights. (b) Corresponding local density of states $\rho_{LDOS}(\omega)$ and (c) \mathbf{k} -projected density of states $\rho_{\mathbf{k}}(\omega)$ at high symmetry points with a broadening factor $\eta = 0.1$.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2023