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and quasi-one-dimensional
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This work explores the potential for achieving correlated disorder in electrical circuits by utilizing
reactive elements. By establishing a direct correspondence between the tight-binding Hamiltonian
and the admittance matrix of the circuit, a novel approach is presented. The localization phenomena
within the circuit are investigated through the analysis of the two-port impedance. To introduce
correlated disorder, the Aubry—André-Harper (AAH) model is employed. Both one-dimensional and
quasi-one-dimensional AAH structures are examined and effectively mapped to their tight-binding
counterparts. Notably, transitions from a high-conducting phase to a low-conducting phase are
observed in these circuits, highlighting the impact of correlated disorder.

The Aubry-André-Harper (AAH) model'? represents a classic example of a one-dimensional (1D) quasi-crystal,
possesses several intriguing features. In the nearest-neighbor tight-binding (TB) framework, the 1D AAH model
with an incommensurate potential exhibits a sharp localization-delocalization transition, where all the eigenstates
are delocalized below a critical point, while all of them are completely localized beyond that critical point. Due
to the incommensurate potential, this 1D model shows a gapped and fractal-like energy spectrum. Beyond the
minimal nearest-neighbor TB model, energy-dependent mobility edges have also been predicted analytically® in
the 1D AAH chain. Such localization transition and mobility edges have also been found in coupled AAH chains*.
Recently, 1D AAH quasi-crystal has been realized experimentally using waveguides® by Kraus et al. The authors
in their work showed that the edge states of the fabricated photonic quasi-crystal are topologically nontrivial.
Owing to such striking properties and several others, this model has been investigated widely in many contexts
over more than three decades®*.

Recently, it has been shown that various topological states that are difficult to observe in condensed matter
experiments, can be simulated with electric circuits'>~"7. Even though electric circuits represent classical systems,
with a proper choice of the reactive elements, the corresponding admittance matrix becomes equivalent to the
tight-binding Hamiltonian!*-"°. By means of circuits, the energetics and topological phases of various physical
systems have been investigated in recent years, such as Su-Schrieffer-Heeger (SSH) model', Weyl semimetal's,
Chern and quantum spin Hall insulators', topological Anderson insulators %, breathing kagome and pyrochlore
lattices?!, and many others?>*>?*-28, Most of the aforementioned works focused on the study of topological phases
based on the close correspondence between such electric circuits and TB models. The motivation of this work is
twofold—simulation of a TB AAH system using an electrical circuit and inspection of localization phenomena.

First, we construct electric circuits comprising inductors and capacitors (see Fig. 1) that describe TB AAH
systems. The cosine modulation of usual AAH TB site energies is incorporated into the circuit by connecting
different values of capacitors at the nodes of the circuit.

Primarily, we focus on designing circuits that are analogous to the TB 1D chains with nearest-neighbor (NN)
and next nearest-neighbor (NNN) connections and then a two-stranded ladder network. We detect any localiza-
tion behavior present in those circuits by computing a two-port impedance (TPI)*.

The notable features of this work are: (i) realization of correlated disordered systems with electrical com-
ponents, (ii) direct mapping of NN and NNN AAH TB chains and two-stranded AAH ladder with electrical
circuits, and (iii) exact correspondence of admittance spectra of electrical circuits with energy spectra of TB
AAH systems. Our analysis can be implemented to any other such fascinating correlated systems.
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Figure 1. (a) Schematic diagram of a 1D quasiperiodic TB chain consisting of eight sites. ¢; and f, are the
nearest-neighbor and next nearest-neighbor hopping integrals, respectively. (b) Schematic circuit analogous to
1D quasiperiodic TB chain. (c) Blue capacitors (Cy’s) connect the nearest-neighbor nodes. (d) Red capacitors
(CnN’s) connect the next nearest-neighbor nodes. (e) The grounded connection of each node n.

System and theoretical framework
The TB Hamiltonian modeled on a 1D chain (Fig. 1a) within a non-interacting electron picture considering both
NN and NNN hoppings can be written as®,

H= anc;cn + 4 Z cjlcm +t Z c;cm. 1)
n (nm) ((nm))

Here t; is the NN hopping integral and () represents the NN sites of the 1D chain, while ¢, is the NNN hopping
strength and (()) denotes the NNN sites of the 1D chain. g, is the on-site potential at site #n. The AAH disorder
is introduced through the on-site potential and it is

&, = Wcos Qrbn + ¢y) (2)

where W is the modulation strength, b is an irrational number and it is chosen as b = (v/5 — 1)/2, n is the site
index, and ¢, is the AAH phase factor.

To map the TB 1D lattice model (Fig. 1a) that satisfies Eq. (1), we design an electrical circuit which is given
in Fig. 1b. Kirchhoff’s law at node # in the given LC circuit reads as"’

n

I, = E Com (Vi — Vi) + Cu Vi + L—Vn. 3)
m

HereV = ‘2—‘;. I,,and V), are the current and voltage at node n, respectively. The sum over m is taken for the first
and second nearest-neighbor nodes. C, is the capacitor connected between nodes 7 and m. In the second term
of Eq. (3), the capacitor C,, and the inductor L, (in the third term) are connected between the node n and ground.

Following the Fourier transformation of Eq. (3), the relationship between the current and voltage at frequency

w becomes

1i(@) = Y Jum (@) Vin(@). @
m
Here J,,,, is known as the admittance matrix and it becomes

1
Cnm + (Cn + Coffset + <Z Cnm - a)zL) > 8nmi| . (5)
m n

A one-to-one correspondence can be established between the admittance matrix J,,,, and the TB Hamiltonian
(Eq. 1) with

Jnm =jw

ti2) = — jwCum (6)

. 1
&n =jw (Cn + Coffset + <Z Cum — 2L> ) (7)
m w n
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Apart from the term jo, the NN hopping integral #; can be identified with the capacitor Cy (Fig. 1b) and the
NNN hopping integral , with Cyn (Fig. 1c). Setting the frequency of the inputasw = 1/4/Ly ) ., Cum, the term

> m Cam — wz% in Eq. (7) becomes zero. Then the capacitor C, (connected between the n-th node and the

ground) can be used to incorporate the AAH disorder into the admittance matrix. The inclusion of the additional
capacitor Co st (Fig. Le) serves a specific purpose, as explained in the results section. A comprehensive derivation
of the mapping between the admittance matrix and the TB Hamiltonian is provided in the Supplementary mate-
rial (section 1), with detailed explanations.

To study the localization behavior of the circuit, the simplest experimentally measurable quantity is the two-
port impedance Z,,,, between nodes n and m. Z,,,, is defined as *°

Zum = u (8)
I

where V,, — V,, is the voltage difference between the nodes n and m. I is the magnitude of current I = I, = —I,
that is the current I flows into node-# and leaves node-m.

In order to determine Z,,,, we need to express the potentials in terms of the input current I and for that, the
admittance matrix (Eq. 5) has to be inverted. To do so, first, we write the spectral form of J,,, as

Jom = Z]pw;,n wp)m (9)
p

where jj, is the p-th eigenvalue of the admittance matrix and v/, , is the p-th eigenfunction at node n. With this,
the regularized inverse of the admittance matrix, known as the circuit Green’s function, can be written as

Gnm = Z ]'p_l*ﬁ;,nlﬁp,m- (10)
Pip#0

The two-port impedance then simplifies to

an =Gun + Gum — Gpm — G
= iy 1pn = Yl (11)
P

Results and discussion

First, we consider the circuit which is analogous to a 1D TB NN AAH chain. For this case, we do not consider
any connection with the capacitors Cyn’s. Before we discuss the results, let us specify the values of the capaci-
tors and inductors. We consider the number of nodes in the circuit as N = 100 and set Cy = 1 wF. The inductor
L, that is connected between n-th node and ground is set at L, = L = 1mH except at the extreme two nodes,
namely nodes 1 and 100. The inductors between the ground and these two nodes are fixed at L} = Ljgp = 2L. The
frequency of the input is fixed at w = 1/4/2LCy . The capacitor C, (Fig. le) is considered in the F range and the
magnitude is chosen according to Eq. (2). For instance, the grounded capacitors for a disorder strength W =1
(withb = (4/5 —1)/2and ¢, = 0) assume the values, C; = —0.7374 uF, C; = 0.0874 uF, C3 = 0.6084 uF, and
so on. We attach another capacitor Cofset (shown in Fig. 1e) between each node and the ground, in parallel to
C,. This is crucial to avoid potential issues with the eigenvalues of the admittance matrix. When Coget is omit-
ted, there is a possibility that the eigenvalues of the admittance matrix can approach zero or become very close
to zero. In such cases, if we examine the expression as given in Eq. (11), the TPI will diverge, regardless of the
nature of the pth eigenmode. To mitigate this problem, it becomes necessary to incorporate Co e in the circuit
design. By doing so, we ensure that all eigenvalues of the admittance matrix are significantly greater than zero.
This inclusion of Cy et guarantees that the nature of the eigenmodes can be accurately captured, preventing any
numerical instabilities or unrealistic outcomes in the TPI calculation.

We set Cofrset = 10mE The effect of such a connection can readily be observed in the admittance spectra as
shown in Fig. 2.

In Fig. 2 we plot the eigenvalues j, of the admittance matrix as a function of AAH phase ¢,. As mentioned
earlier, the structures of the admittance and the TB Hamiltonian matrices are identical, apart from the term
jw (Eq. 5). The eigenvalues j, of the admittance matrix are expressed in units of 27! and ¢, in units of 7z. The
modulation strength is fixed at W = 0.5. As mentioned above, Cyfet shifts all the eigenvalues towards a posi-
tive value and none of the eigenvalues is close to zero. The spectrum is divided into three branches and they are
almost constant with ¢,. A few modes are also seen to cross from one branch to another through the gaps with
¢,. Overall, the behavior of the admittance spectrum as a function of ¢, is identical to the energy spectrum as
a function of ¢,, computed for 1D tight-binding Aubry chain by Kraus et al.’, and thus, we can claim that our
circuit setup is correct.

Now, let us look at the localization behavior of the circuit. Here we consider two particular modes in the gap,
namely the modes at ¢, = 0.487 (the red hollow circle in Fig. 2) and ¢, = 0.687 (the orange hollow circle in
Fig. 2), having the same eigenvalues. We compute the two-port impedance for these two modes as a function of
node index as shown in Fig. 3a. We fixed one port at node 50 and the other one is taken through all the nodes
in order to compute the two-port impedance. The results for ¢, = 0.487 and ¢, = 0.687 are displayed in red
and orange colors, respectively. In Fig. 3a, we see that the two-port impedance |Z] is maximum at the extreme
left node, namely node 1 for ¢, = 0.487 and abruptly decreases to zero from the left side to the right of the
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1D electric circuit. On the other hand, for ¢, = 0.687, we observe a complete mirror-symmetric feature of the
previous case. The maximum impedance is now observed at node 100, which is at the extreme right of the 1D
circuit and then gradually decreases from the right side to the left. We also choose a mode from the bulk band as
shown by the black circle in Fig. 2 and computed the two-port impedance. The corresponding result is shown in
Fig. 3b. In the given case,|Z|is about an order of magnitude less than the previous two cases, indicating that all
the nodes are well extended for the chosen bulk mode. Overall, the behavior of two-port impedance with node
index is very much consistent with the established localization behavior of 1D TB AAH chain ° as a function of ¢,..

Next, we vary the disorder strength via the grounded capacitors C,s and study the behavior of two-port
impedance. Here we set ¢, = 0 and all other circuit parameters are taken same as mentioned earlier. In the
density plot of Fig. 4, we show the behavior of the natural log of two-port impedance as functions of disorder
strength and eigenvalues of admittance matrix (measured in Q!). Here the two-port impedance

at each of the eigenmodes is computed by keeping one port at node-1 and varying the other port at all the
other nodes and then taking the maximum of |Z|. The values in the colorbar denote the natural log of two-port
impedance, where lower values are denoted with dark color and higher values with bright ones. The eigenspec-
trum of the admittance matrix is divided into three branches as expected. Below W = 2Cy, the computed
two-port impedance for all the modes is vanishingly small, as is clearly seen in Fig. 4. Beyond W = 2Cy;, the
eigenvalue spectrum becomes brighter, indicating that the TPI for all the modes is much higher than that in
W < 2Cy region. Therefore, a sharp transition occurs at W = 2Cy (critical Wis W, = 2Cy) from a highly con-
ducting zone (vanishingly small|Z|) to a low conducting one (relatively large|Z|). Such a sharp transition in the
context of localization has already been studied in 1D TB AAH chain”.

Now, we bring in the capacitor Cyy to make the circuit analogous to a 1D NNN TB AAH chain. We
fix the capacitor Cyy = 0.25 wF. The inductor L, that is connected between n-th node and ground is set at
L, = L = ImH except at the extreme four nodes, namely nodes 1, 2, 99, and 100. We fix L} = Ljpo = 2L and

i @7

Figure 2. Admittance spectrum as a function of Aubry phase ¢, considering NN connection. Number of nodes
N = 100. The AAH disorder strength is fixed at W = 0.5. Other circuit parameters are described in the text. The
nodes within the red, orange, and black circles are picked up to compute the two-port impedance in Fig. 3.
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Figure 3. Visualizing edge states. Two port impedance |Z| as a function of node index. One port is fixed at node
50. (a) The red curve is for ¢, = 0.487 and the considered eigenmode is chosen from Fig. 2, marked with red
circle. The orange curve is for ¢, = 0.687 and the considered eigenmode is chosen from Fig. 2, marked with
orange circle. Both modes have the same eigenvalue. (b) The black curve is for ¢, = 0.487 and the considered
eigenmode is chosen from Fig. 2, marked with black circle.
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Figure 4. Density plot of the natural log of two-port impedance as functions of modulation strength W and
eigenvalues of admittance matrix j,, considering NN connection. Number of nodes N = 100. The colorbar
denotes the values of In | Z|. The green vertical line at W = 2Cy denotes the sharp transition from the highly
conducting region to the low conducting one. Thus the critical Wis W, = 2Cy.

Ly = Lgg = 2(Cn + CnN)L/(2CN + Cnn). The frequency of the input is fixed at w = 1/4/2L(Cy + Cnn)- The
rest of the circuit parameters are the same as mentioned earlier. The density plot of the TPI, shown in Fig. 5,
is computed following the prescription described above in Fig. 4. The spectral nature of the eigenvalues of the
admittance matrix with disorder strength is identical to the behavior of the eigenvalue spectrum as a

function of disorder strength for the 1D NNN TB AAH chain. Here also we observe a transition from a con-
ducting region to an insulating one. However, there is no such sharp transition as in the case of NN case (Fig. 4).
Rather, the transition is admittance dependent. It is important to note that in the 1D AAH tight-binding chain
with higher order hopping terms, there exists energy dependent mobility edge, which separates the localized wave
functions from the delocalized ones. We also have a similar situation in the present case — admittance dependent
mobility edge, which separates the highly conducting region from the low conducting one.

Finally, we design a two-stranded ladder network electrically. The schematic diagram for the circuit is shown
in Fig. 6a. The upper and lower strands are coupled vertically through the capacitor Cy (Fig. 6b).

In both the strands, the neighboring nodes (marked with green circles) are connected through the capacitor
Ch, denoted with red color (Fig. 6¢). The crossed nodes (viz, nodes 1 and 5, nodes 2 and 4, etc.) are connected
through the capacitor Cp (Fig. 6d). The n-th node is connected to the ground via a parallel LC circuit, as shown
in Fig. 6e.

The chosen circuit parameters are as follows. The number of nodes fixed at each strand is N = 100. The fre-
quency of the input is fixed at = 1/4/(2Cq + 2Cp + Cy)L. The inductor L, that is connected between n-th
node and ground is setat L, = L = ImH (n # 1,100, 101, 200). The inductors between the ground and these four
nodesare fixedat L, = (2Cy + 2Cp + Cy)L/(Cx + Cp + Cy) (n = 1,100, 101, 200). The capacitor C,, = Cp100
(Fig. 6e) is considered in the uF range and the magnitude is chosen according to Eq. (2) as before. In addition to
that, we attach another capacitor Cofser = 10mF (shown in Fig. 6e) between each node and ground, in parallel
to C,, to introduce a shift in the admittance spectrum well above the zero line due to the fact mentioned earlier.

With all the said circuit parameters, we show the behavior of the natural log of two-port

Figure 5. Density plot of the natural log of two-port impedance as functions of modulation strength W and
eigenvalues of admittance matrix j,, considering NNN connection. Number of nodes N = 100. The colorbar
denotes the values of In | Z|.
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Figure 6. (a) Schematic diagram of two-stranded ladder network having N nodes in each strand. (b) Blue
capacitors Cy’s connect the two strands vertically. (c) Red capacitors Cy’s connect the nearest-neighbor nodes
horizontally in each strand. (d) Cyan capacitors Cp’s connect the nodes diagonally. (e) The grounded connection
of each node n.

impedance as functions of disorder strength and eigenvalues of the admittance matrix in Fig. 7. The computed
two-port impedance for a particular eigenmode is chosen by considering all the possible two ports in the present
circuit setup and then we take the maximum impedance among them. Here, the natural log of the maximum
impedance is plotted for the density plot. The color convention for the colorbar is same as before. In the present
case, we identify two critical points. The first one is W;; = 2(Cy — Cp) = 1.6 uF (shown by the magenta verti-
cal line), below which all the modes are highly conducting. The second one is W, = 2(Cy + Cp) = 2.4 uF,
beyond which all the modes are poorly conducting in nature (shown by the green vertical line). Within the
range W1 < W < Wy, there is a mixed phase zone, where the highly conducting modes and poorly conduct-
ing modes coexist. Such a feature is also in good agreement with the localization behavior of the two-stranded
ladder network in the TB framework *.

It is important to note here that our system is a ‘classical circuit’ composed of traditional components such
as capacitors and inductors. Consequently, we do not anticipate the presence of any interference effects in this
particular case. However, we can draw an analogy between the admittance matrix of the circuit and the TB Ham-
iltonian, as demonstrated in our present work (see Supplementary material, section 1 for a detail discussion). In
this analogy, the voltage nodes that are connected to the ground through the capacitors and inductors serve as
the TB lattice points, while the capacitors between the nodes act as the TB hopping integrals. The eigenfunctions

Jn

Figure 7. Density plot of the natural log of two-port impedance as functions of modulation strength W and
eigenvalues of admittance matrix j, for two-stranded ladder network. Number of nodes at each strand N = 100.
The colorbar denotes the values of In | Z|. The magenta and green vertical lines denote are drawn at two critical
points as described in the texts.
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of the admittance matrix characterize the voltage profile across the nodes in the circuit, akin to the spatial vari-
ation of the wavefunction in a TB system. Furthermore, the eigenvalues of the admittance matrix correspond to
the eigenenergies of the TB Hamiltonian. By introducing distinct capacitors between each node and the ground,
we intentionally introduce correlated disorder into the circuit. Through these analogies, we propose that the
localization observed in the circuit, which is governed by the analysis of TPI, can be attributed to the following
reasons. As previously mentioned, the eigenmodes of the admittance matrix describe the voltage distribution
across the nodes in the circuit. According to the definition, the TPI between two nodes becomes significant when
a finite density of nontrivial eigenmodes exists. This density is relatively low when the disorder strength is below
the critical region (which separates the low to high conducting zones), leading to small TPI values. However, as
we surpass the critical region, the density of eigenmodes increases substantially, becoming localized at specific
nodes or groups of nodes. This localization phenomenon results in higher TPI values.

In simpler terms, the localization observed in the circuit is not caused by interference effects, as the system
is classical. Instead, it arises from the voltage distribution across the nodes, which alters their characteristic
properties based on the capacitors connected to the ground. These capacitors introduce disorder into the circuit
and play a crucial role in determining the localization behavior.

To gain insights into the localization effect present in our selected circuits, we conducted a thorough analy-
sis of the TPI for the pth eigenmode at varying levels of disorder strength. The detailed analysis and results are
presented in Supplementary Material (section 2).

Note 1: The selection of capacitor and inductor values in this study was influenced by the available sources of
the input signal. Specifically, we carefully considered the parameter values to determine the resonant frequency in
the 1D NN circuit. For instance, in Fig. 1b, with a chosen inductance value of L = 1mH and a capacitance value
of Cy = 1 uF, we can calculate w as w = 1/4/2CyL = 22.361kHz. This is a realistic value for the input signal.

Note 2: In electrical circuits, achieving higher order coupling is relatively straightforward. For example, in
Fig. 1, a NNN coupling is achieved by connecting the NNN nodes through the red capacitors. However, this
concept can also be extended to mechanical systems. For instance, an LC circuit follows a homogeneous second-
order differential equation, similar to a mechanical system composed of springs and dampers '. Furthermore, the
Ref. * discusses such a possibility in elastic systems, where a third neighbor coupling is established, highlighting
the versatility of such systems.

Conclusion

To conclude, we have proposed a way to realize AAH disorder in electrical circuits. One-dimensional and two-
stranded ladder networks have been considered for the purpose. We have shown that the AAH disorder strength
and the phase can be controlled by tuning the reactive elements of the circuits. Like the inverse participation
ratio (IPR), which is one of the measures of the localization phenomena in TB systems, the two-port imped-
ance of the electrical circuits considered in the present work can serve the same purpose. Specifically, we have
shown that for 1D NN circuit, the behavior of two-port impedance exhibits a sharp transition from a highly
conducting region to a poorly conducting region. We have also observed admittance dependent mobility edge
in 1D NNN circuit, which separates the high-conducting region from the low-conducting one. Finally, for the
two-stranded ladder network, we have found two critical points, below one of the critical points, all the modes
are highly conducting, and beyond the other critical point, all of them are poorly conducting. In between these
two critical points, both the low and high conducting modes coexist. All the observations have been carried out
based on two-port impedance. We strongly believe that the present analysis provides a direct mapping of AAH
lattices with electrical circuits.

Data availability

Derived data supporting the findings of this study are available from the corresponding author on request.
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