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Electrical analogue 
of one‑dimensional 
and quasi‑one‑dimensional 
Aubry–André–Harper lattices
Sudin Ganguly 1* & Santanu K. Maiti 2

This work explores the potential for achieving correlated disorder in electrical circuits by utilizing 
reactive elements. By establishing a direct correspondence between the tight-binding Hamiltonian 
and the admittance matrix of the circuit, a novel approach is presented. The localization phenomena 
within the circuit are investigated through the analysis of the two-port impedance. To introduce 
correlated disorder, the Aubry–André–Harper (AAH) model is employed. Both one-dimensional and 
quasi-one-dimensional AAH structures are examined and effectively mapped to their tight-binding 
counterparts. Notably, transitions from a high-conducting phase to a low-conducting phase are 
observed in these circuits, highlighting the impact of correlated disorder.

The Aubry–André–Harper (AAH) model1,2 represents a classic example of a one-dimensional (1D) quasi-crystal, 
possesses several intriguing features. In the nearest-neighbor tight-binding (TB) framework, the 1D AAH model 
with an incommensurate potential exhibits a sharp localization-delocalization transition, where all the eigenstates 
are delocalized below a critical point, while all of them are completely localized beyond that critical point. Due 
to the incommensurate potential, this 1D model shows a gapped and fractal-like energy spectrum. Beyond the 
minimal nearest-neighbor TB model, energy-dependent mobility edges have also been predicted analytically3 in 
the 1D AAH chain. Such localization transition and mobility edges have also been found in coupled AAH chains4. 
Recently, 1D AAH quasi-crystal has been realized experimentally using waveguides5 by Kraus et al. The authors 
in their work showed that the edge states of the fabricated photonic quasi-crystal are topologically nontrivial. 
Owing to such striking properties and several others, this model has been investigated widely in many contexts 
over more than three decades6–14.

Recently, it has been shown that various topological states that are difficult to observe in condensed matter 
experiments, can be simulated with electric circuits15–17. Even though electric circuits represent classical systems, 
with a proper choice of the reactive elements, the corresponding admittance matrix becomes equivalent to the 
tight-binding Hamiltonian15–19. By means of circuits, the energetics and topological phases of various physical 
systems have been investigated in recent years, such as Su–Schrieffer–Heeger (SSH) model16, Weyl semimetal18, 
Chern and quantum spin Hall insulators19, topological Anderson insulators 20, breathing kagome and pyrochlore 
lattices21, and many others22,23,24–28. Most of the aforementioned works focused on the study of topological phases 
based on the close correspondence between such electric circuits and TB models. The motivation of this work is 
twofold—simulation of a TB AAH system using an electrical circuit and inspection of localization phenomena.

First, we construct electric circuits comprising inductors and capacitors (see Fig. 1) that describe TB AAH 
systems. The cosine modulation of usual AAH TB site energies is incorporated into the circuit by connecting 
different values of capacitors at the nodes of the circuit.

Primarily, we focus on designing circuits that are analogous to the TB 1D chains with nearest-neighbor (NN) 
and next nearest-neighbor (NNN) connections and then a two-stranded ladder network. We detect any localiza-
tion behavior present in those circuits by computing a two-port impedance (TPI)29.

The notable features of this work are: (i) realization of correlated disordered systems with electrical com-
ponents, (ii) direct mapping of NN and NNN AAH TB chains and two-stranded AAH ladder with electrical 
circuits, and (iii) exact correspondence of admittance spectra of electrical circuits with energy spectra of TB 
AAH systems. Our analysis can be implemented to any other such fascinating correlated systems.
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System and theoretical framework
The TB Hamiltonian modeled on a 1D chain (Fig. 1a) within a non-interacting electron picture considering both 
NN and NNN hoppings can be written as4,

Here t1 is the NN hopping integral and 〈〉 represents the NN sites of the 1D chain, while t2 is the NNN hopping 
strength and 〈〈〉〉 denotes the NNN sites of the 1D chain. εn is the on-site potential at site n. The AAH disorder 
is introduced through the on-site potential and it is 2

where W is the modulation strength, b is an irrational number and it is chosen as b = (
√
5− 1)/2 , n is the site 

index, and φν is the AAH phase factor.
To map the TB 1D lattice model (Fig. 1a) that satisfies Eq. (1), we design an electrical circuit which is given 

in Fig. 1b. Kirchhoff ’s law at node n in the given LC circuit reads as19

Here V̇ = dV
dt  . In and Vn are the current and voltage at node n, respectively. The sum over m is taken for the first 

and second nearest-neighbor nodes. Cnm is the capacitor connected between nodes n and m. In the second term 
of Eq. (3), the capacitor Cn and the inductor Ln (in the third term) are connected between the node n and ground.

Following the Fourier transformation of Eq. (3), the relationship between the current and voltage at frequency 
ω becomes

Here Jnm is known as the admittance matrix and it becomes

A one-to-one correspondence can be established between the admittance matrix Jnm and the TB Hamiltonian 
(Eq. 1) with
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Figure 1.   (a) Schematic diagram of a 1D quasiperiodic TB chain consisting of eight sites. t1 and t2 are the 
nearest-neighbor and next nearest-neighbor hopping integrals, respectively. (b) Schematic circuit analogous to 
1D quasiperiodic TB chain. (c) Blue capacitors (CN ’s) connect the nearest-neighbor nodes. (d) Red capacitors 
(CNN ’s) connect the next nearest-neighbor nodes. (e) The grounded connection of each node n.
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Apart from the term jω , the NN hopping integral t1 can be identified with the capacitor CN (Fig. 1b) and the 
NNN hopping integral t2 with CNN (Fig. 1c). Setting the frequency of the input as ω = 1/

√

Ln
∑

m Cnm , the term 
(

∑

m Cnm − 1

ω2Ln

)

 in Eq. (7) becomes zero. Then the capacitor Cn (connected between the n-th node and the 
ground) can be used to incorporate the AAH disorder into the admittance matrix. The inclusion of the additional 
capacitor Coffset (Fig. 1e) serves a specific purpose, as explained in the results section. A comprehensive derivation 
of the mapping between the admittance matrix and the TB Hamiltonian is provided in the Supplementary mate-
rial (section 1), with detailed explanations.

To study the localization behavior of the circuit, the simplest experimentally measurable quantity is the two-
port impedance Znm between nodes n and m. Znm is defined as 29

where Vn − Vm is the voltage difference between the nodes n and m. I is the magnitude of current I = In = −Im , 
that is the current I flows into node-n and leaves node-m.

In order to determine Znm , we need to express the potentials in terms of the input current I and for that, the 
admittance matrix (Eq. 5) has to be inverted. To do so, first, we write the spectral form of Jnm as

where jp is the p-th eigenvalue of the admittance matrix and ψp,n is the p-th eigenfunction at node n. With this, 
the regularized inverse of the admittance matrix, known as the circuit Green’s function, can be written as

The two-port impedance then simplifies to

Results and discussion
First, we consider the circuit which is analogous to a 1D TB NN AAH chain. For this case, we do not consider 
any connection with the capacitors CNN’s. Before we discuss the results, let us specify the values of the capaci-
tors and inductors. We consider the number of nodes in the circuit as N = 100 and set CN = 1µ F. The inductor 
Ln that is connected between n-th node and ground is set at Ln = L = 1 mH except at the extreme two nodes, 
namely nodes 1 and 100. The inductors between the ground and these two nodes are fixed at L1 = L100 = 2L . The 
frequency of the input is fixed at ω = 1/

√
2LCN  . The capacitor Cn (Fig. 1e) is considered in the µ F range and the 

magnitude is chosen according to Eq. (2). For instance, the grounded capacitors for a disorder strength W = 1 
(with b =

(√
5− 1

)

/2 and φν = 0 ) assume the values, C1 = −0.7374µ F, C2 = 0.0874µ F, C3 = 0.6084µ F, and 
so on. We attach another capacitor Coffset (shown in Fig. 1e) between each node and the ground, in parallel to 
Cn . This is crucial to avoid potential issues with the eigenvalues of the admittance matrix. When Coffset is omit-
ted, there is a possibility that the eigenvalues of the admittance matrix can approach zero or become very close 
to zero. In such cases, if we examine the expression as given in Eq. (11), the TPI will diverge, regardless of the 
nature of the pth eigenmode. To mitigate this problem, it becomes necessary to incorporate Coffset in the circuit 
design. By doing so, we ensure that all eigenvalues of the admittance matrix are significantly greater than zero. 
This inclusion of Coffset guarantees that the nature of the eigenmodes can be accurately captured, preventing any 
numerical instabilities or unrealistic outcomes in the TPI calculation.

We set Coffset = 10mF. The effect of such a connection can readily be observed in the admittance spectra as 
shown in Fig. 2.

In Fig. 2 we plot the eigenvalues jn of the admittance matrix as a function of AAH phase φν . As mentioned 
earlier, the structures of the admittance and the TB Hamiltonian matrices are identical, apart from the term 
jω (Eq. 5). The eigenvalues jn of the admittance matrix are expressed in units of �−1 and φν in units of π . The 
modulation strength is fixed at W = 0.5 . As mentioned above, Coffset shifts all the eigenvalues towards a posi-
tive value and none of the eigenvalues is close to zero. The spectrum is divided into three branches and they are 
almost constant with φν . A few modes are also seen to cross from one branch to another through the gaps with 
φν . Overall, the behavior of the admittance spectrum as a function of φν is identical to the energy spectrum as 
a function of φν , computed for 1D tight-binding Aubry chain by Kraus et al.5, and thus, we can claim that our 
circuit setup is correct.

Now, let us look at the localization behavior of the circuit. Here we consider two particular modes in the gap, 
namely the modes at φν = 0.48π (the red hollow circle in Fig. 2) and φν = 0.68π (the orange hollow circle in 
Fig. 2), having the same eigenvalues. We compute the two-port impedance for these two modes as a function of 
node index as shown in Fig. 3a. We fixed one port at node 50 and the other one is taken through all the nodes 
in order to compute the two-port impedance. The results for φν = 0.48π and φν = 0.68π are displayed in red 
and orange colors, respectively. In Fig. 3a, we see that the two-port impedance |Z| is maximum at the extreme 
left node, namely node 1 for φν = 0.48π and abruptly decreases to zero from the left side to the right of the 
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1D electric circuit. On the other hand, for φν = 0.68π , we observe a complete mirror-symmetric feature of the 
previous case. The maximum impedance is now observed at node 100, which is at the extreme right of the 1D 
circuit and then gradually decreases from the right side to the left. We also choose a mode from the bulk band as 
shown by the black circle in Fig. 2 and computed the two-port impedance. The corresponding result is shown in 
Fig. 3b. In the given case, |Z| is about an order of magnitude less than the previous two cases, indicating that all 
the nodes are well extended for the chosen bulk mode. Overall, the behavior of two-port impedance with node 
index is very much consistent with the established localization behavior of 1D TB AAH chain 5 as a function of φν.

Next, we vary the disorder strength via the grounded capacitors Cn s and study the behavior of two-port 
impedance. Here we set φν = 0 and all other circuit parameters are taken same as mentioned earlier. In the 
density plot of Fig. 4, we show the behavior of the natural log of two-port impedance as functions of disorder 
strength and eigenvalues of admittance matrix (measured in �−1 ). Here the two-port impedance

at each of the eigenmodes is computed by keeping one port at node-1 and varying the other port at all the 
other nodes and then taking the maximum of |Z| . The values in the colorbar denote the natural log of two-port 
impedance, where lower values are denoted with dark color and higher values with bright ones. The eigenspec-
trum of the admittance matrix is divided into three branches as expected. Below W = 2CN , the computed 
two-port impedance for all the modes is vanishingly small, as is clearly seen in Fig. 4. Beyond W = 2CN , the 
eigenvalue spectrum becomes brighter, indicating that the TPI for all the modes is much higher than that in 
W < 2CN region. Therefore, a sharp transition occurs at W = 2CN (critical W is Wc = 2CN ) from a highly con-
ducting zone (vanishingly small |Z| ) to a low conducting one (relatively large |Z| ). Such a sharp transition in the 
context of localization has already been studied in 1D TB AAH chain 7.

Now, we bring in the capacitor CNN to make the circuit analogous to a 1D NNN TB AAH chain. We 
fix the capacitor CNN = 0.25µ F. The inductor Ln that is connected between n-th node and ground is set at 
Ln = L = 1 mH except at the extreme four nodes, namely nodes 1, 2, 99, and 100. We fix L1 = L100 = 2L and 

 3.1

 3.12

 3.14

 3.16

 3.18

 3.2

 3.22

 0  0.5  1  1.5  2

j n (
Ω

−1
)

φ ν / π

Figure 2.   Admittance spectrum as a function of Aubry phase φν considering NN connection. Number of nodes 
N = 100 . The AAH disorder strength is fixed at W = 0.5 . Other circuit parameters are described in the text. The 
nodes within the red, orange, and black circles are picked up to compute the two-port impedance in Fig. 3.
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Figure 3.   Visualizing edge states. Two port impedance |Z| as a function of node index. One port is fixed at node 
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L2 = L99 = 2(CN + CNN )L/(2CN + CNN ) . The frequency of the input is fixed at ω = 1/
√
2L(CN + CNN ) . The 

rest of the circuit parameters are the same as mentioned earlier. The density plot of the TPI, shown in Fig. 5, 
is computed following the prescription described above in Fig. 4. The spectral nature of the eigenvalues of the 
admittance matrix with disorder strength is identical to the behavior of the eigenvalue spectrum as a

function of disorder strength for the 1D NNN TB AAH chain. Here also we observe a transition from a con-
ducting region to an insulating one. However, there is no such sharp transition as in the case of NN case (Fig. 4). 
Rather, the transition is admittance dependent. It is important to note that in the 1D AAH tight-binding chain 
with higher order hopping terms, there exists energy dependent mobility edge, which separates the localized wave 
functions from the delocalized ones. We also have a similar situation in the present case – admittance dependent 
mobility edge, which separates the highly conducting region from the low conducting one.

Finally, we design a two-stranded ladder network electrically. The schematic diagram for the circuit is shown 
in Fig. 6a. The upper and lower strands are coupled vertically through the capacitor CV (Fig. 6b).

In both the strands, the neighboring nodes (marked with green circles) are connected through the capacitor 
CH , denoted with red color (Fig. 6c). The crossed nodes (viz, nodes 1 and 5, nodes 2 and 4, etc.) are connected 
through the capacitor CD (Fig. 6d). The n-th node is connected to the ground via a parallel LC circuit, as shown 
in Fig. 6e.

The chosen circuit parameters are as follows. The number of nodes fixed at each strand is N = 100 . The fre-
quency of the input is fixed at ω = 1/

√
(2CH + 2CD + CV )L . The inductor Ln that is connected between n-th 

node and ground is set at Ln = L = 1 mH ( n  = 1, 100, 101, 200 ). The inductors between the ground and these four 
nodes are fixed at Ln = (2CH + 2CD + CV )L/(CH + CD + CV ) (n = 1, 100, 101, 200) . The capacitor Cn = Cn+100 
(Fig. 6e) is considered in the µ F range and the magnitude is chosen according to Eq. (2) as before. In addition to 
that, we attach another capacitor Coffset = 10 mF (shown in Fig. 6e) between each node and ground, in parallel 
to Cn to introduce a shift in the admittance spectrum well above the zero line due to the fact mentioned earlier.

With all the said circuit parameters, we show the behavior of the natural log of two-port
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Figure 4.   Density plot of the natural log of two-port impedance as functions of modulation strength W and 
eigenvalues of admittance matrix jn , considering NN connection. Number of nodes N = 100 . The colorbar 
denotes the values of ln |Z| . The green vertical line at W = 2CN denotes the sharp transition from the highly 
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impedance as functions of disorder strength and eigenvalues of the admittance matrix in Fig. 7. The computed 
two-port impedance for a particular eigenmode is chosen by considering all the possible two ports in the present 
circuit setup and then we take the maximum impedance among them. Here, the natural log of the maximum 
impedance is plotted for the density plot. The color convention for the colorbar is same as before. In the present 
case, we identify two critical points. The first one is Wc1 = 2(CH − CD) = 1.6µ F (shown by the magenta verti-
cal line), below which all the modes are highly conducting. The second one is Wc2 = 2(CH + CD) = 2.4µ F, 
beyond which all the modes are poorly conducting in nature (shown by the green vertical line). Within the 
range Wc1 < W < Wc2 , there is a mixed phase zone, where the highly conducting modes and poorly conduct-
ing modes coexist. Such a feature is also in good agreement with the localization behavior of the two-stranded 
ladder network in the TB framework 4.

It is important to note here that our system is a ‘classical circuit’ composed of traditional components such 
as capacitors and inductors. Consequently, we do not anticipate the presence of any interference effects in this 
particular case. However, we can draw an analogy between the admittance matrix of the circuit and the TB Ham-
iltonian, as demonstrated in our present work (see Supplementary material, section 1 for a detail discussion). In 
this analogy, the voltage nodes that are connected to the ground through the capacitors and inductors serve as 
the TB lattice points, while the capacitors between the nodes act as the TB hopping integrals. The eigenfunctions 
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Figure 6.   (a) Schematic diagram of two-stranded ladder network having N nodes in each strand. (b) Blue 
capacitors CV ’s connect the two strands vertically. (c) Red capacitors CH ’s connect the nearest-neighbor nodes 
horizontally in each strand. (d) Cyan capacitors CD ’s connect the nodes diagonally. (e) The grounded connection 
of each node n.
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eigenvalues of admittance matrix jn for two-stranded ladder network. Number of nodes at each strand N = 100 . 
The colorbar denotes the values of ln |Z| . The magenta and green vertical lines denote are drawn at two critical 
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7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13633  | https://doi.org/10.1038/s41598-023-40690-9

www.nature.com/scientificreports/

of the admittance matrix characterize the voltage profile across the nodes in the circuit, akin to the spatial vari-
ation of the wavefunction in a TB system. Furthermore, the eigenvalues of the admittance matrix correspond to 
the eigenenergies of the TB Hamiltonian. By introducing distinct capacitors between each node and the ground, 
we intentionally introduce correlated disorder into the circuit. Through these analogies, we propose that the 
localization observed in the circuit, which is governed by the analysis of TPI, can be attributed to the following 
reasons. As previously mentioned, the eigenmodes of the admittance matrix describe the voltage distribution 
across the nodes in the circuit. According to the definition, the TPI between two nodes becomes significant when 
a finite density of nontrivial eigenmodes exists. This density is relatively low when the disorder strength is below 
the critical region (which separates the low to high conducting zones), leading to small TPI values. However, as 
we surpass the critical region, the density of eigenmodes increases substantially, becoming localized at specific 
nodes or groups of nodes. This localization phenomenon results in higher TPI values.

In simpler terms, the localization observed in the circuit is not caused by interference effects, as the system 
is classical. Instead, it arises from the voltage distribution across the nodes, which alters their characteristic 
properties based on the capacitors connected to the ground. These capacitors introduce disorder into the circuit 
and play a crucial role in determining the localization behavior.

To gain insights into the localization effect present in our selected circuits, we conducted a thorough analy-
sis of the TPI for the pth eigenmode at varying levels of disorder strength. The detailed analysis and results are 
presented in Supplementary Material (section 2).

Note 1: The selection of capacitor and inductor values in this study was influenced by the available sources of 
the input signal. Specifically, we carefully considered the parameter values to determine the resonant frequency in 
the 1D NN circuit. For instance, in Fig. 1b, with a chosen inductance value of L = 1 mH and a capacitance value 
of CN = 1µ F, we can calculate ω as ω = 1/

√
2CNL = 22.361kHz. This is a realistic value for the input signal.

Note 2: In electrical circuits, achieving higher order coupling is relatively straightforward. For example, in 
Fig. 1, a NNN coupling is achieved by connecting the NNN nodes through the red capacitors. However, this 
concept can also be extended to mechanical systems. For instance, an LC circuit follows a homogeneous second-
order differential equation, similar to a mechanical system composed of springs and dampers 16. Furthermore, the 
Ref. 30 discusses such a possibility in elastic systems, where a third neighbor coupling is established, highlighting 
the versatility of such systems.

Conclusion
To conclude, we have proposed a way to realize AAH disorder in electrical circuits. One-dimensional and two-
stranded ladder networks have been considered for the purpose. We have shown that the AAH disorder strength 
and the phase can be controlled by tuning the reactive elements of the circuits. Like the inverse participation 
ratio (IPR), which is one of the measures of the localization phenomena in TB systems, the two-port imped-
ance of the electrical circuits considered in the present work can serve the same purpose. Specifically, we have 
shown that for 1D NN circuit, the behavior of two-port impedance exhibits a sharp transition from a highly 
conducting region to a poorly conducting region. We have also observed admittance dependent mobility edge 
in 1D NNN circuit, which separates the high-conducting region from the low-conducting one. Finally, for the 
two-stranded ladder network, we have found two critical points, below one of the critical points, all the modes 
are highly conducting, and beyond the other critical point, all of them are poorly conducting. In between these 
two critical points, both the low and high conducting modes coexist. All the observations have been carried out 
based on two-port impedance. We strongly believe that the present analysis provides a direct mapping of AAH 
lattices with electrical circuits.

Data availability
Derived data supporting the findings of this study are available from the corresponding author on request.
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