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Analysis of the dynamics 
of a vector‑borne infection 
with the effect of imperfect 
vaccination from a fractional 
perspective
Tao‑Qian Tang 1,2,3,4,5, Rashid Jan 6, Adil Khurshaid 7, Zahir Shah 8*, Narcisa Vrinceanu 9* & 
Mihaela Racheriu 10,11

The burden of vector-borne infections is significant, particularly in low- and middle-income countries 
where vector populations are high and healthcare infrastructure may be inadequate. Further, studies 
are required to investigate the key factors of vector-borne infections to provide effective control 
measure. This study focuses on formulating a mathematical framework to characterize the spread of 
chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated 
to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use 
Banach’s and Schaefer’s fixed point theorems to investigate the existence and uniqueness of the 
suggested chikungunya framework resolution. Additionally, we confirm the Ulam–Hyers stability of 
the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, 
we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to 
visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms 
are employed on the infection level of chikungunya. Our research identified the framework’s essential 
input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection 
can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, 
memory index or fractional order, and treatment could be used as efficient controlling variables.

The study of vector-borne illnesses has gotten a lot of interest recently, and mathematics has shown to be a 
beneficial tool in these investigations. For illnesses such as dengue fever, malaria, chikungunya, and the human 
immunodeficiency virus, several deterministic models with a temporal dimension have been developed to study 
chikungunya infection. Chikungunya is a viral infection caused by the chikungunya virus, which belongs to the 
Alphavirus genus within the Togaviridae family. The disease is transmitted to individuals through the bites of 
aedes aegypti mosquitoes1. The first outbreak of chikungunya, which presented symptoms similar to dengue fever, 
was reported in 1952 on the Comoros Islands, positioned off the shoreline of northern Mozambique2. During 
its inception, this viral infection has caused epidemics in Asian, African, European, and American nations at 
unpredictable intervals of 2–20 years. Chikungunya infection was first reported in Bangkok, Thailand in 19583, 
followed by its emergence in India during the early 1960s in places like Vellore, Calcutta, and Maharashtra4. 
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Subsequently, it spread across Sri Lanka and other Southeast Asian nations including Myanmar, Indonesia, and 
Vietnam in 19694. Thailand saw sporadic cases of chikungunya fever between 1976 and 1995, and the virus 
resurfaced in the Democratic Republic of Congo in 1999-20005. In 2004, 13,500 cases were recorded in Lamu, 
Kenya5. The epidemic hit the Reunion Islands of the Indian Ocean from 2005 to 2007, and 197 cases were 
reported in Europe in 20071. During the epidemic, the virus mutated, making it more easily transmissible by the 
tiger mosquito aedes albopictus . As per research, areas with the presence of tiger mosquitoes may have a greater 
likelihood of a chikungunya outbreak.

The incubation time of this viral infection is typically 3–7 days following a harmful sting from a vector afflicted 
with an infectious virus, with fever being the most common symptom. Chikungunya fever symptoms are distinct 
from those of a typical fever in that they are accompanied by severe joint discomfort. Nausea, rashes, headaches, 
and exhaustion are other frequent complaints. Some instances may also result in neurological, retinal, or car-
pological issues, making recovery more harder for elderly people than for younger people. People might suffer 
from joint discomfort for years at a time, implying that the healing process can take a lengthy time. Chikungu-
nya symptoms are often minor, although the disease is commonly mistaken as zika or dengue due to symptom 
overlap. Just a few instances of chikungunya have resulted in death, and the majority of infected persons will 
recover entirely and obtain lasting immunity. As a result, there is no vaccination or treatment for chikungunya. 
Only using drugs for short comfort can help control the symptoms. Mosquito breeding areas should be examined 
to avoid the spread of illness. One can prevent insect bites by utilizing mosquito repellents and opting to wear 
clothing with long sleeves and full-length coverage1.

The rapid proliferation of mosquito breeding grounds has been associated with the increasing intercon-
nectedness of global populations and the ongoing effects of climate change. This pressing concern necessitates 
the advancement of vector control strategies and the establishment of monitoring indices to effectively manage 
such programs. Mathematical modeling has emerged as a valuable tool to analyze epidemic diseases, particularly 
during the twentieth century, and has facilitated the development of optimal control techniques for various infec-
tious diseases. In the context of chikungunya virus infection, Dumont et al. proposed a model that relied on the 
temporal data from the initial chikungunya epidemic in several municipalities on Reunion Island8. Moulay et al. 
presented a model that depicts the intricate dynamics of mosquito populations and their viral transmission to 
humans9. Yakob & Clements10 develop a model that provided a close estimation of the outbreak’s peak incidence 
and ultimate epidemic size. This model was further explored by Naowarat and Tang who incorporated the exist-
ence of two Aedes mosquito species11. The information about chikungunya by WHO1 employed three scenarios 
to estimate disease control measures for chikungunya virus, which encompassed situations involving a single 
vector, two vectors, and two vectors with human and non-human reservoirs. They emphasized the significance 
of regularly assessing the effectiveness of insect prevention techniques. Agusto and his colleagues developed a 
chikungunya model that considered three age-structured transmission phenomena, examining the transition 
dynamics of individuals among different stages, including juvenile, adult, and senior populations13. These efforts 
contribute to the overall understanding of chikungunya virus transmission and aid in devising effective control 
strategies to combat its spread.

Fractional calculus has emerged as a powerful tool for analyzing and modeling complex systems, including 
infectious disease dynamics14,15. In the context of epidemic models, fractional-order differential equations offer a 
more accurate and versatile approach to describing the intricate dynamics observed in real-world outbreaks16,17. 
Jan et al.18 investigated the transmission dynamics of rift valley fever with vaccination policy in fractional frame-
work. They proved that the results of fractional derivative are more accurate and flexible than the classical 
derivative. Jan et al. also presented an epidemic model for HIV19 through fractional derivative with real data. The 
authors showed that the fractional models provide more accurate results due to an extra parameter in the system. 
A fractional order epidemic model has been introduced for pneumococcal pneumonia infection to understand 
the spread of the infection20. As vector-borne disease exhibits knowledge of its previous stages through an asso-
ciative learning mechanism. The memory within the host population, linked to individual awareness, leads to a 
decreased rate of contact between vectors and hosts. On the other hand, mosquitoes utilize their past experiences 
regarding human location, blood preference, color, and human defensive behaviors to select a suitable human 
host for feeding21,22. The incorporation of fractional-order systems in mathematical modeling of vector-borne 
infection can effectively capture and represent these types of phenomena. In this study, our main goal is to 
explore the transmission dynamics of chikungunya virus infection while considering treatment, vaccination, 
and memory index factors. To achieve this, we employ fractional differential equations, which are commonly 
used in modeling such infectious diseases.

The following is how the manuscript is structured: Section "Theory of fractional calculus" introduces the 
essential ideas and results of fractional calculus. Section "Evaluation of the dynamics" presents a compartmental 
model that includes vaccination, treatment, and a memory index to create a more accurate model understanding 
of the transmission mechanisms of chikungunya. In Sect. "Theory of existence", the proposed model is exam-
ined and analyzed. Section "Ulam–Hyers stability" establishes the appropriate conditions for the Ulam–Hyers 
stability of the model. Section "Solution of our fractional system" discusses a numerical method in order to solve 
the recommended fractional framework and provides a numerical analysis of the chikungunya dynamics with 
respect to various parameters. Finally, the article concludes with a summary and final remarks in Sect. "Con-
cluding Remarks".
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Theory of fractional calculus
This section will go through the basic definitions and concepts of fractional calculus, which will be used to 
investigate our system. The ability to integrate memory effects, which are critical for comprehending vector-
borne virus transmission. Furthermore, fractional calculus has many applications in diverse fields of study. We 
have covered the basics of the Caputo fractional operator, which we will utilise to analyse our proposed model.

Definition 2.1   If we examine a function g(k) in the Lebesgue integrable space L1([a, b],R)23, the fractional 
integration can be characterised as follows

where ϑ is the fractional order in such a way that 0 < ϑ ≤ 1.

Definition 2.2   Consider a function g(k) such that g(k) ∈ Bn[a, b]23, and the fractional derivative in Caputo 
form is provided by

with the condition that 0 < ϑ ≤ 1.

Lemma 2.1   Assuming the fractional system stated as follows23,

where C(k) ∈ B([0,υ]) , the response of the aforementioned fractional framework is then

Definition 2.3   The Laplace transformation is presented for the Caputo Fractional operator in the following 
way24,

In addition, consider

be the standard deviation specified on Z = B([0,υ]) in which Z is a Banach’s space.

Theorem 2.1   Consider a Banach space Z in which F : Z → Z is smooth and confined25. If the following set

is limited, then F is a fixed point.

Evaluation of the dynamics
We offer a computational framework that represents the propagation of chikungunya virus infection in this 
portion of the research. The entire population of both hosts and vectors at a particular moment is represented by 
Nh(t) and Nv(t) , accordingly. The vector community Nv(t) is split into two categories: the susceptible class Sv(t) 
and the infected class Iv(t) . Similarly, the host community is separated into four groups: the susceptible Sh(t) , 
the vaccinated Vh(t) , the infected Ih(t) , and the recovered Rh(t) . The vector community Nv(t) is a combination 
of the Sv(t) and Iv(t) classes, whereas the total host population is the sum of Sh(t) , Vh(t) , Ih(t) and Rh(t) . In 
this formulation, µh and µv represents the natural mortality rates for both kinds of individuals, accordingly. A 
fraction p of susceptible individuals are vaccinated and a fraction τ of the infected class move to the recover class 
after successful treatment. We represent the dynamics chikungunya infection with the effect of vaccination and 
vertical transmission is given by

(1)Iaa+g(k) =
1

Ŵ(ϑ)

∫ k

0

(k − L)ϑ−1g(L)dL,

(2)bDϑ
0+
V(k) =

1

Ŵ(n− ϑ)

∫ k

0

(k − L)n−ϑ−1gn(L)dL;

(3)
{

bDϑ
0+
c(k) = C(k), k ∈ [0,υ], n− 1 < ϑ < n,

c(0) = C0

(4)c(k) =

n−1
∑

l=0

dlk
l , where dl ∈ R, l = 0, 1, . . . , n− 1.

(5)£[bDϑ
0+
c(k)] = Lϑg(L)−

n−1
∑

l=0

Lϑ−l−1
c
l(0), n− 1 < ϑ < n.

(6)||c|| = max
k∈[0,υ]

{|c|, for all c ∈ Z},

(7)E = {c ∈ Z : c = �Fc, � ∈ (0, 1)}
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with

and

In our formulation, the rate of recruitment of humans is represented by µhNh where µh represent the nativity 
and mortality rates of humans. In vector inhabitants, the infection outlay from susceptible class to infected class 
is given by β3 . On the other hand, the host population is recruited by a rate µvNv where µv is the birth and death 
rate of vectors. The transmission rates from susceptible host to infected is indicated by β1 and β2 . One of the latest 
and most newly prominent disciplines of mathematics is fractional calculus, which works with derivatives and 
integrals of real and complex classes. In truth, although being as old as the original calculus, this type of calculus 
has piqued the interest of scholars from a variety of disciplines due to the astonishing results obtained when 
some of these scholars employed fractional operations to describe real-world difficulties. To better understand 
the spreading phenomenon more properly, we characterize the dynamics of chikungunya infection using a 
Caputo-derivative in the following manner:

where B0D
ξ
k is the derivative of Liouville-Caputo. ξ represents the storage index in this approach. E0 and is given 

by E0(S0h,V
0
h , I

0
h ,R

0
h, S

0
v , I

0
v ) = (

µ
ξ
hN

0
h

pξ+µ
ξ
h

,
pξ S0h
µ
ξ
h

, 0, 0,N0
v , 0) denotes the disease-free steady-state of our suggested 

fractional framework (9) of chikungunya illness. The aforementioned framework of chikungunya illness threshold 
parameter is offered by

For our system of chikungunya infection, the existence and uniqueness of the solution will be investigated in the 
upcoming result. The below result can easily be determined through analytic skills.

Theorem 3.1  The solutions of the recommended system (9) of chikungunya virus infection are positive and bounded 
for positive initial condition of state-variable.

Sensitivity analysis.  Sensitivity analysis is a critical tool used in various scientific disciplines, including 
epidemiology, to assess the sensitivity of different interventions of a biological system. In the context of epidemic 
modeling, sensitivity analysis helps understand how uncertainties or variations in the model’s parameters impact 
the predictions and conclusions drawn from the model. Local sensitivity analysis and global sensitivity analysis 
are two different approaches used in sensitivity analysis to evaluate the impact of input parameter variations on 
the output of an intervention26. In local sensitivity analysis, one parameter is varied at a time, while all others 
are kept fixed at their baseline values. This allows researchers to observe the individual impact of each param-
eter on the system output. Global sensitivity analysis considers the interactions between multiple parameters 
simultaneously. It assesses the collective influence of all parameters on the system’s output and provides a more 
comprehensive understanding of their combined effects27.
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

dSh
dt = µhNh −

β1bShIv
Nh

− pSh − µhSh,

dVh
dt = pSh −

β2bVhIv
Nh

− µhVh,

dIh
dt =

β1bShIv
Nh

+
β2bVhIv

Nh
− (τ + µh + γ )Ih,

dRh
dt = τ Ih + γ Ih − µhRh,

dSv
dt = µvNv −

β3bSvIh
Nh

− µvSv ,

dIv
dt =

β3bSvIh
Nh

− µ2Iv ,

Sh(0) ≥ 0, Vh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0,

Sv(0) ≥ 0, Iv(0) ≥ 0.

(9)
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k Sh = µ
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hNh −

β1b
ξ ShIv
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B
0D

ξ
kVh = pξSh −

β2b
ξVhIv
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− µ
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B
0D

ξ
k Ih =

β1b
ξ ShIv
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ξ
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B
0D

ξ
kRh = τ ξ Ih + γ ξ Ih − µ

ξ
hRh,

B
0D

ξ
k Sv = µ

ξ
vNv −

β3b
ξ SvIh
Nh

− µ
ξ
v Sv ,

B
0D

ξ
k Iv =

β3b
ξ SvIh
Nh

− µ
ξ
v Iv .

R0 =

√

√

√

√

β3bξS0v
N0
hN

0
h

[

β1bξS
0
h + β2bξV

0
h

µ
ξ
v (τ ξ + µ

ξ
h + γ ξ )

]
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Global sensitivity analysis provides a more comprehensive assessment of parameter influences, especially 
when dealing with complex and nonlinear models or when interactions between parameters are essential for 
accurate predictions. Here, we will perform global sensitivity analysis of the basic reproduction number of our 
system. We will use the well-known partial rank correlation coefficient method (PRCC) to show the impact 
of input parameters on the output of R0 . The significant test provides PRCC and p-values for each parameter, 
indicating that the parameter with the highest PRCC and lowest p-values is the most sensitive parameter in 
the system. From Fig. 1 and Table 1, we noticed that the input parameters β3 , µv , β1 , β2 and ξ are the most 
sensitive parameters in the basic reproduction number with PRCC 0.8448, −0.6858 , 0.6638, 0.5900 and 0.5807, 
respectively. Therefore, these parameters are recommended to the policy makers and health officials for the 
prevention and control of the infection.

Theory of existence
The suggested fractional algorithm’s fundamental framework (9) will be described below. This is accomplished 
in the subsequent style:

(10)
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W1(k, Sh,Vh, Ih,Rh, Sv , Iv) = µ
ξ
hNh −

β1b
ξ ShIv
Nh

− pξSh − µ
ξ
hSh,

W2(k, Sh,Vh, Ih,Rh, Sv , Iv) = pξSh −
β2b

ξVhIv
Nh

− µ
ξ
hVh,

W3(k, Sh,Vh, Ih,Rh, Sv , Iv) =
β1b

ξ ShIv
Nh

+
β2b

ξVhIv
Nh

− (τ ξ + µ
ξ
h + γ ξ )Ih,

W4(k, Sh,Vh, Ih,Rh, Sv , Iv) = τ ξ Ih + γ ξ Ih − µ
ξ
hRh,

W5(k, Sh,Vh, Ih,Rh, Sv , Iv) = µ
ξ
vNv −

β3b
ξ SvIh
Nh

− µ
ξ
v Sv ,

W6(k, Sh,Vh, Ih,Rh, Sv , Iv) =
β3b

ξ SvIh
Nh

− µ
ξ
v Iv ,

Table 1.   PRCC and p values of significant test for R0.

Parameter Interpretation PRCC values p values

β3 Transmission rate from Sv to Iv 0.8448 0.0000

b Biting rate of mosquitoes 0.4447 0.0000

ξ Fractional order or index of memory 0.5807 0.0000

β1 Transmission rate from Sh to Ih 0.6638 0.0000

µh Natural death rate of hosts –0.2531 0.0000

p Vaccination fraction of susceptible 0.0602 0.0512

β2 Transmission from Vh to Ih 0.5900 0.0000

τ Recovery due to treatment –0.2770 0.0000

γ Recovery rate from infected hosts –0.2376 0.0000

µv Natural death rate of vectors –0.6858 0.0000
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Figure 1.   Graphical view of the PRCC sensitivity test for R0..
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The aforementioned chikungunya viral infection model (10) could be represented in the following manner

where

Using Lemma (2.1), the corresponding integral form of the previous (11) is

The following parameters are the major phases in analysing our suggested system:
(A1) The variables KQ ,MQ , and q ∈ [0, 1) could be found in the following way:

(A2) The variables LQ > 0 , and all W , W̄ ∈ Z could be found in the following way:

In this portion, we define a map F on Z as follows

If assumptions (A1) and (A2) are valid, then the framework (11) has a minimum of a single answer. This concept 
will be used to our suggested approach to chikungunya virus transmission.

Theorem 4.1  If assumptions A1 and A2 are valid, the suggested fractional model (9) of chikungunya viral infection 
has a minimum of a single solution.

Proof 4.1. We shall utilise Schaefer’s fixed point theorem to demonstrate the intended outcome. This theorem will 
be illustrated over four stages, outlined below:

S1: In this stage, we shall demonstrate the consistency of F. In this case, we presume that Wi is continuous for 
i = 1, 2, . . . , 9 , which means that Q(k,W(k)) is also continual. We select Wj , W ∈ Z in such a way where Wj → W , 
and FWj → FW is required. Next, we’ll look at:

Insofar as Q is persistent, FWj → FW ; as a consequence, the operator F is also continual.

S2: The second stage tends to determine the boundedness of the F expression. If W ∈ Z , then the operator F must 
satisfy the subsequent scenario

(11)
{

bDϑ
0+
W(k) = Q(k,W(k)), k ∈ [0,υ], 0 < ϑ ≤ 1,

W(0) = W0,
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(13)W(k) = W0(k)+
1

Ŵ(α)

∫ k

0

(k − s)α−1Q(s,W(s))ds,

(14)|Q(k,W(k))| ≤ KQ|W |q +MQ.

(15)|Q(k,W)− Q(k, W̄)| ≤ LQ[|W − W̄ |].

(16)FW(k) = W0(k)+
1
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0

(k − s)α−1Q(s,W(s))ds.
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∣
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∣
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Our goal is therefore to demonstrate the boundedness of F(S) for a bounded subgroup S of Z. Consider arbitrary 
W ∈ S ; because the set S is limited, we may discover a K ≥ 0 in the following way

As a result of extending the preceding criterion to any W ∈ S , we get

Hence, F(S) is bounded.

S3: In the third stage, we suppose k1, k2 ∈ [0,υ] in such a way that k1 ≥ k2 to demonstrate the equi-continuity, 
and then

As a result, Arzela-Ascoli’s theorem suggests that F(S) is relatively concise.

Step 4: In the final phase, we select the subsequent set up

To demonstrate the boundedness of the group E , let W ∈ E , than for any k ∈ [0,υ] , the argument that follows is true

This indicates that the group E is finite. As a consequence of Schaefer’s theorem, the variable F has a definite position; 
as a result, it provides a minimum of one remedy to our suggested scheme (11).

Remark 4.1  If the requirement (H1 ) for q = 1 is fulfilled, the conclusion of Theorem (4.1) is satisfied for 
υαKQ

Ŵ(α+1)
< 1.

Theorem 4.2  If the premise υ
αKQ

Ŵ(α+1)
< 1 is valid, then our desired fractional framework (11) has a distinctive answer.

Proof 4.2. For the desired outcome, assuming W , W̄ ∈ Z and using Banach’s contraction theorem, we get

As consequence, the operator F has a distinct fixed point, therefore the results of the proposed fractional system (11) 
is exceptional.

Ulam–Hyers stability is a mathematical concept used to assess the behavior of a system. This stability notion 
is particularly relevant when dealing with fractional-order models because these equations can describe complex 
systems where memory effects and long-range interactions play a crucial role. In study of a fractional system, 
one of the main challenges is that exact analytical solutions are often difficult or even impossible to obtain. 
Instead, researchers commonly seek approximate or close-to-perfect solutions to gain insights into the system’s 
behavior. Ulam–Hyers stability, along with the extended Ulam–Hyers–Rassias stability definition, provides 
a useful framework to study the stability of approximate solutions of fractional system. It helps researchers 
understand the robustness of these solutions under small perturbations, which is crucial for evaluating the 
reliability of the model’s predictions. By employing Ulam–Hyers stability in the context of a system described by 
fractional differential equations, researchers can ascertain whether the approximate solutions obtained are reliable 
and meaningful. This stability analysis contributes to a deeper understanding of the system’s dynamics and aids 
in developing accurate and reliable mathematical models, which, in turn, are valuable for decision-making in 
various fields, such as epidemiology for infectious disease control and management.

(19)||W || ≤ K , ∀W ∈ S.

(20)||FW|| ≤ |W0| +
υα

Ŵ(α + 1)
[KQ||W ||q +MQ] ≤ |W0| +

υα

Ŵ(α + 1)
[KQK

q +MQ].

(21)

|FW(k1)− FW(k1)| =

∣

∣

∣

∣

1

Ŵ(α)

∫ k1

0

|(k1 − s)α−1||Q(s,W(s))|ds −
1

Ŵ(α)

∫ k2

0

|(k2 − s)α−1||Q(s,W(s))|ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

Ŵ(α)

∫ k1

0

|(k1 − s)α−1| −
1

Ŵ(α)

∫ k2

0

|(k2 − s)α−1|

∣

∣

∣

∣

|Q(s,W(s))|ds

≤
υα

Ŵ(α + 1)
[KQ||W ||q +MQ][k

α
1 − kα2 ] → 0 as k1 → k2.

(22)E = {W ∈ Z : W = �FW , � ∈ (0, 1)}.

(23)||W || = �||FW || ≤ �

[

|W0|
υα

Ŵ(α + 1)
[KQ||W ||q +MQ

]

.

(24)
||FW − FW̄ || ≤ max

k∈[0,υ]

1

Ŵ(α)

∫ k

0

|(k − s)α−1||Q(s,W(s))− Q(s, W̄(s))|ds

≤
υαKQ

Ŵ(α + 1)
||W − W̄ ||.
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Ulam–Hyers stability
In this section, we will establish stability results for our recommended model of chikungunya introduced by 
Ulam28 and Hyers29. Numerous researchers used the Ulam–Hyers stability concept in various fields of science 
and engineering30–32. Here are some fundamental definitions and notions:

Consider a controller N : Z → Z in the following way

Definition 5.1  Previously (25) is Ulam–Hyers stable (UHS) kind if for every scenario W ∈ Z and ǫ > 0 , we 
exhibit:

The situation (25) has a distinctive answer W̄ in which Bq > 0 and the requirements listed below are met

Definition 5.2  The aforementioned (25) is a generalised UHS, thus we get the subsequent result for all possibili-
ties W̄ of (27) and any additional approach W̄ of (25)

while Y ∈ B(R,R) and the zero frame is zero.

Remark 5.1  If the subsequent conditions are satisfied, the solution W̄ ∈ Z accomplishes (27) 

(1)	 |υ(k)| ≤ ǫ, ∀ k ∈ [0,υ] where υ ∈ B([0,υ];R)

(2)	 GW̄(F) = W̄ + υ(F), ∀ k ∈ [0,υ] Considering a minor disruption, the framework (11) may be expressed 
in the following manner 

Lemma 5.1  The given technique (29) meets the subsequent requirement

Proof 5.1. Employing Lemma (2.1) and Remark (5.1), the preceding conclusion is simply achieved.

Theorem 5.1  If the criterion υαLQ
Ŵ(α+1)

< 1 is met, the approach to the framework (11) is UHS and modified UHS 
on Lemma (5.1).

Proof 5.2. For the needed evidence, we consider the system response W ∈ Z (29) and W̄ ∈ F as an exceptional result 
(11), thus we get

As a consequence, the chikungunya virus infection framework (11) indicated before is UHS and generalised UHS.

Definition 5.3  Suppose ω ∈ B[[0,υ],R] , then the challenge (25) is Ulam–Hyers–Rassias stable (UHRS) if each 
of the subsequent solutions W ∈ Z is Ulam–Hyers–Rassias stable (UHRS)

One can discover an innovative approach W̄ of the framework (25) that meets the constraint Bq > 0 providing

Definition 5.4  Assume that W be any solution of (32) and W̄ is the unique solution of (25) in a manner that

(25)NW = W for W ∈ Z

(26)||W − NW || ≤ ǫ for k ∈ [0,υ].

(27)||W̄ −W || ≤ Bqǫ, k ∈ [0,υ].

(28)||W̄ −W || ≤ Y(ǫ),

(29)
{

bDα
0+
W(k) = Q(k,W(k))+ υ(k),

W(0) = W0.

(30)|W(k)− FW(k)| ≤ aǫ, where a =
υα

Ŵ(α + 1)
.

(31)

|W(k)− W̄(k)| =|W(k)− W̄(k)|

≤|W(k)− FW̄(k)|

≤|W(k)− FW̄(k)|

≤aǫ +
υαLQ

Ŵ(α + 1)
|W(k)− W̄(k)|

≤
aǫ

1−
υαLQ
Ŵ(α+1)

.

(32)||W − NW || ≤ ω(k)ǫ, for k ∈ [0,υ] and ǫ > 0.

(33)||W̄ −W || ≤ Bqω(k)ǫ, ∀ k ∈ [0,υ].
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in which ǫ > 0 and ω ∈ B[[0,υ],R] so that Bq,ω . The aforementioned (25) is therefore generalised UHRS.

Remark 5.2  If the subsequent conditions are met, then the outcome of W̄ ∈ X fulfils (27) 

(a)	 |υ(k)| ≤ ǫω(k), ∀ k ∈ [0,υ] , where υ(k) ∈ B([0,υ];R)

(b)	 NW̄(k) = W̄ + υ(k), ∀ k ∈ [0,υ].

Lemma 5.2  The inequality stated underneath holds valid for the perturb system (5.1) provided by

Proof. The needed consequence is simply shown utilising Lemma (2.1) and Remark (5.2).

Theorem 5.2  Whenever υαLQ
Ŵ(α+1)

< 1 , then the answer to framework (11) is UHRS and generalised UHRS on Lemma 
(5.2).

Proof. If we presume a solution W ∈ X and pick the particular answer W̄ ∈ X of the framework (11), we get the 
following result

As a result, UHRS and expanded UHRS are the answers to (11).

Solution of our fractional system
In this section, we will utilise the transformation of Laplace to create an efficient scheme for our fractional system 
(9) of chikungunya infection. The Adomian Decomposition Method is an efficient and trustworthy numerical 
scheme, providing a dependable and effective approach for solving fractional models. This method exhibits 
excellent convergence properties, enabling researchers to obtain reliable approximations even when dealing 
with complex fractional models.

The following steps are involved in this scheme:

having

(34)||W̄ −W || ≤ Bq,ωω(k)ǫ, ∀ k ∈ [0,υ].

(35)|W(k)− FW(F)| ≤ aω(k)ǫ, with a =
υα

Ŵ(α + 1)
.

(36)

|W(k)− W̄(k)| =|W(k)− W̄(k)|

≤|W(k)− FW̄(k)|

≤|W(k)− FW̄(k)|

≤aω(k)ǫ +
υαLQ

Ŵ(α + 1)
|W(k)− W̄(k)|

≤
aω(k)ǫ

1−
υαLQ
Ŵ(α+1)

.

(37)































































































£[Sh(k)] =
Sh0
s + 1

sϑ
£

�

µ
ξ
hNh −

β1b
ξ ShIv
Nh

− pξSh − µ
ξ
hSh

�

,

£[Vh(k)] =
Vh0
s + 1

sϑ
£

�

pξSh −
β2b

ξVhIv
Nh

− µ
ξ
hVh

�

,

£[Ih(k)] =
Ih0
s + 1

sϑ
£

�

β1b
ξ ShIv
Nh

+
β2b

ξVhIv
Nh

− (τ ξ + µ
ξ
h + γ ξ )Ih

�

,

£[Rh(k)] =
Ih0
s + 1

sϑ
£

�

τ ξ Ih + γ ξ Ih − µ
ξ
hRh

�

,

£[Sv(k)] = Sv0
s + 1

sϑ
£

�

µ
ξ
vNv −

β3b
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Nh

− µ
ξ
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�

,
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�

β3b
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ξ
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�
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Here, Adomian polynomials are used to separate the nonlinear components of our framework, and we progress 
in the following manner

and

then, we obtain

and

(38)
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Vh(k) =

�∞
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m=0 Svm(k),
Iv(k) =
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Sh(k)Iv(k) =
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m=0

Am(k), with Am(k) =
1

m!

dm

dzm

[ m
∑

n=0

zkShk(k)

m
∑

n=0

zkIhk(k)

]

z = 0,

Vh(k)Iv(k) =

∞
∑

m=0

Bm(k), where Bm(k) =
1

m!

dm

dzm

[ m
∑

n=0

zkVhk(k)

m
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]

z = 0,

Sv(k)(Ih(k)) =

∞
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1

m!

dm

dzm

[ m
∑

n=0

zkSvk(k)
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]

z = 0,
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so on, we have

with the initial conditions

To further simplify things, we perform an additional process

and
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so on, we have

Ultimately, we obtain the following solution in series form

The above scheme is described earlier is used to calculate the numerical findings of our fractional system 
(9) of chikungunya infection. We estimated the system’s input parameter contents for numerical objectives. 
Through numerical simulations, we want to illustrate the influence of the input component on the dynamics of 
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simulation illustrated in Fig. 5, we emphasized the solution paths of the chikungunya virus infection model with 
biting rate variation. We discovered that when the bite rate boosted so did the degree of illness. As a result, this 
input component is crucial.

We demonstrated the influence of vaccination on the propagation dynamics of chikungunya viral infec-
tion in the third simulation depicted in Fig. 6. We discovered that immunization is a key element in reducing 
chikungunya infection in the community. The vaccine parameters are advised to health officials for infection 

Figure 2.   Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying memory 
index ξ values, i.e., ξ = 0.85, 0.90, 0.95, 1.00.



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14398  | https://doi.org/10.1038/s41598-023-41440-7

www.nature.com/scientificreports/

control based on these findings. The impact of treatment has been visualized using numerical simulations in 
the final simulation shown in Fig. 7. We proposed that the index of memory, immunization, and treatment be 
utilized as control criteria for chikungunya viral infection avoidance. In our future work, the proposed model 
will be examined and validated using real-world data on the availability of data, enabling us to to predict the 
future course of the epidemic.

Concluding remarks
In this study, we developed a mathematical framework for the transmission of chikungunya infection with vac-
cination and therapy. The suggested chikungunya model is constructed in a fractional framework to demonstrate 
the influence of memory on the dynamics of chikungunya. We used the basic principles of fractional calculus 

Figure 3.   Demonstration of the dynamical response of our chikungunya framework (9) with various fractal 
order ξ values, i.e., ξ = 0.70, 0.75, 0.80, 0.85.
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to analyze our mathematical framework. In our study, we focused on qualitative analysis and the dynamical 
behavior of chikungunya viral infection. The uniqueness and existence of the solution of the provided chi-
kungunya model are investigated using the fixed-point theorem within the context of Banach’s and Schaefer’s. 
Through these, we obtained the Ulam–Hyers stability criteria for our chikungunya viral infection system. The 
influence of various factors on the dynamics of chikungunya virus infection is investigated by employing the 

Figure 4.   Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying memory 
index ξ values, i.e., ξ = 0.4, 0.6, 0.8, 1.0.
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Laplace Adomian reduction methodology to demonstrate the impact of many parameters on the dynamics of this 
viral infection. Numerical simulations, in particular, are employed to illustrate the impacts of fractional-order, 
immunization, and treatment. We have shown that the bite rate is an important metric that can render a more 
challenging controller. The biting rate of mosquitos is expected to be harmful, whereas vaccines and treatment 

Figure 5.   Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying vector 
biting rate values, i.e., b = 0.45, 0.55, 0.65, 0.75.
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are promising characteristics for infection management. It has been proposed that reducing mosquito bite rates 
can reduce the severity of chikungunya virus illness. We demonstrated the role of memory in the dynamics of 
chikungunya infection and propose that it might be employed as a control measure for the prevention of infec-
tion. In addition to this, we hypothesized that chikungunya within society could be managed by reducing bite 
rates and enhancing vaccine and treatment.

Figure 6.   Demonstration of the dynamical behaviour of our chikungunya framework (9) with various 
vaccination levels p, i.e., p = 0.25, 0.28, 0.31, 0.35.
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Data availability
The data sets used and analysed during the current study is available from the corresponding author on reason-
able request.
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