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The burden of vector-borne infections is significant, particularly in low- and middle-income countries
where vector populations are high and healthcare infrastructure may be inadequate. Further, studies
are required to investigate the key factors of vector-borne infections to provide effective control
measure. This study focuses on formulating a mathematical framework to characterize the spread of
chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated
to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use
Banach’s and Schaefer’s fixed point theorems to investigate the existence and uniqueness of the
suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of
the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya,
we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to
visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms
are employed on the infection level of chikungunya. Our research identified the framework’s essential
input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection
can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination,
memory index or fractional order, and treatment could be used as efficient controlling variables.

The study of vector-borne illnesses has gotten a lot of interest recently, and mathematics has shown to be a
beneficial tool in these investigations. For illnesses such as dengue fever, malaria, chikungunya, and the human
immunodeficiency virus, several deterministic models with a temporal dimension have been developed to study
chikungunya infection. Chikungunya is a viral infection caused by the chikungunya virus, which belongs to the
Alphavirus genus within the Togaviridae family. The disease is transmitted to individuals through the bites of
aedes aegypti mosquitoes'. The first outbreak of chikungunya, which presented symptoms similar to dengue fever,
was reported in 1952 on the Comoros Islands, positioned off the shoreline of northern Mozambique?. During
its inception, this viral infection has caused epidemics in Asian, African, European, and American nations at
unpredictable intervals of 2-20 years. Chikungunya infection was first reported in Bangkok, Thailand in 1958°,
followed by its emergence in India during the early 1960s in places like Vellore, Calcutta, and Maharashtra®.
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Subsequently, it spread across Sri Lanka and other Southeast Asian nations including Myanmar, Indonesia, and
Vietnam in 1969*. Thailand saw sporadic cases of chikungunya fever between 1976 and 1995, and the virus
resurfaced in the Democratic Republic of Congo in 1999-2000°. In 2004, 13,500 cases were recorded in Lamu,
Kenya®. The epidemic hit the Reunion Islands of the Indian Ocean from 2005 to 2007, and 197 cases were
reported in Europe in 2007". During the epidemic, the virus mutated, making it more easily transmissible by the
tiger mosquito aedes albopictus. As per research, areas with the presence of tiger mosquitoes may have a greater
likelihood of a chikungunya outbreak.

The incubation time of this viral infection is typically 3-7 days following a harmful sting from a vector afflicted
with an infectious virus, with fever being the most common symptom. Chikungunya fever symptoms are distinct
from those of a typical fever in that they are accompanied by severe joint discomfort. Nausea, rashes, headaches,
and exhaustion are other frequent complaints. Some instances may also result in neurological, retinal, or car-
pological issues, making recovery more harder for elderly people than for younger people. People might suffer
from joint discomfort for years at a time, implying that the healing process can take a lengthy time. Chikungu-
nya symptoms are often minor, although the disease is commonly mistaken as zika or dengue due to symptom
overlap. Just a few instances of chikungunya have resulted in death, and the majority of infected persons will
recover entirely and obtain lasting immunity. As a result, there is no vaccination or treatment for chikungunya.
Only using drugs for short comfort can help control the symptoms. Mosquito breeding areas should be examined
to avoid the spread of illness. One can prevent insect bites by utilizing mosquito repellents and opting to wear
clothing with long sleeves and full-length coverage'.

The rapid proliferation of mosquito breeding grounds has been associated with the increasing intercon-
nectedness of global populations and the ongoing effects of climate change. This pressing concern necessitates
the advancement of vector control strategies and the establishment of monitoring indices to effectively manage
such programs. Mathematical modeling has emerged as a valuable tool to analyze epidemic diseases, particularly
during the twentieth century, and has facilitated the development of optimal control techniques for various infec-
tious diseases. In the context of chikungunya virus infection, Dumont et al. proposed a model that relied on the
temporal data from the initial chikungunya epidemic in several municipalities on Reunion Island®. Moulay et al.
presented a model that depicts the intricate dynamics of mosquito populations and their viral transmission to
humans’®. Yakob & Clements'® develop a model that provided a close estimation of the outbreak’s peak incidence
and ultimate epidemic size. This model was further explored by Naowarat and Tang who incorporated the exist-
ence of two Aedes mosquito species'!. The information about chikungunya by WHO' employed three scenarios
to estimate disease control measures for chikungunya virus, which encompassed situations involving a single
vector, two vectors, and two vectors with human and non-human reservoirs. They emphasized the significance
of regularly assessing the effectiveness of insect prevention techniques. Agusto and his colleagues developed a
chikungunya model that considered three age-structured transmission phenomena, examining the transition
dynamics of individuals among different stages, including juvenile, adult, and senior populations'’. These efforts
contribute to the overall understanding of chikungunya virus transmission and aid in devising effective control
strategies to combat its spread.

Fractional calculus has emerged as a powerful tool for analyzing and modeling complex systems, including
infectious disease dynamics'*'°. In the context of epidemic models, fractional-order differential equations offer a
more accurate and versatile approach to describing the intricate dynamics observed in real-world outbreaks!®!”.
Jan et al.'® investigated the transmission dynamics of rift valley fever with vaccination policy in fractional frame-
work. They proved that the results of fractional derivative are more accurate and flexible than the classical
derivative. Jan et al. also presented an epidemic model for HIV' through fractional derivative with real data. The
authors showed that the fractional models provide more accurate results due to an extra parameter in the system.
A fractional order epidemic model has been introduced for pneumococcal pneumonia infection to understand
the spread of the infection®. As vector-borne disease exhibits knowledge of its previous stages through an asso-
ciative learning mechanism. The memory within the host population, linked to individual awareness, leads to a
decreased rate of contact between vectors and hosts. On the other hand, mosquitoes utilize their past experiences
regarding human location, blood preference, color, and human defensive behaviors to select a suitable human
host for feeding?"*%. The incorporation of fractional-order systems in mathematical modeling of vector-borne
infection can effectively capture and represent these types of phenomena. In this study, our main goal is to
explore the transmission dynamics of chikungunya virus infection while considering treatment, vaccination,
and memory index factors. To achieve this, we employ fractional differential equations, which are commonly
used in modeling such infectious diseases.

The following is how the manuscript is structured: Section "Theory of fractional calculus” introduces the
essential ideas and results of fractional calculus. Section "Evaluation of the dynamics" presents a compartmental
model that includes vaccination, treatment, and a memory index to create a more accurate model understanding
of the transmission mechanisms of chikungunya. In Sect. "Theory of existence", the proposed model is exam-
ined and analyzed. Section "Ulam-Hyers stability" establishes the appropriate conditions for the Ulam-Hyers
stability of the model. Section "Solution of our fractional system" discusses a numerical method in order to solve
the recommended fractional framework and provides a numerical analysis of the chikungunya dynamics with
respect to various parameters. Finally, the article concludes with a summary and final remarks in Sect. "Con-
cluding Remarks".
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Theory of fractional calculus

This section will go through the basic definitions and concepts of fractional calculus, which will be used to
investigate our system. The ability to integrate memory effects, which are critical for comprehending vector-
borne virus transmission. Furthermore, fractional calculus has many applications in diverse fields of study. We
have covered the basics of the Caputo fractional operator, which we will utilise to analyse our proposed model.

Definition 2.1 If we examine a function g(k) in the Lebesgue integrable space L! ([a, b], R)*, the fractional
integration can be characterised as follows

1

k
-1
o /0 (k— )" g (LydL, W

IZ+g(k) =
where ¢ is the fractional order in such a way that 0 < ¢ < L

Definition 2.2 Consider a function g(k) such that g(k) € B"[a, b, and the fractional derivative in Caputo
form is provided by

1 k
b n—9—1_n
D V()= ——— k—L L)dL; 2
o+ V (k) F(n 19)/0( ) g"() (2)
with the condition that0 < % < 1.

Lemma 2.1 Assuming the fractional system stated as follows®,

"DV c(k) = C(k),k € [0,v],n—1 < ¥ <n, 3
¢(0) = Co (3)
where C(k) € B([0, v]), the response of the aforementioned fractional framework is then
n—1
c(k):Zdlkl, whered; € R, 1=0,1,...,n— 1. (4)
=0

Definition 2.3 The Laplace transformation is presented for the Caputo Fractional operator in the following
24
way*,

n—1
DY el = L7g(L) = > L'l O),n—1<v <n (5)
=0
In addition, consider
[lc]| = kg}&)lcﬂﬂq,for all ce 7}, (6)

be the standard deviation specified on Z = B([0, v]) in which Z is a Banach’s space.

Theorem 2.1 Consider a Banach space Z in which F : Z — Z is smooth and confined®. If the following set
E={ceZ:c=AFc¢ e (0,1)} (7)

is limited, then F is a fixed point.

Evaluation of the dynamics

We offer a computational framework that represents the propagation of chikungunya virus infection in this
portion of the research. The entire population of both hosts and vectors at a particular moment is represented by
N, (¢)and N, (t), accordingly. The vector community N, (t) is split into two categories: the susceptible class S, (t)
and the infected class I, (t). Similarly, the host community is separated into four groups: the susceptible Sy (¢),
the vaccinated V},(¢), the infected I (t), and the recovered Ry, (t). The vector community N, (t) is a combination
of the S, (¢) and I, (¢) classes, whereas the total host population is the sum of S (¢), V3, (¢), I, (t) and Ry, (¢). In
this formulation, uj, and w, represents the natural mortality rates for both kinds of individuals, accordingly. A
fraction p of susceptible individuals are vaccinated and a fraction 7 of the infected class move to the recover class
after successful treatment. We represent the dynamics chikungunya infection with the effect of vaccination and
vertical transmission is given by
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B = Ny — %S:I” = PSh = KnSns
T = psy — BB — v,
= Dl g BBIL (o 4y 4 ), 8
B = tly+ yIp — wrRps ®
B = Ny — Bl — s,
e o BISL
with
Sh(0) > 0, Vh(0) > 0,15(0) > 0,Ry(0) > 0,
and

$v(0) = 0,1,(0) = 0.

In our formulation, the rate of recruitment of humans is represented by 1, N, where 1, represent the nativity
and mortality rates of humans. In vector inhabitants, the infection outlay from susceptible class to infected class
is given by B3. On the other hand, the host population is recruited by a rate 1, N, where w, is the birth and death
rate of vectors. The transmission rates from susceptible host to infected is indicated by ; and . One of the latest
and most newly prominent disciplines of mathematics is fractional calculus, which works with derivatives and
integrals of real and complex classes. In truth, although being as old as the original calculus, this type of calculus
has piqued the interest of scholars from a variety of disciplines due to the astonishing results obtained when
some of these scholars employed fractional operations to describe real-world difficulties. To better understand
the spreading phenomenon more properly, we characterize the dynamics of chikungunya infection using a
Caputo-derivative in the following manner:

BDESy = uiNy — DS — pEsy — ufsy,
DSV, = pfsy, — Uik A

BDkI ﬁleShIV + ﬂzbSVhlv — (5 + Mi + 5,
BDth = rélh +y50, — [Lth,

3
EDES, = wiN, — B — s,

bs Sy
BDf1, = BES 5,

where B Di is the derivative of LiouVille-Caputo. & represents the storage index in this approach. & and is given
END
wm$%$MQM—(“

fractional framework (9) of chlkungunya 1llness The aforementioned framework of chikungunya illness threshold
parameter is offered by

0
£ S" ,0,0,N2,0) denotes the disease-free steady-state of our suggested

B3bESY [ B1bES)) + BobE V)

0 N\TO
NIND L (26 + 11 + %)

Ro =

For our system of chikungunya infection, the existence and uniqueness of the solution will be investigated in the
upcoming result. The below result can easily be determined through analytic skills.

Theorem 3.1 The solutions of the recommended system (9) of chikungunya virus infection are positive and bounded
for positive initial condition of state-variable.

Sensitivity analysis. Sensitivity analysis is a critical tool used in various scientific disciplines, including
epidemiology, to assess the sensitivity of different interventions of a biological system. In the context of epidemic
modeling, sensitivity analysis helps understand how uncertainties or variations in the model’s parameters impact
the predictions and conclusions drawn from the model. Local sensitivity analysis and global sensitivity analysis
are two different approaches used in sensitivity analysis to evaluate the impact of input parameter variations on
the output of an intervention®. In local sensitivity analysis, one parameter is varied at a time, while all others
are kept fixed at their baseline values. This allows researchers to observe the individual impact of each param-
eter on the system output. Global sensitivity analysis considers the interactions between multiple parameters
simultaneously. It assesses the collective influence of all parameters on the system’s output and provides a more
comprehensive understanding of their combined effects?.
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Global sensitivity analysis provides a more comprehensive assessment of parameter influences, especially
when dealing with complex and nonlinear models or when interactions between parameters are essential for
accurate predictions. Here, we will perform global sensitivity analysis of the basic reproduction number of our
system. We will use the well-known partial rank correlation coefficient method (PRCC) to show the impact
of input parameters on the output of R. The significant test provides PRCC and p-values for each parameter,
indicating that the parameter with the highest PRCC and lowest p-values is the most sensitive parameter in
the system. From Fig. 1 and Table 1, we noticed that the input parameters 83, iy, 81, B2 and £ are the most
sensitive parameters in the basic reproduction number with PRCC 0.8448, —0.6858, 0.6638, 0.5900 and 0.5807,
respectively. Therefore, these parameters are recommended to the policy makers and health officials for the

prevention and control of the infection.

Theory of existence

The suggested fractional algorithm’s fundamental framework (9) will be described below. This is accomplished

in the subsequent style:

Wik, Sp> Vius Ins Rps Sy, 1)
Wa(k, Sp> Vius Ins Rys Sy, 1)
W3(k, Sp> Vius Ins Rys Sy, 1)

W4(k) S]’b Vh:Ih:Rh) SV: IV)

§ §
= Bl Sl 5szthIv — (<5 _,_ui + yHI,

.
HiNh - 7’3“}\,5’“1” — S — Mish)

b Vil
pgsh e Nhh - Mth>

N (10)

o+ y5I, — MiRh,

Table 1. PRCC and p values of significant test for Ro.

PRCC values for reproduction parameter

Figure 1. Graphical view of the PRCC sensitivity test for Ry..

&

Ws (ks Sho Vi Ty R S 1) = SNy — BESI — s,
We (kS Vi T Ry o T,) = DS 51,

Parameter | Interpretation PRCC values | p values

B3 Transmission rate from S, to I, 0.8448 0.0000

b Biting rate of mosquitoes 0.4447 0.0000

3 Fractional order or index of memory | 0.5807 0.0000

B Transmission rate from Sy, to I, 0.6638 0.0000

h Natural death rate of hosts -0.2531 0.0000

p Vaccination fraction of susceptible 0.0602 0.0512

Ba Transmission from Vj, to Ij, 0.5900 0.0000

T Recovery due to treatment -0.2770 0.0000

y Recovery rate from infected hosts -0.2376 0.0000

Iy Natural death rate of vectors -0.6858 0.0000
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The aforementioned chikungunya viral infection model (10) could be represented in the following manner

DY W(k) = Qk, W(k), k € [0,v], 0 <9 <1, I
W(0) = Wo, (an
where
W(k) = Sp(k), ( Wo(k) = Spo, [ Qk, W(k)) = Wi(k, S, Vi, In> Ry Sy, 1)
Vi(k), Vho, W2k, S, Vi In, Ru, Sv> I)
Iy(k), Inos W3k, Sp> Vius Ins Ris Sy, I) (12)
Ry (), Rpos Wa(k, S, Virs In, Ru, Sv> I)
Sv(k)) SVO> WS(k) Sh: Vh)Ih)Rha SV)IV)
I, (k). Iyo. We(k, Sn> Vius In, Rns Sv, I)
Using Lemma (2.1), the corresponding integral form of the previous (11) is
1 k
W) = Wolk) + o [ =9 Wi (13)
I'(@) Jo
The following parameters are the major phases in analysing our suggested system:
(A1) The variables Kq, M, and g € [0, 1) could be found in the following way:
|Qk, W(k))| < Kq|WI|T+ Mq. (14)
(A2) The variables LQ > 0, and all W, W € Z could be found in the following way:
|Q(k, W) — Q(k, W)| < Lol|lW — WI. (15)
In this portion, we define a map F on Z as follows
FW(k) = Wolb) + £ o5 / (k= 9)*71Q(s, W (s))ds. (16)

If assumptions (A1) and (A2) are valid, then the framework (11) has a minimum of a single answer. This concept
will be used to our suggested approach to chikungunya virus transmission.

Theorem 4.1 If assumptions Al and A2 are valid, the suggested fractional model (9) of chikungunya viral infection
has a minimum of a single solution.

Proof 4.1. We shall utilise Schaefer’s fixed point theorem to demonstrate the intended outcome. This theorem will
be illustrated over four stages, outlined below:

S1: In this stage, we shall demonstrate the consistency of F. In this case, we presume that W is continuous for
i=1,2,...,9, which means that Q(k, W (k)) is also continual. We select W, W e Zin such a way where W — W,
and FWj — FW is required. Next, we’ll look at:

[[FW; — FW|| = max
ke[0,v]

1 ¢ a—1 1 k w1
@/0 (k=" Qs Wyds = 0 /0 (k=971 Q(s, W()ds

< max /k (k=97 1Qi(s, Wi(s)) — Q(s, W(s))|ds (17)
~ kelowl Jo I () S ’
O‘LQ ,
S————||W; = W|| - 0 as j — cc.
C(a+1)

Insofar as Q is persistent, FWj — FW; as a consequence, the operator F is also continual.

S2: The second stage tends to determine the boundedness of the F expression. If W € Z, then the operator F must
satisfy the subsequent scenario

[|IFW|| = Jnax Wo (k) + m/ (k — )1 Q(s, W(s))ds
<|Wpo| kgfg,%] @/0 I(k — 9" 11Q(s, W(s))ds (18)

o

v
<|W, ——[Ko||W]|1 + Mo].
<|Wo| + F(a—l—l)[ QlIW[|1+ Mq]
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Our goal is therefore to demonstrate the boundedness of F(S) for a bounded subgroup S of Z. Consider arbitrary
W € S; because the set S is limited, we may discover a K > 0 in the following way

W] < K,YW €. (19)

As a result of extending the preceding criterion to any W € S, we get

o o

v v
FWI| < [Wol + ———[KolIWI|1+ Mq] < [Wol + ———
IFWI| < [Wol + [KollW[I" + Mq] = | 0|+F(zx+1)

q
e+l [KoKT+ Mq]. (20)

Hence, F(S) is bounded.

$3: In the third stage, we suppose ki, k € [0,v] in such a way that ky > k; to demonstrate the equi-continuity,
and then

1 [k 1 [k
[FW (k1) — FW (k)| ='7/ (ki = 9*7HIQ(s, W(s))lds — —— |(k2 = )*H1Q(s, W(9))ds
(@) Jo (@) Jo
Lot k ! Loe k ! d
<|_— AN 2 N - W
< |t =9t = s [ i =9l W
o
(1)
As a result, Arzela-Ascoli’s theorem suggests that F(S) is relatively concise.
Step 4: In the final phase, we select the subsequent set up
E={WeZ:W=iFW,le (1)} (22)

To demonstrate the boundedness of the group E, let W € E, than for any k € [0, v], the argument that follows is true

o

q v
W = AIFW]| < 4| [Wol

q
F(a+l)[KQ||WH +Mq|- (23)

This indicates that the group E is finite. As a consequence of Schaefer’s theorem, the variable F has a definite position;
as a result, it provides a minimum of one remedy to our suggested scheme (11).

Remark 4.1 If the requirement (H1) for g = 1 is fulfilled, the conclusion of Theorem (4.1) is satisfied for
VKo <1
C(a+1) '
Theorem 4.2 Ifthe premise % < lisvalid, then our desired fractional framework (11) has a distinctive answer.

Proof 4.2. For the desired outcome, assumingW, W € Z and using Banach’s contraction theorem, we get

_ 1 k _
[|IFW — FW|| < max —— / Itk — 9*11Q(s, W(s)) — Q(s, W(s))|ds
kelow] I'(e) Jo
o (24)
o

S———||[W—-W]||.
MNo+1)

As consequence, the operator F has a distinct fixed point, therefore the results of the proposed fractional system (11)
is exceptional.

Ulam-Hyers stability is a mathematical concept used to assess the behavior of a system. This stability notion
is particularly relevant when dealing with fractional-order models because these equations can describe complex
systems where memory effects and long-range interactions play a crucial role. In study of a fractional system,
one of the main challenges is that exact analytical solutions are often difficult or even impossible to obtain.
Instead, researchers commonly seek approximate or close-to-perfect solutions to gain insights into the system’s
behavior. Ulam-Hyers stability, along with the extended Ulam-Hyers-Rassias stability definition, provides
a useful framework to study the stability of approximate solutions of fractional system. It helps researchers
understand the robustness of these solutions under small perturbations, which is crucial for evaluating the
reliability of the model’s predictions. By employing Ulam-Hyers stability in the context of a system described by
fractional differential equations, researchers can ascertain whether the approximate solutions obtained are reliable
and meaningful. This stability analysis contributes to a deeper understanding of the system’s dynamics and aids
in developing accurate and reliable mathematical models, which, in turn, are valuable for decision-making in
various fields, such as epidemiology for infectious disease control and management.
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Ulam-Hyers stability
In this section, we will establish stability results for our recommended model of chikungunya introduced by
Ulam?® and Hyers*. Numerous researchers used the Ulam-Hyers stability concept in various fields of science
and engineering®*~*. Here are some fundamental definitions and notions:

Consider a controller N : Z — Z in the following way

NW =W for We Z (25)

Definition 5.1 Previously (25) is Ulam-Hyers stable (UHS) kind if for every scenario W € Z and € > 0, we
exhibit:

[IlW —NW|| <€ for kel[0,v]. (26)
The situation (25) has a distinctive answer W in which B; > 0and the requirements listed below are met
IW — W] <Bge, kel[0,v]. (27)

Definition 5.2 The aforementioned (25) is a generalised UHS, thus we get the subsequent result for all possibili-
ties W of (27) and any additional approach W of (25)

W =Wl < Y(e), (28)
whileY € B(R,R) and the zero frame is zero.
Remark 5.1 If the subsequent conditions are satisfied, the solution W € Z accomplishes (27)
(1) Ju(k)| <€, V k €[0,u]wherev € B([0,v]; R)

(2) GW(F) = W +vu(F), ¥ k € [0,v] Considering a minor disruption, the framework (11) may be expressed
in the following manner

bpa —
VI\)/W W_(k) = Q(k, W(k)) + v(k), (29)
(0) = Wo.
Lemma 5.1 The given technique (29) meets the subsequent requirement
U(Y
—F , = —.
|W (k) W(k)| < ae, where a Fa+ D) (30)

Proof 5.1. Employing Lemma (2.1) and Remark (5.1), the preceding conclusion is simply achieved.

Theorem 5.1 If the criterion % < lis met, the approach to the framework (11) is UHS and modified UHS
on Lemma (5.1).

Proof 5.2. For the needed evidence, we consider the system response W € Z (29) and W € F as an exceptional result
(11), thus we get

(W(k) = W(k)| =|W (k) — W (k)|
<IW(k) — FW (k)|
<IW(k) — FW (k)|

UaLQ - (31)
< ———|W(k) - W(k
<ac + oWk - W)
ae
=1 g
I'(a+1)

As a consequence, the chikungunya virus infection framework (11) indicated before is UHS and generalised UHS.

Definition 5.3 Suppose w € B[[0, v], R], then the challenge (25) is Ulam-Hyers-Rassias stable (UHRS) if each
of the subsequent solutions W € Z is Ulam-Hyers—Rassias stable (UHRS)

[IlW — NW|| < w(k)e, for k € [0,v] and € > 0. (32)
One can discover an innovative approach W of the framework (25) that meets the constraint B4 > 0 providing
[IW — W|| < Bgw(k)e, Yk € [0,v]. (33)

Definition 5.4 Assume that W be any solution of (32) and W is the unique solution of (25) in a manner that
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[IW — WI| < Bgow(k)e, V k€ [0,v]. (34)

in which € > 0and w € B[[0, v], R] so that B;,,,. The aforementioned (25) is therefore generalised UHRS.
Remark 5.2 1f the subsequent conditions are met, then the outcome of W € X fulfils (27)

(a) Ju(k)| < ew(k), Yk € [0,v], whereuv(k) € B([0,v]; R)
(b) NW(k) =W +v(k), Vk € [0,v].

Lemma 5.2 The inequality stated underneath holds valid for the perturb system (5.1) provided by

UO(
Fa+1)

Proof. The needed consequence is simply shown utilising Lemma (2.1) and Remark (5.2).

|[W(k) — FW(F)| < aw(k)e, with a =

Theorem 5.2 Whenever% < 1, then the answer to framework (11) is UHRS and generalised UHRS on Lemma
(5.2).

Proof. If we presume a solution W € X and pick the particular answer W € X of the framework (11), we get the
following result

W (k) = W(k)| =W (k) — W (k)|

<|W(k) — FW (k)|
<|W(k) — FW (k)|

o

v LQ -
<aw(k)e + m”’v(k) - W(k)|
aw (k)e
S e
T (a+1)

As a result, UHRS and expanded UHRS are the answers to (11).

Solution of our fractional system
In this section, we will utilise the transformation of Laplace to create an efficient scheme for our fractional system
(9) of chikungunya infection. The Adomian Decomposition Method is an efficient and trustworthy numerical
scheme, providing a dependable and effective approach for solving fractional models. This method exhibits
excellent convergence properties, enabling researchers to obtain reliable approximations even when dealing
with complex fractional models.

The following steps are involved in this scheme:

— &

fsikl = %+ S%E{MiNh — DR — Sy — MiSh},
— &

£[Vi(k)] = V?o + S%£[Pésh _ %hvhlv _ Hivh]»

1 = B 3B B 44y

. (37)
ERy ()] = 10 + g[8, + 51, — uiRh],

&
E15,001 = S8+ e[, — B — s,

&
£w®]=%+£4@%ﬂ—ﬁ4.

having
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Sn(k) = 2o Shm(K),
Vi) = 3o Vim(k),
I = Y0 o Inm(k), (38)
Ry(k) = Yoo Rum(k),
Sy(k) = Yo Svm(k),
Iv(k) = oo—olvm(k)-

Here, Adomian polynomials are used to separate the nonlinear components of our framework, and we progress

in the following manner

S (k) = ZAmuc) with A (k) = —,;—{Zz"shkm)Zz"IM(k)}z—o

m=0
Vi(k) I, (k)
m=0

and

$(k)In(k)) =Y C(k), where Cp(k) =

m=0

then, we obtain

£ [ Y%, Shm(k)_

£ {Zlo th(k)-
£ [ > %, Ihm(k)_
£ {fo:o Rim (k)_

£ |: Zﬁzo Sym (k)

£ |: Zﬁ:o Ivm(k)

£[Sn1 (k)]
£[Vin (k)]
£ (0]
£[Rp1 (K)]

£[Sy1 (k)]

£[1y1 (k)]

and

= Z B, (k), where By, (k) =

. £[pf 50 o S () — B 522 B (k)

o
e

£
+£| 5
Z£
£

1
rEs

1
rEs

YETo (k) + T8 I (k) — MiRho(k)},

/Jviv

1 4m
m! dz™ |

Z 2 Vi () Z Zkka(k)} z=0,
0 n=0

1 dm r m m
e | 2 S Y z"(%(k))} z2=0,

- n=0 n=0

S0 4 }gﬁ{ TNy — *“1" 3000 o Am(k) — P50 S (k) — 115, S50, Shm(lo},

T Dl vhm(k)} ,

3 &
bo y 1g [W oo Am(K) + BE S Bu(k) — (uf + 75 + o) e Ihm(k)},

R 4 ssﬁ{@é + 15 o T — 14, Zi’::(,Rhm(k)}

00:0 Cm(k) — /lg 00:0 Sym (k)] >

% 0 Cnk) — 115 % W(k)} :

(39)
£[Su(k)] = So,
E[Vio(k)] = Yo,
Elly(k)] = o,
X (40)
E[Rpo (k)] = R,
£[S,0()] = o,
Ello(k)] = bo
15N — B g (k) — pE Sy (k) — Misho(k)} ,
pfshoac) Y By k) — MthO(k)}
B Aok + B Byk) — (uf 4+ v5 + rfﬂho(k)],
- (41)

—ﬁmw}

[ 5.0
BE Coky — Milvo(k)} ,
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ES2(R)] = H6|uf Ny — B A () — pFS (k) —uism(k)],
EVin(b] = +£ pfsmk) — BBy (k) —uivm(k)}

Elln()] = 6|5 f‘”’ Ar(k) + ﬁzb Bi(k) — (uj, + ¢ +rf)lh1(k>],

- (42)
E[R(K)] = ££|y I (k) + I (k) —uiRhl(lo},
[ £
ELSn(0] = L[N, — B2Ci (k) —uisn(k)},
£l (k)] = 5%£ BECy (k) — u«flvl(k)},
so on, we have
_ 1 B 4 ¢ ¢
£[Sh(m+1)(k)] = ;£ MhN Am(k) — p Shm (k) _Mhshm(k) >
§
EVimin ()] = £ pfsh()(k) BB (k) - uhvhm(k)}
ey (0] = L6 B4, ) + 2L B, (k) - (ui+ﬁ+rf>1hm<k>],
_ (43)
E[Rumt1) (] = £V Dun (k) + 78I (k) —uiRhm(k)},
ELSuminy ()] = LE|uiN, — —uisvm(k)},
£y (W] = }E£ B (k) uizvmac)},
with the initial conditions
Sno(k) = Spo
Vio(k) = Vio
Ino(k) = Ing “4)
Rpo(k) = Rpo
SVO(k) = SVO
IvO(k) = Iy
To further simplify things, we perform an additional process
B ¢
St = &7 L& Ny — B Ag(k) — pF S0 ) — uishoac)H,
B ¢
Vin(k) = £71| £ pfsho(k) — B2 By(k) - uivhoac)ﬂ,
B £
a(k) = &7 Le| B Ao k) + Y By (k) — (e + ¢ +rf>1ho<k)H,
- (45)

Ru(k) = &7 ££|(/* +r¥)1ho<k)—(ui)Rho(k)”,

Sukt) = £ Le[udN, — B cok) — u%svo(k)H,

In(k) =£71 Sigﬁ ﬂﬁh Co(k) — uilvo(k)H,

and
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Sk = &7 Le|uiNy, — B A (k) — p55h1(k)—ui5h1(k)”>
Via) = £71| £ |p S (k) - B By (k) — uivmac)”,

(k) = &7 | 1&| By '“’ ArR) + BE By (k) — (uf, + ¥¢ +rf>1h1<k>H,

. (46)
Ria(h) = £ 2| (v + 75 k) - (ui)Rhl(k)H,
Sa(k) = £ s%fs ENy — By - u%svl(ioH,
La(k) = £t Sig£ ﬂab Ci(k) - /’Lilvl(k):”:
so on, we have
— e e [Ny — B ) — S () — 1
Sh(m-H)(k) =£ s§£ MhN m(k) p Shm(k) /’thhm(k):|:|>
I ¢
Vimen (k) = £71 | ££ pS S (k) — BBy () — th(k)H
Iymn (k) = £71 | 6|5y ﬂlbé Am (k) + ﬂzbé Bu(k) — (i, + v¢ + fé)Ihm(k)H>
. (47)
Rimny(®) = 71| ££|(F + 7)) Ium (k) — (Mi)Rhm(k)H,
Svimin (k) = £71 }gﬁ WENy — BE Cuh) — uisvmac)H,
[ ¢
Linsny(k) = £71| 1| &3] W Con (k) — u%lvm(lo} }
Ultimately, we obtain the following solution in series form
Su(k) = Sno(k) + Sp1(k) + Sp2(k) + Spz (k) + ...,
Vi(k) = Vig(k) + Vi (k) + Vip (k) + Vs (k) + .. .,
In(k)y = Ino(k) + Iy (k) + Ina(k) + Ins (k) + ...,
(48)
Rp(k) = Ruo(k) + Rii (k) + Ria (k) + Ry (k) + ...,
Sv(k) = Svo(k) + Svl(k) + SVZ(k) + sv3(k) +...
L(k) = Lo(k) + Ln(k) + La(k) + La(k) + ... .

The above scheme is described earlier is used to calculate the numerical findings of our fractional system
(9) of chikungunya infection. We estimated the system’s input parameter contents for numerical objectives.
Through numerical simulations, we want to illustrate the influence of the input component on the dynamics of
chikungunya. In light of our findings, we will propose efficient prevention strategies to lower the prevalence of
chikungunya in the community. We provided a time series study of the suggested mechanism of chikungunya
infection in these computations.

We exhibited the dynamical performance of the suggested fractional framework for chikungunya infection
with the modification of the index of memory in the first interference, shown in Figs. 2, 3 and 4. In Fig. 2, we
assumed £ to be 0.85, 0.90, 0.95 and 1.00 while the parameter & is considered to be 0.70, 0.75, 0.80, 0.85 and
0.4, 0.6, 0.8, 1.00 in Figs. 3 and 4, respectively. According to our findings, the infection level of both species
reduces as the memory index lowers. As a result, we propose that controlling the memory index could regulate
this viral infection and propose it to authorities for the avoidance of infections in the community. In the second
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Figure 2. Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying memory
index & values, i.e., & = 0.85,0.90, 0.95, 1.00.

simulation illustrated in Fig. 5, we emphasized the solution paths of the chikungunya virus infection model with
biting rate variation. We discovered that when the bite rate boosted so did the degree of illness. As a result, this
input component is crucial.

We demonstrated the influence of vaccination on the propagation dynamics of chikungunya viral infec-
tion in the third simulation depicted in Fig. 6. We discovered that immunization is a key element in reducing
chikungunya infection in the community. The vaccine parameters are advised to health officials for infection
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Figure 3. Demonstration of the dynamical response of our chikungunya framework (9) with various fractal
order & values, i.e., € = 0.70,0.75, 0.80, 0.85.

control based on these findings. The impact of treatment has been visualized using numerical simulations in
the final simulation shown in Fig. 7. We proposed that the index of memory, immunization, and treatment be
utilized as control criteria for chikungunya viral infection avoidance. In our future work, the proposed model
will be examined and validated using real-world data on the availability of data, enabling us to to predict the
future course of the epidemic.

Concluding remarks

In this study, we developed a mathematical framework for the transmission of chikungunya infection with vac-
cination and therapy. The suggested chikungunya model is constructed in a fractional framework to demonstrate
the influence of memory on the dynamics of chikungunya. We used the basic principles of fractional calculus
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Figure 4. Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying memory
index & values, i.e., & = 0.4,0.6,0.8, 1.0.

to analyze our mathematical framework. In our study, we focused on qualitative analysis and the dynamical
behavior of chikungunya viral infection. The uniqueness and existence of the solution of the provided chi-
kungunya model are investigated using the fixed-point theorem within the context of Banach’s and Schaefers.
Through these, we obtained the Ulam-Hyers stability criteria for our chikungunya viral infection system. The
influence of various factors on the dynamics of chikungunya virus infection is investigated by employing the
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Figure 5. Demonstration of the dynamical behaviour of our chikungunya framework (9) with varying vector
biting rate values, i.e., b = 0.45,0.55,0.65, 0.75.

Laplace Adomian reduction methodology to demonstrate the impact of many parameters on the dynamics of this
viral infection. Numerical simulations, in particular, are employed to illustrate the impacts of fractional-order,
immunization, and treatment. We have shown that the bite rate is an important metric that can render a more
challenging controller. The biting rate of mosquitos is expected to be harmful, whereas vaccines and treatment
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Figure 6. Demonstration of the dynamical behaviour of our chikungunya framework (9) with various
vaccination levels p, i.e., p = 0.25,0.28,0.31, 0.35.

are promising characteristics for infection management. It has been proposed that reducing mosquito bite rates
can reduce the severity of chikungunya virus illness. We demonstrated the role of memory in the dynamics of
chikungunya infection and propose that it might be employed as a control measure for the prevention of infec-
tion. In addition to this, we hypothesized that chikungunya within society could be managed by reducing bite
rates and enhancing vaccine and treatment.
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Figure 7. Demonstration of the dynamical behaviour of our chikungunya framework (9) using different
treatment rate 7 values, i.e., T = 0.26, 0.36, 0.46, 0.56.

Data availability
The data sets used and analysed during the current study is available from the corresponding author on reason-
able request.

Received: 22 April 2023; Accepted: 26 August 2023
Published online: 01 September 2023

References

1.
2.
3.

4.

WHO. Chikungunya. http://www.who.int/denguecontrol/arbo-viral/otheraborvialchikungunya/en/, (2014).

WHO. Chikungunya. http://www.who.int/mediacentre/factsheets/fs327/en/, (2014).

National Center for Biotechnology information. Chikungunya outbreak. http://www.ncbl.nlm.nih.gov/pmc/atricles/PMC4111161,
(2014).

Pialoux, G., Gaiizere, B. A., Jauréguiberry, S. & Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319-327
(2007).

. Sergon, K. et al. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med.

Hyg. 78, 333-337 (2008).

. Barro, M., Guiro, A. & Ouedraogo, D. Optimal control of a SIR epidemic model with general incidence function and a time delays.

Cubo Math. J. 20, 53-66 (2018).

. Oare, O. K. Impact and optimal control of movement on a multipatch hepatitis C virus model. TWMS J. Pure Appl. Math. 5, 80-95

(2014).

Scientific Reports |

(2023) 13:14398 |

https://doi.org/10.1038/s41598-023-41440-7 nature portfolio


http://www.who.int/denguecontrol/arbo-viral/otheraborvialchikungunya/en/
http://www.who.int/mediacentre/factsheets/fs327/en/
http://www.ncbl.nlm.nih.gov/pmc/atricles/PMC4111161

www.nature.com/scientificreports/

8. Dumont, Y., Chiroleu, F. & Domerg, C. On a temporal model for the chikungunya disease: Modeling, theory and numerics. Math.
Biosci. 213, 80-91 (2008).
9. Moulay, D., Aziz-Alaoui, M. A. & Cadivel, M. The chikungunya disease: Modeling, vector and transmission global dynamics. Math.

Biosci. 229, 50-63 (2011).

10. Yakob, L. & Clements, A. C. A mathematical model of chikungunya dynamics and control: The major epidemic on Réunion Island.
PloS One 8, €57448 (2013).

11. Naowarat, S. & Tang, I. M. Transmission model of chikungunya fever in the presence of two species of Aedes mosquitoes. Am. J.
Appl. Sci. 10, 449-459 (2013).

12. Hincapié-Palacio, D. & Ospina, J. Mathematical modeling of chikungunya fever control. In Proc. Smart Biomedical and Physiological
Sensor Technology XII. 9487, 132-141 (2015).

13. Agusto, F B., Easley, S., Freeman, K. & Thomas, M. Mathematical model of three age-structured transmission dynamics of chi-
kungunya virus. Math. Methods Med. 2016, 1-31 (2016).

14. Jan, R,, Shah, Z., Deebani, W. & Alzahrani, E. Analysis and dynamical behavior of a novel dengue model via fractional calculus.
Int. J. Biomath. 15, 2250036 (2022).

15. Shah, Z., Bonyah, E., Alzahrani, E., Jan, R. & Alreshidi, A. N. Chaotic phenomena and oscillations in dynamical behaviour of
financial system via fractional calculus. Complexity 2022, 1-14 (2022).

16. Ogunrinde, R. B., Nwajeri, U. K., Fadugba, S. E., Ogunrinde, R. R. & Oshinubi, K. I. Dynamic model of COVID-19 and citizens
reaction using fractional derivative. Alex. Eng. J. 60,2001-2012 (2021).

17. Peter, O.]. et al. Fractional order mathematical model of monkeypox transmission dynamics. Phys. Scr. 97, 084005 (2022).

18. Jan, A, Jan, R, Khan, H., Zobaer, M. S. & Shah, R. Fractional-order dynamics of rift valley fever in ruminant host with vaccination.
Commun. Math. Biol. Neurosci. 2020, Article-ID (2020).

19. Jan, R. et al. Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under
Caputo operator. Discrete Contin. Dyn. Syst. S 16, 2118-2140 (2023).

20. Peter, O. ]. et al. Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator. Results Phys. 29,
104581 (2021).

21. Chaves, L. F, Harrington, L. C., Keogh, C. L., Nguyen, A. M. & Kitron, U. D. Blood feeding patterns of mosquitoes: Random or
structured?. Front. Zool. 7, 1-11 (2010).

22. Vinauger, C., Buratti, L. & Lazzari, C. R. Learning the way to blood: First evidence of dual olfactory conditioning in a blood-sucking
insect, rhodnius prolixus I. Appetitive learning. J. Experiment. Biol. 214, 3032-3038 (2011).

23. Kilbas, A. A, Srivastava, H. M. & Trujillo, . J. Theory and Applications of Fractional Differential Equations Vol. 204 (Elsevier, 2006).

24. Podlubny, 1. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, To
Methods of their Solution and Some of Their Applications (Elsevier, 1998).

25. Granas, A., Dugundji, J., Granas, A. & Dugundji, J. Elementary Fixed Point Theorems. In Fixed Point Theory 9-84 (Springer, 2003).

26. Ziyadi, N. & Yakubu, A. A. Local and global sensitivity analysis in a discrete-time seis epidemic model. Adv. Dyn. Syst. Appl. 11,
15-33 (2016).

27. Lu, X. & Borgonovo, E. Global sensitivity analysis in epidemiological modeling. Eur. J. Oper. Res. 304, 9-24 (2023).

28. Ullam, S. M. Problems in Modern Mathematics (Chapter VI) (Wiley, 1940).

29. Hyers, D. H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27, 222-224 (1941).

30. Rassias, T. M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978).

31. Ali, Z., Zada, A. & Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull.
Malays. Math. Sci. Soc. 42, 2681-2699 (2019).

32. Benkerrouche, A. et al. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias
stability. Fractal Fract. 5, 108 (2021).

Acknowledgements
Project financed by Lucian Blaga University of Sibiu through research Grant LBUS-IRG-2023-09.

Author contributions
All authors contributed equally in the article in conceptualization, investigation, Validation, analysis, writing
original draft, review and editing.

Funding

This study did not receive any funding in any form.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.S. or N.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:14398 | https://doi.org/10.1038/s41598-023-41440-7 nature portfolio


www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Analysis of the dynamics of a vector-borne infection with the effect of imperfect vaccination from a fractional perspective
	Theory of fractional calculus
	Evaluation of the dynamics
	Sensitivity analysis. 

	Theory of existence
	Ulam–Hyers stability
	Solution of our fractional system
	Concluding remarks
	References
	Acknowledgements


