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Using remote sensing data 
within an optimal spatiotemporal 
model for invasive plant 
management: the case of Ailanthus 
altissima in the Alta Murgia 
National Park
Christopher M. Baker 1,2,3,11, Palma Blonda 4,11, Francesca Casella 5,11, Fasma Diele 6,11, 
Carmela Marangi 6,11, Angela Martiradonna  6,7,11*, Francesco Montomoli 8,11, 
Nick Pepper 9,11, Cristiano Tamborrino 10,11 & Cristina Tarantino 4,11

We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an 
invasive alien species with data coming from image processing and expert knowledge. In this study, 
we implement a spatially explicit optimal control model based on a reaction–diffusion equation which 
includes an Holling II type functional response term for modeling the density control rate. The model 
takes into account the budget constraint related to the control program and searches for the optimal 
effort allocation for the minimization of the invasive alien species density. Remote sensing and expert 
knowledge have been assimilated in the model to estimate the initial species distribution and its 
habitat suitability, empirically extracted by a land cover map of the study area. The approach has been 
applied to the plant species Ailanthus altissima (Mill.) Swingle within the Alta Murgia National Park. 
This area is one of the Natura 2000 sites under the study of the ongoing National Biodiversity Future 
Center (NBFC) funded by the Italian National Recovery and Resilience Plan (NRRP), and pilot site of 
the finished H2020 project ECOPOTENTIAL, which aimed at the integration of modeling tools and 
Earth Observations for a sustainable management of protected areas. Both the initial density map and 
the land cover map have been generated by using very high resolution satellite images and validated 
by means of ground truth data provided by the EU Life Alta Murgia Project (LIFE12 BIO/IT/000213), a 
project aimed at the eradication of A. altissima in the Alta Murgia National Park.

Invasive alien species (IAS) are allochthonous species whose introduction and spread cause severe ecological 
damages to habitats and species, and reduce biological diversity considerably. IAS severely disrupt natural ecosys-
tems and ecosystem services with consequent adverse environmental, economic, social and cultural implications 
worldwide1 and they are a large anthropogenic threat to ecosystems and biodiversity, fostered by globalisation2. 
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Although economic impacts of many IAS are not available, the combined impacts are large. The environmental 
and economic damages of IAS in the United States, the United Kingdom, Australia, South Africa, India, and 
Brazil estimated to be in excess of US $ 314 billion per year3. IAS economic damage to agriculture, forestry and 
fisheries, is estimated to be at least EUR 12 billion per year in Europe alone4.

Habitat restoration is hard, labour intensive and costly but necessary to safeguard native species from being 
displaced by IAS because of competition for resources. Nevertheless, improving measures to control IAS impacts 
is prioritized in current EU biodiversity policy: to address the problem of IAS, reduce and monitor their envi-
ronmental repercussions, the European Commission approved a specific regulation (Regulation 1143/2014) 
supporting interventions aimed at prevention, early detection, rapid eradication and management of spreading 
invasive species. Development and implementation of model-based decision support systems are a key asset for 
effective eradication and control programmes for IAS5. The Italian National Biodiversity Future Centre6 focus its 
research activities in findings suitable strategies for biodiversity conservation and monitoring in order to reach 
EU targets. Assessing and monitoring biodiversity and its evolution, to study native species at risk of extinction, 
and to plan protection and conservation interventions are some of its specific tasks. Mathematical models are 
effective tools for evaluating the impact of IAS on natural ecosystems of crucial value for human activities such 
as forests, agricultural soils and the agrifood sector7–10. Models allow to build scenarios of conservation planning 
and management. Specifically, we need to model management strategies that incorporate budget constraints and 
the spatiotemporal spread dynamics of species11. Modelling and field testing in pilot areas, as the Alta Murgia 
National Park (Southern Italy), a Natura 2000 Site, is useful to identify conservation priorities under present 
and future scenario.

Ailanthus altissima (Mill.) Swingle is an invasive plant species that has significant impacts in Europe and 
worldwide. It reproduces both by seeds dispersal12 and asexually by vegetative sprouts13,14. The winged seeds 
can be dispersed by wind, water and machinery15, while its robust root system can generate numerous suckers 
and progeny plants. A. altissima typically occurs in very dense clumps, resulting from even-aged seedling estab-
lishment or from clonal expansion through root sprouting, and occasionally it grows as widely spaced or single 
stems. A. altissima grows on a broad range of anthropogenic to natural sites, from stony and sterile soils to rich 
alluvial bottoms16. Due to its vigour17, rapid growth, tolerance, adaptability and lack of natural enemies, it spreads 
spontaneously out-competing other plant species and reducing their growth. A. altissima causes serious direct 
and indirect ecological, economic, functional and aesthetic damages in non-crop areas18. Above all, it poses a 
significant threat to biodiversity19 and this threat is likely to increase in the future unless robust action is taken 
at all levels to control its advancement and spread. The costs of controlling and eliminating it amount to billion 
of euro per year20. Population management is difficult because of the production of numerous basal and radical 
shoots after cut and for a hardly eradicable root system. The best control strategy is based on a combined use of 
mechanical and chemical methods21–23.

In the last decades A. altissima has quickly spread in the Alta Murgia National Park, which is mostly charac-
terized by dry grasslands and pseudo-steppe, with wide open spaces and low vegetation, whose tendency is to 
be easily invaded. A. altissima causes serious direct and indirect damages to ecosystems, replacing and altering 
communities that have a great conservation value24, producing severe ecological environmental and economic 
effects and causing natural habitat loss and degradation. Many plants and infested areas grow in vulnerable 
natural habitats, on rocky soils, and at forest edges. There are hundreds infested areas (thousands of A. altissima 
trees) in the park. Its presence is scattered within the park, by roadsides, dry stone walls, inside and around jazzi 
(antique sheep folders) and ruins, and is also highly present close to wells and pools. Thus, we consider that the 
infestation covers the whole park area, but the “real” infested area could be a small percentage compared to the 
total surface. While the species has been planted historically, this no longer occurs and the park regulation for-
bids its introduction. There is no exact record about the starting date of the infestation but, considering the size 
of some trees, we assume that it started at least 80–100 years ago because farmers living in the area introduced 
plants for ornamental purposes or to create shade, not aware of their invasive potential. A. altissima can seriously 
harm the ecological balance of the park threatening the fragile grassland ecosystem and its native biodiversity. 
Only active on-going management can ensure the conservation of the wild flora and fauna species of the park. 
Hence, the LIFE+ Programme, the European Commission financial instrument for environment and climate 
action, funded the Life Alta Murgia Project (LIFE12 BIO/IT/000213 https://​www.​ispac​nr.​it/​proge​tto-​life-​alta-​
murgia/) having as main objective the eradication of the invasive exotic tree species A. altissima from the Alta 
Murgia National Park using innovative and environmentally friendly techniques.

One of the challenges involved in modelling control strategies for A. altissima is the lack of detailed and 
current data on extent and control efficacy. The most recent map of A. altissima presence and distribution in 
the park is from 2012, and was a deliverable of the Life Alta Murgia project. This map pre-dates the on-going 
eradication program. Due to these data limitations, we propose the use of a relatively simple mechanistic model, 
a reaction–diffusion model, validated against the current plant spatial distribution by satellite images detection. 
We incorporate the effect of an eradication program using a reaction term, which simulates the plant abatement 
during a control program. Within the approaches proposed in literature for modeling the IAS removal7,10,11,25,26, 
we adopt the spatially explicit model9, where the rate of removal is described by an Holling II type response 
function and the best control strategy is obtained by minimizing the environmental and economic dameges in 
terms of costs, under the realistic hypotesis of limited resources.

The growth of the species in our model is modulated by an habitat suitability index (HSI) function, which 
is estimated by using remote sensing data. Habitat suitability models help both in understanding species niche 
requirements and predicting species potential distribution27. These models statistically relate field observations 
to a set of environmental variables (e.g., climate, topography, and soils) to predict spatial potential suitable dis-
tributions indicating the suitability of locations for a target species across a landscape or region. In this work, 
a ranking procedure is applied to obtain an estimation of the HSI function, based on the presence map of A. 

https://www.ispacnr.it/progetto-life-alta-murgia/
https://www.ispacnr.it/progetto-life-alta-murgia/
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altissima and the land cover map in the analyzed area. Moreover, the continuous Boyce index27 is evaluated to 
validate the results and assess the ability of the estimated HSI map in predicting the presence of the plant.

The value of our predictive mechanistic model is to provide an automatic tool for an a-priori estimate of the 
effectiveness of a planned control action under temporal and budget constraints. In this study, the interest was 
focused on finding the best budget allocation both in space and time for the park area maintenance, which can 
help determine whether a control policy needs to be improved. We identified the function of the costs and we 
formulate an optimal control problem with a penalty term.

As result, we developed an automatic tool that can get the plant presence information from the satellite and 
use that information for predicting the best action of the park manager. Indeed, there is a lot of satellite data 
that are not being used to its full potential and there are optimisation methods that are powerful, but not being 
used on-ground. We tried to link the two domains and make their combined solution accessible and useful to 
managers. Specifically, the model ingests the initial presence density of A. altissima, obtained from a data-driven 
classification approach applied to very high resolution (VHR) satellite images, combined with the park land cover 
map. The latter is also used for providing a rough estimate of habitat suitability. To calculate the optimal budget 
allocation from control measures, we implemented a numerical procedure based on composition of implicit and 
exponential Lawson schemes28 in a forward–backward algorithm29,30. We developed the web service, COINS 
(COntrol of INvasive Species), as a decision support tool to be integrated into management practices. Data and 
workflows are available through a virtual research environment (VRE) and public metadata catalogues. The 
parameter values used in the model were taken both from literature and expert knowledge and estimated by the 
Life Alta Murgia Project data. However, uncertainty will be associated with these parameter values, regardless of 
whether they are selected using expert knowledge or inferred from data. Arbitrary Polynomial Chaos31 is used 
to assess the effect of the parametric uncertainty on the predictions of the model. So, the primary aim of our 
analysis is to assess qualitatively the effectiveness of control strategies for the species A. altissima as well as their 
sensitivity to changes in allocated budget and surveillance efficiency.

Plant detection
The study area covers 500 km2 partially within the Alta Murgia National Park, which is located in the Natura 
2000 network protected area (IT9120007) within the Apulia region (Southern Italy) (Fig. 1). The mapping of 
A. altissima invasive specie was obtained using a set of four, cloud-free, multi-seasonal WorldView-2 (WV-2) 
satellite imagery, at 2 m of spatial resolution, acquired on May 19th, 2011, October 5th, 2011 (Fig. 2a), January 
22nd, 2012 and July 6th, 2012 (Fig. 2b).

The employed technique consisted of a two-stages hybrid classification process: the first applied a knowledge-
driven learning scheme to provide a land cover map (LC) including deciduous vegetation and other classes; 
the second exploited a data-driven classification to discriminate pixels of the invasive species found within the 
deciduous vegetation layer of the LC map from the first stage. Specifically, the first stage of the classification 
process was based on an object-oriented, knowledge-driven LC classification algorithm within the eCognition 
framework (https://​docs.​ecogn​ition.​com/​v9.5.​0/). The algorithm was developed in a previous study32–34. It is 
based on multi-class discrimination using spectral and context rules provided through the elicitation of prior 
expert knowledge about agricultural practices, class phenology, spectral and spatial features. In the first stage 
no training data were needed to produce the output LC map. The input to the first stage were the multi-seasonal 
WV-2 images available corresponding to: the biomass pre-peak (January), the biomass peak (May), the dry sea-
son (July), the biomass post-peak (October). The deciduous vegetation layer, to which A. altissima belongs, was 
extracted from the LC map obtained as output of the first stage and it was used for the masking of the images to 
be analyzed in the second stage.

The second stage of the algorithm was based on a data-driven, pixel-based support vector machine (SVM) 
classifier fed in input with the WV-2 images pair acquired in July and October (after testing different input 
configurations) only for those pixels belonged to the deciduous vegetation layer from the first stage. So the A. 
altissima pixels were distinguished from those belonging to other deciduous vegetation for a two-classes problem 

Figure 1.   Alta Murgia National Park and study area (500 km2 ) in yellow and red boundaries, respectively, 
overlaid on a Google satellite image (https://​www.​google.​it/​intl/​it/​earth/). Map obtained by QGIS 3.24 (https://​
qgis.​org/​en/​site/).

https://docs.ecognition.com/v9.5.0/
https://www.google.it/intl/it/earth/
https://qgis.org/en/site/
https://qgis.org/en/site/
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and a final binary (A. altissima—other deciduous) output mapping for the invasive species was obtained35. The 
accuracy assessment protocol36–38 was adopted in the second stage of the system to evaluate the reliability of the 
A. altissima mapping. The overall accuracy (OA) and the user’s accuracy (UA) values for A. altissima were 97.96 
± 0.14% and 82.47 ± 1.32%, respectively.

An additional processing step was performed by adding a convolution median low-pass filter to the output 
map. Thus, the levels of detail achieved depended on the filter size used. Although the application of a filtering 
procedure may remove not only noisy and false positive pixels but also some pixels belonging to isolated A. 
altissima plants, a median filter was adopted to improve the final overall accuracy (OA) value39. The choice of the 
filtering increased OA and UA values up to 99.41 ± 0.14% and 97.47 ± 0.01%, respectively, for a 5× 5 window 
size. The Supplementary Information contains the workflow of the hybrid two-stage classification algorithm 
used to produce the mapping of A. altissima.

The images considered in the present study were provided by the European Space Agency (ESA) under the 
Data Warehouse 2011–2014 policy within the FP7-SPACE BIO_SOS project (www.​biosos.​eu). The images were 
co-registered with each other and calibrated to top of atmosphere (TOA) reflectance values. The reference data 
used for the training of the second-classification stage and for validation of the final output map were collected 
during the European Life Alta Murgia Project carried out to eradicate the invasive plant species A. altissima40. 
In the Supplementary Information, we show the binary map of the initial presence (2012) of A. altissima in the 
analyzed area.

Habitat suitability estimation
We used remotely sensed data to generate the habitat suitability index (HSI) map of A. altissima in the Alta 
Murgia National Park, defined as the potentiality of the habitat to host the plant. The map is composed of cells 
whose values range from 0 to a maximum value of 0.262638. These values indicate how close the local environ-
ment is to the species optimal conditions, higher values standing for the most suitable areas. HSI values give 
a measure of how the growth rate and the carrying capacity vary across the analyzed area41. Habitat suitability 
models use empirical relationships between the species distribution and the features of the environment to give 
an estimate of the HSI for each area of the landscape. Although remotely sensed variables are traditionally used 
to model animal habitat, applications on the plant habitat modeling are extensively in the recent literature41–43. 
Geospatial environmental data (topography, climate, vegetation type) are usually used as predictors for modeling 
the habitat suitability42.

(a) October 5t h , 2011 (b) July 6t h , 2012

Figure 2.   WV-2 input image, 2 m resolution. (a) 2011, (b) 2012. FalseColour composite: R = 5, G = 7, B = 2. 
Source: images provided by the European Space Agency data warehouse policy, within the FP7 BIO_SOS project 
(https://​cordis.​europa.​eu/​proje​ct/​id/​263435), GA 263455.

Figure 3.   Close-up: (a) WV-2 July and (b) WV-2 January images, as R = 5, G = 7, B = 2 composite. In the 
winter image the deciduous vegetation does not appear green. (c) A. altissima output map from second stage. In 
the black circle a deciduous shrub correctly distinguished from A. altissima by SVM classifier is shown.

http://www.biosos.eu
https://cordis.europa.eu/project/id/263435
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Due to the lack of data, in this paper we give a rough estimate of the habitat suitability, starting from the 
already extracted presence map in 2012 and the Land Use (LU) map available from the Regione Puglia repository 
(http://​www.​sit.​puglia.​it/​portal/​porta​le_​carto​grafie_​tecni​che_​temat​iche/​Carto​grafie%​20Tem​atiche/​UDS), for the 
same year. Due to the propensity of the plant to grow along the edges of the woods, along roadsides, rows and in 
the openings of the woods, we extended the 46 LU classes in a Corine Land Cover-like taxonomy with ten more 
classes defining the edges of: deciduous forests, olive groves, orchards and small fruit farms, early growth forests, 
mixed coniferous and deciduous forests, coniferous forests, agricultural production units, vineyards, cultivation 
and complex systems and other perennial crops. All the analyzed LU classes are listed in Fig. 4, togheter with 
the HSI estimated valued.

We produced the HSI map with a spatial resolution of 20 m: the spatial degradation was preferred for compu-
tational purposes. The HSI corresponding to each LU class has been calculated as proportional to the frequency 
of occurrence of that LU class in the surrounding of each pixel where the presence of A. altissima is detected. 
The rationale behind is that the more a LU class appears nearby an A. altissima tree the more it is suitable to host 
the invasive species. As we only have a single presence map of A. altissima, we used the same dataset for both 
estimation and evaluation. In particular, we split the map into two horizontal strips and apply the estimation 
procedure to the upper one. Then, the fitted HSI values were compared with the occurrences of the plant in the 
lower strip of the map.

To have an unbiased HSI calculation, we applied a subsampling method, specifically we split the initial map 
in k = 5 chunks and we computed the suitability map on the remaining k − 1 chunks; then, we repeated this 
procedure for k times by excluding the kth chunk at each iteration. The final map was obtained as the mean of 
the suitability values obtained in each iteration. In Fig. 4, we have represented the bar-plot with the mean and 
standard deviation of the HSI only for the most suitable habitats, omitting those that were not suitable at all. The 
maximum value of HSI was 0.262638 corresponding to the agricultural production unit LU class. The estimated 
mean and standard deviation of the habitat suitability indices of A. altissima in each LU class are shown in Fig. 4. 
The mean values were projected over the LU map to obtain the HSI map in Fig. 5.

Model validation.  For assessing the predictive power of the applied procedure for estimating the HSI val-
ues, based on the presence map of A. altissima, we used the Boyce index44. The index quantifies the ability of the 
estimated HSI map in predicting the presence of the plant, given a set of evaluation points. The method consists 
in partitioning the values of the habitat suitability into a number k of classes and calculating the predicted fre-
quency in each class. Then, this frequency is compared with the expected one, i.e. the expected frequency of a 
random distribution of presence points. The two frequencies are defined as follows:

Pi =
pi

∑k
j=1 pj

Figure 4.   Estimated mean and standard deviation of habitat suitability index of A. altissima for LU classes in 
the analyzed area.

http://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/Cartografie%20Tematiche/UDS
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is the predicted frequency in class i and the expected frequency is calculated as the relative area covered by each 
class i , with i = 1 . . . k

where ai is simply the number of cells covered by the i-th habitat suitability class. The ratio of the predicted-
to-expected frequency Fi = Pi/Ei provides a good indication of the capability of a model of simulating the real 
habitat suitability. Indeed, we do expect that a good model exhibits a monotonic increase of Fi with the class 
it refers to. The Boyce index is then defined as the Spearman rank correlation coefficient between Fi and i. The 
values of the index vary from −1 to 1 with positive values indicating that predictions correlate with the data, 
whereas the negative values characterize the absence of correlation. Values close to zero tell us that the model is 
not different from a random choice. In this paper we used a continuous version of the Boyce index, introduced 
in27,44, where the fixed classes are substituted by a moving window of a given size. The continuous Boyce index 
has been developed to solve the issue of the sensitivity of the index to the fixed number of classes and is available 
as a R code (https://​github.​com/​jmrmc​ode/​contb​oycei​ndex) which has been used in the present paper to evaluate 
the predictive ability of our model. As evidenced in the previous section, to perform the evaluation we divided 
the original presence and land cover maps in two parts, the upper one used to build our habitat suitability model, 
the lower one to evaluate the predictive ability. On that last portion of the map we measured the continuous 
Boyce index, by associating at each land cover class of the map the habitat suitability previously estimated and 
then calculating the predicted-to expected ratio. The evaluation has been repeated at different resolutions of 
the original land cover map, starting from 2 m, with the highest values of the Boyce index corresponding to the 
highest resolution and close to 1. Since different resolutions generate different distributions of land cover classes 
the degradation of the index is somehow expected. However, the predictive ability of the model is preserved in a 
considerable range of decreasing resolutions. E.g., at 20 m, ten times more than the original one, which is the reso-
lution used throughout the paper to perform the simulations, we obtain a continuous Boyce index value of 0.71 
which still indicates a good predictive ability of the model in spite of the bias generated by the higher resolution.

The spatiotemporal optimal control model
The formulation of the optimal control problem is based on a PDE reaction-diffusion model with logistic growth, 
that includes a control term that has Holling-II type behavior and a budget constraint11. The invasive species 
abundance, u(x, t), at position x and time t is given by:

The first term on the right-hand side describes collective motion of randomly moving individuals depending 
on a coefficient D, the diffusivity, which governs how quickly the species disperses. The second term on the right-
hand side is a logistic population growth term, where the coefficient r is the intrinsic growth rate of the population 
and k is the carrying capacity. The term ρ(x) , bounded between 0 and 1, represents the habitat suitability func-
tion which modulates the carrying capacity k according to the suitability of the land cover to the growth of the 
invasive species. The final term represents the species mortality due to a control effort E(x, t) , which is restricted 
to non-negative values. The control action on u is modeled by a Holling II-type function µu/(1+ τµu) , where 
µ is the harvesting rate per population density unit, due to control. The average time spent for the harvesting of 

Ei =
ai

∑k
j=1 aj

(1)
∂u

∂t
(x, t) = D�u(x, t)+ r u(x, t)

(

ρ(x) −
u(x, t)

k

)

−
µ u(x, t)E(x, t)

1+ τ µ u(x, t)

Figure 5.   Habitat suitability map in the study area. Yellow line: boundary of the Alta Murgia National Park. 
Map obtained by RStudio, version 2023.03.0 (https://​cran.​rstud​io.​com/) and QGIS 3.24 (https://​qgis.​org/​en/​
site/).

https://github.com/jmrmcode/contboyceindex
https://cran.rstudio.com/
https://qgis.org/en/site/
https://qgis.org/en/site/
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a population item is represented by the positive coefficient τ . In the Supplementary Information, we reported 
the estimated parameters for A. altissima growth and eradication.

The goal that we consider is to minimize the environmental damage over time at the minimum cost, in terms 
of the resources allocated to the species harvesting. A penalty term is added to take into account the budget 
constraint E(x, t) ≤ B . As a result we build the penalized objective function as follows

where γ represents the cost due to the environmental damage, θ is a weight for the final population density, 
0 < δ < 1 is the discount factor. The term β

∫

�×[0,T] e
−δt

(

E(x,t)
B

)3

dx dt, represents the penalty term due to the 
budget constraint.

The model parameters were estimated on the basis of the expert knowledge of the plant and of the control 
program applied in 2014–2019 Alta Murgia National Park within the Alta Murgia Project. The parameter esti-
mation and the numerical procedure for the approximation of the system, as well as the description of the codes 
written in R open source language, are given in the Supplementary Information.

Diffusion over 10 years.  We firstly run the PDE model (1) over a period of 10 years, from 2012 to 2022, 
with a spatial resolution of 20 m. In this way we show the evolution of the invasive plant due to the effects of 
both growth and diffusion. The initial presence map (Fig. 2 in Supplementary Information) was multiplied by 
the habitat suitability map in Fig. 5 in order to obtain the initial density map in Fig. 6a. Assuming that no control 
action was applied for the whole analyzed period, i.e. E(x, t) = 0 for each cell x and t ∈ [2012, 2022] , model (1) 
predicts the growth and diffusion of A. altissima in the area, whose final state is depicted in Fig. 6b. Note that for 
the purposes of visualization, we applied a Gaussian filter to aggregate the results of clusters of cells with non-
zero mean density.

Uncertainty quantification with respect to HSI values.  Arbitrary Polynomial Chaos31 (aPC) was used to quantify 
the effect of uncertainties in the habitat suitability scores on the predictions of the model. aPC provides a spectral 
representation of uncertainty, with the density represented by the expansion:

where ξ ∈ R
nu collects the nu uncertain habitat suitability indices, α(x, t) ⊆ R

P+1 is a set of deterministic coef-
ficients and � a multivariate orthogonal polynomial, itself a product of a set of uni-variate, orthogonal polyno-
mials, ψ , with:

I = (Ik,i) is a (P + 1)× nu index matrix, with the rows denoting the corresponding orders of the uni-variate 
polynomials for each term in the expansion. P, the number of terms in the expansion, is a function of nu and the 
degree of the polynomial basis, denoted p:

Given samples of the joint density, f (ξ) , the aPC formulation used here computes an optimal multi-variate 
polynomial basis using the statistical moments of these samples. Note that the Polynomial Chaos formulation 
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(a) Density 2012 (b) Density 2022

Figure 6.   Dynamics of the diffusion model. Increase of density in 10 years, starting from 2012 until 2022. Maps 
were calculated by multiplying the presence by suitability and applying a Gaussian filter to highlight the changes.
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assumes that the uncertain habitat suitability indices are statistically independent, i.e. f (ξ)=
∏nu

k=1
fk(ξ k) , where 

fk is the Probability Density Function (PDF) for the kth uncertain habitat suitability index. Here we focus on 
uncertain HSI values for four common land cover classes: agricultural production units; bushes and shrubs; 
areas with natural recolonisation; natural pastures, grasslands, uncultivated. Assumed Gaussian distributions 
for these parameters were used in the uncertainty analysis.

Determining the coefficients of the expansion through a least squares fitting requires at least P + 1 model 
evaluations. As can be seen from (5), P scales rapidly with the number of uncertain parameters and polynomial 
degree. This phenomenon is referred to as the curse of dimensionality. To mitigate this effect, the aPC formulation 
used here employs Smolyak’s algorithm45 to assemble a sparse sampling grid on which to evaluate the model. 
For degree p = 2 , a sparse sampling grid containing nine points was assembled using the collocation points of 
the PDFs and Smolyak’s algorithm. The co-ordinates of these sampling points are tabulated in Table 2 in the 
Supplementrary information. Denoting the ith of the nθ = 9 sampling points as θ (i) ∈ R

4 , the weights in (3) 
may be computed through8:

where w ∈ R
nθ represents the weights from Smolyak’s algorithm and u(x, t|θ (i)) an evaluation of the model, 

conditioned on the HSI values in θ (i) . The PDE model (1) with no control action ( E(x, t) = 0 ) was evaluated at 
each of the nine points of the grid, over a period of 10 year resolution with a spatial resolution of 20 m. The nine 
initial density maps at 2012 were obtained by multiplying the presence map (0/1) by the estimated HSI values 
at the collocation points. Then, model (1) was run for each of those maps and the mean and standard deviation 
(sd) values of the predicted density values were derived on the whole domain at different times. Figure 7 shows 
the mean and sd maps at the initial and final times.

The control program.  Starting with the initial density map in Fig. 6a, we ran the PDE model (1) for 2 years 
to obtain the density map at 2014. Next, we employed the optimal control model (1)–(2) to determine the best 
resource allocation strategy for eradicating the plant within the Alta Murgia National Park from 2014 to 2019. 
The resulting control maps in Fig. 8 illustrate the optimal allocation of efforts over time and space for the most 
effective removal strategy.

By the end of the program in 2019, the plant had been nearly completely eradicated within the park’s bounda-
ries, as shown in the density map in Fig. 9a. As expected, the dynamic evolution of the model demonstrates a 
steady decrease in plant density, leading to a significant reduction within the park. The control maps in Fig. 8 
visually depict this trend, with the red color indicating density fading as more plants are removed. The density 
values within the study area by 2019 are very low, indicating the near absence of plants (Fig. 9a).

We further simulated the repopulation process after the conclusion of the project by running the PDE model 
(1) without any control action from 2019 to 2030. The density prediction of the plant for 2030 is depicted in 
Fig. 9b. The resulting density maps (Fig. 9a,b) visually illustrate the regrowth of A. altissima during the years 

(6)αk(x, t) =

∑nθ
i=1 wiu(x, t|θ

(i))�k(θ
(i))

∑nθ
i=1 wi�k(θ
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,

(a) Mean density 2012 (b) Standard deviation 2012

(c) Mean density 2022 (d) Standard deviation 2022

Figure 7.   On the left, the density mean at time 2012 (a) and 2022 (c), generated from the nine HSI maps 
sampled with the aPC algorithm; on the right, the uncertainty measured by the standard deviation at the initial 
(b) and final (d) time.
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leading up to 2030. As anticipated, the plant reestablishes within the Alta Murgia National Park and shows an 
increase outside the perimeter where the eradication program was not implemented.

Discussion
The Italian National Biodiversity Future Centre (NBFC)6 is one of the National Centers founded in 2023 under 
the Italian National Recovery and Resilience Plan, which aims to conserve, restore and limiting the loss of biodi-
versity in Italy. Assessing and monitoring biodiversity and its evolution and to plan protection and conservation 
interventions to protect native species at risk of extinction because of IAS spread, are some of its specific tasks. 

(a) Effort 2014 (b) Effort 2015

(c) Effort 2016 (d) Effort 2017

(e) Effort 2018 (f) Effort 2019

Figure 8.   Maps of the control effort variable showcasing the results of utilizing the optimal control model (1)–
(2) to devise an optimal resource allocation strategy for eradicating the plant within Alta Murgia National Park 
from 2014 (a) to 2019 (f).

(a) Density after control 2019 (b) Repopulation Density 2030

Figure 9.   (a) Density map illustrating the nearly complete eradication of the plant within the park’s boundaries 
by 2019, subsequent to the implementation of the control program. (b) Density map depicting the post-project 
repopulation density projected for the year 2030, as determined by the PDE model (1) simulation conducted 
without any control actions from 2019 to 2030.
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Development and implementation of model-based decision support systems are a key asset for effective control 
programmes for IAS.

Addressing the complex issue of IAS management is an ongoing challenge. The scale of the problem, with 
an ever-growing number of invasive species and their territorial expansion, leads to diverse impacts on invaded 
or vulnerable areas. Different management options, such as prevention, containment, control, or eradication, 
must be carefully considered based on specific circumstances. Due to the magnitude of the IAS problem and the 
limited resources available for their control, careful planning is crucial. Cost-effective solutions that minimize 
negative impacts on socio-ecological systems require in-depth analysis of the extent of invasion and predictions 
of its evolution over time and space.

The issue of management costs compared to damages caused by IAS is gaining attention in the scientific 
community. IAS exert substantial economic and social consequences, resulting in property devaluation and 
decreased agricultural productivity. To optimize cost-effectiveness, it is imperative to invest in timely and proac-
tive management measures46. Research shows invasive species cause damages ten times higher than management 
costs, with damage costs increasing rapidly20. However, insufficient implementation of international agreements 
is evident from rising global damage costs20. A recent paper discusses economic benefits of managing invasive 
species, comparing avoided costs with and without intervention, including control costs and benefits forgone47.

The description of the spatiotemporal dynamics of plant invasive species is an important tool that allows 
an understanding of natural phenomena and how they should be managed in the short and long term to pre-
serve biodiversity and improve the sustainability and conservation of nature. For this purpose, in this work, a 
PDE optimal control model with penalty term (1)–(2) was implemented to automatically predict the density of 
vegetative IAS and to determine the best allocation strategy for the control of the plant. We focused our atten-
tion on the case study of the invasive species A. altissima, a pervasive invasive plant species in the Alta Murgia 
National Park, a Natura200 site in the Southern Italy, one of the pilot site of Task 4.3 of the NBFC. A. altissima 
has been chosen as target IAS species because has quickly spread in the Alta Murgia National Park, causing seri-
ous direct and indirect damages to ecosystems and natural habitat loss and degradation. A. altissima harms the 
ecological balance of the park threatening the its native biodiversity. As only an active management can ensure 
the conservation of the wild flora and fauna species of the park, the European Commission funded the Life Alta 
Murgia Project to eradicate of this invasive exotic tree species. We made use of the insights gained from the 
Life Alta Murgia Project to evaluate the costs involved in eradication. Our objective was to identify the most 
efficient allocation strategy for utilizing the available budget for eradication efforts. To estimate the costs, we 
accounted for the daily expenses of a single eradication team, encompassing herbicide costs and the required 
resources for clearing specific areas. For a more comprehensive and detailed cost estimation, please refer to the 
Supplementary Information.

As a first analysis, we applied Eq. (1) without the control term to describe the diffusion dynamics of the spe-
cies A. altissima in the Alta Murgia National Park. Using the presence map for the year 2012 and the estimated 
HSI map at a resolution of 20 m, we observed an increase in density around the spatial points where the species 
was present in the PDE model at 2022 (Fig. 6). The Boyce index demonstrated good predictive capability of the 
HSI estimation based on the presence map of the plant, despite the resolution bias. Additionally, the aPC tech-
nique quantified the uncertainty effect on the predicted map at 2022. The density map revealed increased mean 
density between 2012 and 2022, with uncertainty concentrated on the edge of zones with high mean density, 
represented by red rings in Fig. 7d. The analysis indicates a uniform distribution around the source, suggesting 
equal diffusion in all directions. Over time, the variation in density spreads from the center towards the edges 
of the cell, with a “cone of uncertainty” represented by a confidence interval. Detailed results are provided in the 
Supplementary Information, including changes in mean density and uncertainty assessment for individual cells.

A detailed perspective on a cluster of cells shows that the distribution around the source is uniform. This 
uniformity indicates that there are no natural structures in the region influencing or imposing a specific preferred 
direction for diffusion. In other words, particles or substances diffuse equally in all directions without any bias. 
When examining the standard deviation, it becomes evident that the variation is initially higher around the center 
of the cell. As time progresses, this variation gradually spreads towards the edges of the cell. This observation 
suggests that at the beginning of the process, the dispersion of particles is more concentrated near the center. 
However, over time, it becomes more evenly distributed throughout the cell. Additional details of this analysis 
are presented in the Supplementary Information. The analysis therein includes changes in mean density and 
introduces the concept of the “cone of uncertainty,” represented by a 2σ confidence interval, for a single cell. This 
uncertainty takes into account the variability and confidence level of the data.

The analysis suggests that the parameters that most influence the dynamics are the HSI values, which indicates 
how close the local environment is to the optimal growth conditions of the species. A possible extension of this 
work would be to analyze how the results change with respect of the HSI. The estimation of the habitat suit-
ability index indirectly incorporates human influence by utilizing the LCCS-FAO land cover taxonomy, which 
encompasses both natural and anthropogenic classes and provides a high level of thematic detail, with potentially 
infinite classes. The prevailing method for estimating habitat suitability is typically based on correlating the 
presence of the species with biophysical environmental conditions48, which often overlooks the role of human 
influence and requires a substantial amount of data. The underlying rationale of our approach is to account for 
the relevance of human influence through a land cover map extracted from a very high resolution image and clas-
sified according to FAO-LCCS taxonomy. While land cover maps are inherently linked to biophysical variables, 
they also reflect the impact of human activities. As an example, Fig. 4 illustrates that our land cover map includes 
classes such as “disused settlements” that have a notable tree presence. Roads, settlements, urban areas, as well as 
the existence of canals and other linear features, such as agricultural field edges, are all considered and weighted 
within the habitat suitability index. Given the role of HSI in the model, and the way the model operates make 
it unnecessary to explicitly incorporate distance or density measurements of artificial landscape components.
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As a second analysis, the model (1)–(2) was employed to find the best resources allocation strategy for the 
eradication program of the plant in the years 2014–2019. The simulations show that the model is well suited for 
the study of invasive species. It is both able of describing the dynamics of diffusion and providing predictions on 
the effort to be considered to contain the spread of the species. Starting from the initial presence density of A. 
altissima, obtained from an automatic data-driven classification approach applied on satellite images, our simula-
tions are able to suggest to a park manager with limited budged resources where and when allocating the control 
effort in terms of number of teams of person (able to eradicate approximately 1000 plant a day), for removing as 
much as possible the alien plants within the temporal window of the management action.

The work presented here combines remote sensing to estimate habitat suitability with spatiotemporal optimal 
control into a single workflow. Some authors also use very high-resolution WorldView-2 imagery to develop 
maps of invasive species presence, compared to orthophotos from unmanned aerial vehicles for training and 
validation49. There is also a body of work that links remote sensing directly to management using unmanned 
aerial systems50. This line of investigation focuses on the potential of utilizing artificial intelligence technologies 
in agriculture, specifically for effective weed management, but it does not link remote sensing to optimisation 
routines. On the other hand, some works build on optimal control analyses developed to optimize spatiotemporal 
resource allocation, but where habitat suitability is already known7,51. Another recent paper focuses on predict-
ing the spatiotemporal spread of invasive species using elevation-dependent habitat suitability and arbitrary 
Polynomial Chaos method is applied to assess parameter uncertainty and enhance the accuracy of predictions8. 
However, the paper does not incorporate any control measures for managing the invasive species. Finally, other 
work focuses on the issue of imperfect detection and misclassification within spatiotemporal invasive species 
management and highlights the opportunities available by combining optimisation techniques with remote 
sensing52.

From a modeling perspective, IAS removal has been approached using different strategies in previous stud-
ies, such as mass action interactions and constant rate of removal53,54. However, both of these methods have 
their drawbacks. Mass action interactions, which assume that the rate of removal is proportional to the control 
effort multiplied by abundance, become unrealistic when dealing with high abundances of invasive species. This 
unrealistic behavior occurs because the removal rate can become exceedingly large for very large populations 
of invaders. On the other hand, constant removal models, where the rate of removal is simply proportional to 
the control effort, have their limitations too. These models are not suitable for small populations of invasive 
species because the removal rate does not decrease as the population declines. This lack of decrease in the 
removal rate does not account for the increased search time required to find individual invasive species as their 
population becomes rare. To achieve a more balanced and realistic representation of invasive species removal, 
we used a Holling-II function response in Eq. (1), to describe the effect of the control action on the population 
dynamics7, 11. By combining the features of mass action at low abundances and saturation to constant removal at 
high abundances, this approach enhances our comprehension of how control efforts influence population levels. 
The incorporation of the Holling-II function response leads to a more accurate representation of invasive species 
removal dynamics. This improvement aids decision-makers and managers in assessing the potential effectiveness 
of various control strategies and optimally allocating resources for eradicating or containing invasive species.

This work stands out from others in the field due to its combination of expert knowledge, remote sensing 
techniques, and spatiotemporal optimal control. This integration creates a comprehensive and robust approach 
to invasive species management and control. By leveraging expert knowledge, the work ensures that decision-
making is informed by deep domain expertise. The utilization of remote sensing techniques enables a more 
accurate understanding of the distribution of invasive species. Lastly, the incorporation of spatiotemporal opti-
mal control optimizes resource allocation, leading to more efficient and effective management strategies. This 
integrated framework enhances the overall precision and effectiveness of invasive species management efforts.

Our approach to IAS management could act as a decision support system for managers, providing them 
a tool to tackle the complexities of invasive species control effectively. We provide a robust and data-driven 
framework to make informed decisions and take targeted actions. One of the key advantages of the model is its 
adaptability, allowing it to be tailored to suit the specific characteristics and behaviors of various invasive species 
and ecosystems. By adjusting the model’s parameters, such as biological traits, diffusion rates, and growth coef-
ficients, managers can obtain accurate representations of the invasive species they are dealing with, enhancing 
the precision of management strategies. The model helps optimize the allocation of these resources by predicting 
the density of invasive species in different areas and suggesting control efforts accordingly. By focusing control 
efforts where they are most needed, managers could achieve more significant impacts with the resources at hand, 
ultimately leading to more cost-effective and efficient management strategies. A critical aspect of our model is 
its capability for early detection and monitoring. After control efforts have been implemented, the model can 
be used to monitor the spread of invasive species over time. By proactively addressing potential re-infestation, 
managers can take timely action and prevent the resurgence of invasive species.

Since the eradication program takes place in a protected area that is geographically limited but has no physical 
barriers at the edges, once the control action ends, the invasion of the species starts again from the boundaries 
of the park close to the private areas where the eradication is not allowed. Our simulations in case of absence 
of control from 2019 to 2022 are capable of making an early detection of re-infestation as to suggest to manag-
ers where and when concentrating their efforts in case of additional financial resources. Implementing control 
measures beyond the national park’s borders, where feasible, could prove to be a valuable strategy in mitigating 
re-invasion. In this study, our focus was on testing and validating spatiotemporal control within the protected 
area, where active eradication efforts were underway, and relevant data were accessible. However, by incorporat-
ing data from neighboring areas, the model could demonstrate the effectiveness of controlling the invasive species 
in adjacent regions to reduce its influx into the protected area. Understanding the implications of implementing 
control measures beyond the park’s borders is crucial for designing a comprehensive and efficient eradication 
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program. In this study we utilized in-field reference data within the park boundaries, resulting in a lack of vali-
dation information for the surrounding area. Nevertheless, once the entire process is validated, it can be applied 
wherever field data are available. For future research and modeling endeavors, there is a valuable opportunity 
to explore the potential benefits of adopting a broader approach to invasive species control, encompassing both 
the protected area and its neighboring regions. Such investigations could offer valuable insights to policymakers 
and managers, aiding them in developing a more integrated and sustainable management strategy for invasive 
species eradication and conservation efforts.

Management actions aimed to eradicate and control IAS in protected areas whose borders have no physical 
barriers cannot be successful on the long time horizon. Consequently, the models that simulate these actions 
give us an optimal solution for the ongoing use of financial resources to strive for the absence of the IAS. A future 
development of our tool could deal with spatial domains in which there are real physical barriers such as, for 
example, the alpine lakes of the Gran Paradiso National Park55, another pilot site of NBFC. Our tool could also be 
useful for supporting decisions for containment of invasive alien fish and thereby mitigate their environmental 
impacts. To do so, we would need to modify the underlying optimality system, to take into account the barrier-
type boundary conditions. Other potential developments include wind or current effects modeled by transport 
terms26, whose effects are neglected in this first version. Finally, new approaches based on ecological networks 
both for the containment of IAS and for simulating the effects of the re-population of native species will be the 
object of our study in the next future.

Conclusions
Addressing the complexity of IAS management requires a comprehensive approach, incorporating expert knowl-
edge, remote sensing techniques, and spatiotemporal optimal control. This integrated framework enables more 
accurate and data-driven decision-making, allowing for effective resource allocation and targeted control efforts. 
By optimizing the allocation of resources, decision-makers can achieve more significant impacts while minimiz-
ing negative effects on socio-ecological systems.

The implementation of a PDE optimal control model with a penalty term, combined with habitat suitability 
index (HSI) estimation from remote sensing data, has proved to be a valuable tool for predicting the density of 
invasive species and suggesting optimal allocation strategies for eradication programs. This approach is adaptable 
and transferable, making it applicable to different invasive species and ecosystems. The model’s optimization pro-
cess considers factors such as timing and location of control actions, leading to more efficient and cost-effective 
management strategies. Furthermore, the model allows for early detection and monitoring of re-infestation, 
enabling managers to take timely action and prevent the resurgence of invasive species.

While the eradication programs in protected areas without physical barriers may not achieve long-term 
success, the model can still provide valuable insights into resource allocation and containment efforts. Future 
developments of the model could incorporate physical barriers and address other challenges, such as wind or 
current effects, to enhance its applicability in different scenarios.

Data and code availability
The workflow “Ailanthus Workflow—Combining Modeling and remote sensing techniques to monitor and 
control the spread of invasive species:the case of Ailanthus altissima” was developed within the Internal Joint 
Initiative (IJI) of LifeWatch ERIC https://​metad​ataca​talog​ue.​lifew​atch.​eu/​srv/​api/​recor​ds/​66744​693-​cfc7-​4901-​
9838-​618e1​8bb17​af. The same codes were ported to the ECOPOTENTIAL Virtual Lab platform (VLab) at 
https://​vlab.​geodab.​org/. The R® codes COINS.R (COntrol of INvasive Species) and HabSuit.R, for the model-
istic implementation and the HSI estimation, respectively, are available from https://​github.​com/​CnrIa​cBaGit/​
COINS​vlabr​epo.
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