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The supply-demand-based optimization (SDO) is among the recent stochastic approaches that

have proven its capability in solving challenging engineering tasks. Owing to the non-linearity and
complexity of the real-world IEEE optimal power flow (OPF) in modern power system issues and like
the existing algorithms, the SDO optimizer necessitates some enhancement to satisfy the required
OPF characteristics integrating hybrid wind and solar powers. Thus, a SDO variant namely leader
supply-demand-based optimization (LSDO) is proposed in this research. The LSDO is suggested to
improve the exploration based on the simultaneous crossover and mutation mechanisms and thereby
reduce the probability of trapping in local optima. The LSDO effectiveness has been first tested on

23 benchmark functions and has been assessed through a comparison with well-regarded state-of-
the-art competitors. Afterward, Three well-known constrained IEEE 30, 57, and 118-bus test systems
incorporating both wind and solar power sources were investigated in order to authenticate the
performance of the LSDO considering a constraint handling technique called superiority of feasible
solutions (SF). The statistical outcomes reveal that the LSDO offers promising competitive results not
only for its first version but also for the other competitors.

During the past decades, optimization has aroused an increase due to its importance in various fields includ-
ing engineering design, economics, computer science, business, operational research, etc. Besides, the most
popular real word optimization problem is the optimal power flow in power system operation and planning’.
The OPF is regarded as a high-dimensional, non-convex, non-linear, complex issue. Solving the OPF problem
efficiently and accurately plays a vital role in power system operation and planning. By achieving an optimal
dispatch of generation resources, OPF helps to improve system efficiency. Additionally, OPF enables the integra-
tion of renewable energy sources, enhances grid resilience, and facilitates the reliable and secure operation of
power systems, thereby ensuring the provision of reliable and affordable electricity to consumers. Furthermore,
the primary objective function is minimizing fuel cost, then the emission, voltage deviation, power loss, etc,
taking into account numerous constraints on generators, bus voltage, line capacity, transformer tap, and also
active and reactive power of generators, which should be satisfied. Moreover, the OPF problem can be mainly
solved via two categories of optimization techniques: the first one is classical or deterministic approaches that
converged to local optima and suffered from convexity. The second is the intelligent or stochastic approaches
that are considered an effective methods for finding optimal solutions. In general, many scholars have been suc-
cessfully applied various stochastic approaches to address the power system issues including adaptive constraint
differential evolution (ACDE) algorithm?, an improved version of the coyote optimization algorithm (COA)?,
teaching-learning-based optimizer (TLBO)*, adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya)’,
backtracking search algorithm (BSA)S, crisscross search based grey wolf optimizer (CS-GWO)7, ant colony
optimization (ACO)?, effective whale optimization algorithm (EWOA)’, moth swarm algorithm (MSA)*, adap-
tive group search optimization (AGSO)'!, improved colliding bodies optimization (ICBO)"?, differential search
algorithm (DSA)", invasive weed optimization (IWO)', interior search algorithm (ISA)"®, robust optimization
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approach (Rao)'¢, Salp swarm algorithm (SSA)". Stud krill herd algorithm (SKH)'®, symbiotic organisms search
algorithm (SOS)*, tree-seed algorithm (TSA)*°, Hunter-prey optimization (HPO)?, particle swarm optimization
(PSO)?, fuzzy-based improved comprehensive-learning particle swarm optimization (FBICLPSO) algorithm®,
hybrid Grey wolf optimizer and particle swarm optimization (GWO-PSO)?*, hybrid of the firefly and PSO algo-
rithms (HFAPSO)?, combined genetic algorithm and particle swarm algorithm (GA-PSO)*, multi objective
genetic algorithm (MOGA)?, artificial bee colony algorithm based on a non-dominated sorting genetic approach
(ABC-NSGA-II)?, fitness-distance balance based-TLABC (teaching-learning-based artificial bee colony) (FDB-
TLABC)?, non-dominated sorting culture differential evolution algorithm (NSCDE)*, differential evolution
algorithm based on state transition of specific individuals (DE-TSA)*!, multi-objective covariance matrix adapta-
tion evolution strategy (CMA-ES)*, manta ray foraging optimization (MRFO)****, dragonfly algorithm (DA)™*,
flower pollination algorithm (FPA)*, etc.

Therefore, the aim of this current work is to improve the SDO algorithm in order to apply it to the OPF IEEE
30-bus, IEEE 57-bus, and IEEE 118-bus test power systems with and without considering hybrid Wind/Solar
energy resources. Besides, the implementation of the SDO optimizer to deal with OPF issues is investigated for
the first time. The SDO approach is a novel stochastic optimizer, introduced by Zhao et al. in 2019 and inspired
by the supply-demand mechanism in economics®. Numerous academic researchers have employed the SDO
algorithm such as, in Refs.*®** the authors apply SDO in order to extract accurate and reliable parameters for
different PV models. To design an efficient and economic hybrid energy system, the SDO optimizer was used
in*’. According to*!, the fitness-distance balance (FDB) method was employed to effectively model the supply-
demand processes in SDO. Additionally, in order to build an accurate equivalent circuit model for proton
exchange membrane fuel cells, authors in* tried to apply the SDO algorithm. As introduced in*, the authors
apply the SDO in order to obtain the unknown parameters of the PIDA controller. Referring to**, Hassan et all.
improve SDO with a view to enhance the population diversity, the balance between local and global search, and
the premature convergence of the original supply-demand based optimization (SDO) algorithm. Their proposed
approach was applied for achieving global solutions to economic load dispatch (ELD) problems in power sys-
tems. In addition, in an attempt to ameliorate the performance of the approach under study, the authors in*
present a chaotic map-based supply-demand optimization (SDO) algorithm including the fitness-distance bal-
ance (FDB) selection method to solve the Combined heat and power economic dispatch (CHPED) problem; the
FDB and chaotic maps were used to increase the convergence performance of the algorithm to the global solution
and to find the global solution in the solution search space. Regarding the work of Zhao et al.*’, an enhanced
fitness-distance balance (EFDB) and the Levy flight are added to the SDO original version to avoid premature
convergence and improve solution diversity; besides, a mutation mechanism is introduced into the algorithm to
improve search efficiency; and to enhance the convergence accuracy, an adaptive local search strategy (ALS) is
integrated, and so on. According to these literature reviews, the supply-demand-based optimization algorithm
requires an adjustment in terms of the exploration behavior to fit the current problem. This has motivated us to
suggest the leader supply-demand-based optimization approach (LSDO). Thus, during each SDO’ generation a
leader-based mutation selection adaptively perched over the exploration phase.

The contributions of this paper are:

® The proposed LSDO algorithm is evaluated by testing it on various benchmark functions. It is compared
against established algorithms such as Social Network Search (SNS), Gray Wolf Optimizer (GWO), Tunicate
Swarm Algorithm (TSA), and the original SDO algorithm. This evaluation helps assess the performance and
effectiveness of the LSDO algorithm.

e The LSDO algorithm is implemented to solve the Optimal Power Flow (OPF) problem on three well-known
standard systems: IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems considering Wind and Solar
powers. These systems have different numbers of control variables (24, 33, and 130, respectively). By con-
sidering these standard systems, the paper ensures a comprehensive evaluation of the LSDO algorithm’s
capabilities.

e Comparative studies are conducted between the proposed LSDO technique and the original SDO technique
for solving the OPF problem. By comparing these two approaches, the paper aims to highlight the advantages
and improvements achieved by the LSDO algorithm.

e The OPF problem is solved using both the proposed LSDO and the original SDO techniques in eight different
cases with single objectives. These objectives include total cost minimization, total emission minimization,
active power loss minimization, and voltage deviation minimization. By addressing these different objectives,
the paper demonstrates the versatility and applicability of the LSDO algorithm in tackling various aspects of
the OPF problem.

e Through comparative analysis, the paper shows that the proposed LSDO technique exhibits high robustness
and outperforms the conventional SDO algorithm and other recent techniques in addressing the OPF prob-
lem. This analysis highlights the superior performance of the LSDO algorithm and its potential as a powerful
optimization tool.

Overall, the paper contributes to the field by evaluating the performance of the LSDO algorithm, demonstrating
its effectiveness in solving the OPF problem incorporating wind/solar powers, and showcasing its robustness
and improved performance compared to existing techniques.

The following sections of this paper are organized as follows: In The proposed optimization methodology
section, you will find a detailed explanation of the original SDO, and its improved variant LSDO, besides a brief
introduction of the constraint handling strategy SE. Problem Formulation Methodology section introduces the
formulation of the OPF problem considering renewable energy resources. Simulation Results and Discussion
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section of this paper delves into a comprehensive numerical statistical analysis and discussions. Ultimately, the
paper concludes with a summary of the findings.

The proposed optimization methodology
In this section, the supply-demand-based optimization (SDO) algorithm is briefly explained then the process of
the leader SDO (LSDO) algorithm is described.

The supply-demand-based optimization (SDO) algorithm. According to the SDO algorithm pro-
posed in”, it is presumed that there exist multiple markets for commodities, each with a consistent quantity
and cost for every product. The cost of each commodity and the corresponding market volume is presented as

follows:
-1 2 d
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where d refers to the commodity prices number while n denotes the markets number. Moreover,
xﬁ(i =1,...,n;j=1,...,d) represents the jth commodity cost in the ith market and x;(i = 1, ..., n) refers to
the ith the vector of commodity cost. y}(i = 1,...,n;j = 1,.. ., d) represents the jth commodity quantity in the
ith market. y;(i = 1,. .., n) denotes the ith the vector of the commodity quantity.

The values of the decision variable in the fitness function are determined by the cost and quantity of com-
modities for each market, which are evaluated as follows:

T
|:Fx:| — |:Fx1 Fx2 ~--Fxn:| (3)
F, Fh Fo ... Fy
where T denotes the transpose of the matrix.

To prevent the SDO algorithm from becoming trapped in local optima, the balance costs y, and balance
volume vector xg are chosen randomly, with a probability distribution determined by their likelihood of being

successful.
1 n
Ni =||Fyi — m ZFyi (4)
i=1
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The quantities and costs of the product presented below are adjusted using the supply-factor o and demand-factor
B, which are determined based on the equilibrium cost and balance quantity:

yitt+1) =y, +a - (xi(t) — x0) 9)
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xi(t+1) =x, + B - (i(t) — y0) (10)

During the ith iteration, x;(¢) and y;(¢) represent the ith cost and total quantity of a given product. The cost of
the commodity can be expressed as:

xi(t+1) =x,+ L - (xi(t) — xo) (11)
In order to balance exploration and exploitation, alpha and beta are denoted as:

o =2(T_7Tt+l) sin(27r) (12)

B =2cos(2mr) (13)

here ¢ refers to the current iteration, r is a random vector, and T denotes the total number of iterations.
To facilitate an efficient transition between exploration and exploitation within the SDO technique, a novel
variable L is formulated as follows:

2AT —t+1)

L=aB = T

sin(2mwr) cos(2mr) (14)
The cost of each demand varies between the balance cost when |L| > 1, and the converged balance cost when
IL| < 1.

The proposed leader supply-demand-based optimization (LSDO) algorithm. The proposed
technique is called Leader-based mutation-selection?. Its purpose is to address the possibility of the optimal
value falling into local optima. This approach involves using the best location vector x},, the second-best loca-
tion vector xfb est—1) and the third-best location vector x(tb est—2) based on the objective function value of the
new location vector x;(new) relative to the population size. The new mutation position vector x;(mut) is then
calculated as:

xi(mut) =x;(new) + 2 (1 - )(Zmnd -1 (inest - (xliestfl + xltiest72))

Max;t (15)
+ (2 x rand — 1) (x},,, — xi(new))
Then, the next location is updated using the following equation*:
xi(mut) f(x(mut)) < f(x(new))
. 1) =
%t +1) {xi(new) Flxi(mut)) = f(xi( new)) (16)
Finally, the optimal solution can be updated as follows*:
e = Jxi(mut) flxi(mut)) < f(cpest) (17)
Pest T | i mew) f(xi(new)) < f(xbest)

The diagram in Fig. 1 illustrates the flowchart of the Leader supply-demand-based optimization (LSDO) algo-
rithm. It also depicts the position of Leader-based mutation selection in the algorithm. This modification has
been incorporated to improve the exploration capability of the LSDO algorithm by performing simultaneous
crossover and mutation using the three best leaders.

Constraint handling superiority of feasible solutions (SF). It is worth noting that the majority of
optimization problems have both equality and inequality constraints that must be handled. However, almost all
stochastic algorithms are unconstrained approaches. thereby, researchers process by employing the well-known
static penalty strategy that is not reliable and requires control parameter settings. Along these lines, a superiority
of feasible solutions (SF) constraint handling method is integrated into this study to deal with the constraints on
state variables. Deb® proposed the use of the Dominance-based approach for handling constraints, known as
the SF strategy. This strategy is based on the concept of a dominant relationship, which gives priority to feasible
solutions over infeasible ones. According to this strategy, a feasible candidate can always dominate an infeasible
one, and a candidate with a smaller violation degree dominates the one with a higher violation value. The SF
strategy employs a tournament selection operator, where two solutions are compared at a time. The solution X;
is considered superior to X; if:

® An infeasible solution X; is dominated by a feasible one X;
e ifboth X;, Xjare feasible, but X is worst than X;
e ifboth X;, X are infeasible, and Xj has the greatest constraint violation.

The equality constraints are transformed into inequality constraints, resulting in the introduction of a total
constraint as:
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Figure 1. Flowchart of the proposed LSDO algorithm.

max (h;(X), 0)
Hi(X) = { max (|gi(X)| — ,0)

(18)

where § is a tolerance parameter for the equality constraints, H;(X) represents the inequality constraints. The

expression of the constraint violation for an infeasible solution can be represented as:
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> wi(Hi(X)) ]
i=1
V(X) = e wi = m (19)
Do Wi ’
i=1

where w; is a weight factor, Hyy,; is the maximum value for violation of constraint.

Problem formulation methodology

Renewable energy model. Presently, the integration of renewable energy resources (RESs) into power
systems is rapidly advancing, with particular focus on wind and PV power. These RESs play a pivotal role in
reducing CO2 emissions and bolstering the power system’s overall quality and reliability. To model solar irradi-
ance and wind distribution, Lognormal and Weibull probability density functions are respectively utilized®'.
Through 8000 iterations of the Monte Carlo simulation, the Lognormal fitting of solar irradiance, Weibull fitting
of wind speed, and Frequency distribution are obtained and visualized in Figs. 2, 3°2. Each of these resources is
associated with three cost components: direct cost, penalty cost, and reserve cost®’. Table 1 provides a compre-
hensive description of all the parameters related to solar and wind energy sources.

Wind power.  The variability of wind flow is modeled using a Weibull probability distribution function®.

o= (5" e [, v=o

where the parameters k and ¢ represent the shape and scale factors of the Weibull distribution, respectively.
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‘Wind power PV power

Test No of Parameters of

systems Wind turbines | Pwr (MW) | Parameters of Weibull PDF | Solar Psr (MW) | Lognormal PDF
1(bus 5) 25 75 k=2,c=9

IEEE-30 (bus 13) |50 n=6,0=0.6
2(bus 11) |20 60 k=2,c=10
1(bus 2) 50 150 k=2,c=10

IEEE-57 (bus 9) 50 n=6,0=0.6
2(bus 6) 40 120 k=2,c=10

Table 1. Characteristic details of wind-solar generators.

The wind generator’s output power is determined by the stochastic wind speed and can be expressed as
follows>*:

0 V< Vip and v > vour
v—v;
PW(V) = pwr(vr,,,l:1 ) Vin SV =V (21)
Pwr Vr <V < Vout

where Vous, Vin, V¢, v and py, are cut-out wind speed, cut-in wind speed, rated wind speed, actual wind speed,
and rated output power, respectively.

The total cost of wind energy encompasses the following components®': direct Cost associated with the sched-
uled power generated by the wind turbine, penalty Cost of Underestimation, and reserve Cost for Overestima-
tion. These factors together contribute to determining the overall cost associated with wind energy generation
as represented below:

CTw,iw = de,iw + Cuew)iw + Coew,iw (22)
with,

Caw,i =Ayw,iPuys,i (23)

Pwr,i
Cuew,i :Kuew,i / (Pw,i - Pws,i)fw (Pw,i)dpw,i (24)

Pws,i

Pws,i

Coew,i =LRoew,i / (Pws,i _Pw,i)fw (pw,i)dpw,i (25)

0

where d,, ; is the coeflicient of direct cost of ith wind generator. Koey,; and Kyey,; are the over and under estima-
tion cost coefficients pertaining to ith wind power plant. p,; is the scheduled power. f,, (pw,,-) is the probability
density function of ith wind power plant.

Solar power.  The lognormal distribution is employed as the probability distribution function to calculate the
PV output power, as illustrated below®?:

_ 1 —(Inx — p)?
f(G) - GO’\/E exp |: 20_2

The available power P;(G) of solar irradiation G is calculated in the following manner, as shown in>%:

}, G»0 (26)

2

Psr<ﬁ>0 <G <Rc
Py(G) = std ¢

P G R. <G
sr Gud c =

where Py, Gg4, G, and R, are the rated output power of solar PV, solar irradiation in standard environment,
forecasted solar irradiation, and certain irradiance point, respectively.
The PV total cost is formulated as follows>':

(27)

CTs,z's = Cds,is + Cues,is + Coes,i: (28)
with,

Cds,i :ds,iPss,i (29)
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Psr,i
Cues,i =Ruyes,i / (Ps,i - Pss,i)fs (Ps,i)dps,i (30)

ss,i

Pss,i
Coes,i =Roes,i /0 (Pss,i - Ps,i)fs (Ps,i)dps,i (31)

where d;; is the coeflicient of direct cost of ith wind generator. Py ; is the scheduled power. Kyes,j and Kes,; are
the over and under estimation cost coefficients of solar power plant. f;(ps,;)is the probability density function
of the ith solar power plant.

Optimal power flow model.  Generally speaking, OPF is considered a complex, non-convex, non-linear in
power system optimization problem. The purpose of OPF is to minimize various competing objective functions
subject to diverse control and state variables, as well as power flow equations and unit operating limits as equality
and inequality constraints, respectively.

Objective functions. In this work, six competing objective functions will be outlined.

Fuel cost.  The total fuel cost of the network’s generators is modeled as a quadratic function, expressed as
follows™":

. N,
Fy = F.(s,c) = mm{ Zi:gl a; + b,’Pgi + C,'Péi (32)
where a;, b; and ¢; are the cost coefficients of the conventional units.
Emission. The emission function is represented using an exponential function that is formulated based on the

previous quadratic function as follows®":

Ng

F, = E(s,c) = min Z 1072 ((xi + BiPgi + )/,'Pé) + & exp (/lini) (33)
i=1

where «;, Bi, Vi, &, and 4; are the emission coefficients of the power plant.

Voltage deviation.  The load bus voltages are set to 1.0 per unit to ensure a desirable voltage profile. The voltage
deviation is defined as follows>:

_( Npa
F3 = VD(s,c) = minq > |Vp; — 1.0 (34)
i=1

Power loss.  The transmission system experiences power losses due to the inherent resistance of the transmis-
sion lines. This can be mathematically modeled using the following expression®*:

N
Fy = Ppgs(s,c) = min{ > Giij(VE+ V]? — 2V;Vjcos(8ij)) (35)
I=1

where, Gy(; ;) represents the conductance of line I. §;; = §; — ; represents the voltage angle difference between
bus i and bus .

Cost considering renewable energy powers.  The total cost of the network, considering the combined contribu-
tions of wind, solar, and thermal powers, is expressed as follows®".

F5 = Fr(s,¢) = min{F; + Cry, + Crs (36)
where F, Cry, and Crs are fuel cost, wind’s total cost, and PV’s total cost, respectively.
Cost considering renewable energy powers with the carbon tax. ~ Over the past decade, numerous countries
have responded to global environmental concerns by introducing carbon taxes as a measure to mitigate carbon

emissions into the environment. The calculation of emissions cost ($/ton) involves the application of a carbon
tax (Cray) on emitted pollutants®:

Fg = min{Fr + E, (37)
avec
Ec =Crax - E (38)

where E presents the emission, and Crgy = 20.
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Variables. The set of state variables s can be defined as’":
s = [Pg1, VL1 -, VINpg> Qg5 -+» QgNg> Si15 -+ Sini] (39)

where, Py is the active power output at the slack bus. V7 is the voltage magnitude at PQ buses. Qg is the reactive
power output of all generator units. S; is the transmission line loading (line flow). Npg, Ny, and N; denote the
number of load buses, number of generating units, and number of transmission lines, respectively.

The set of control variables ¢ can be expressed as®!:

c= [Pg2> o PgN > ng R VgNg> Qct - QeNes T1 - TNT] (40)

The expression represents the modeling of transmission system power losses, which occur due to the resistance
of lines. The active power generation at the PV buses, except the slack bus, is denoted by P, and V; represents
the voltage magnitude at PV buses. The transformer tap settings are represented by T, and Q. is the shunt VAR
compensation. Ny, N, and Nt are the number of generators, regulating transformers, and VAR compensators
(shunt), respectively.

Constraints.  As previously mentioned, the OPF problem comprises both equality and inequality constraints,
which are crucial in optimal power flow investigations as they represent the physical limitations of the equip-
ment. The constraints are modeled as follows:

Equality constraints The power flow equations are assumed as equality constraints that are represented by:

{Pgi—Pd, Vil Nbl|V-|[G,~jcos(9,-j)-I—B,'jsin(H,-j)]:0 a

Qgi — Qg — |Vil Z =1 |V |[G1]5m(91]) Bl]COS(Glj)] =0

The number of buses in the system is denoted by Nb. The active and reactive power generated at bus i are rep-
resented by Pg; and Qg;, respectively, while the active and reactive power demand at bus i are represented by Py;
and Qg;, respectively. The admittance matrix components are denoted by G and Bj;. Y;; = Gj; + jBjj named the
conductance and susceptance.

Inequality constraints The inequality constraints are given below:

® Generator constraints:

Vit < Vg < Vit i=1,.,Ng (42)
Pyi" < Py < Py i=1,.,Ng (43)
P:fs”l‘ < Pysi < P i=1,..,Nwg (44)
PS';”Z” < Ps; < PEY i=1,..,Nsg (45)
Q"”” < Qi < ’““" i=1,..,Ng (46)
M < Quei < QU i=1,..,Nwg (47)
QU < Qusi < QI i=1,..,Nsg (48)

where V™" and V!"** indicate the minimum and maximum bounds of the bus voltage. P/ and P™** represent

the lower and upper bounds of active power generators. Q%" and Q'”“" are the minimum and maxifaum reactive

min max min max min X min max
power bounds of the generator. Py Prets Pty PEE, Qs Wsz > Qi and st,z are the bounds of energy

resources. Ng, Nwg, and Nsg are the number of generation, wind, and solar, respectively.

e Transformer constraints:
T < T; < TMo> i=1,.,Nr (49)

where, N7 is the number of tap changer transformers. T/ and T/ represent the minimum and maximum
limits of the transformer, respectively.

e Shunt VAR compensators constraints:
QUM < Qi < Q™ i=1,..,Nc (50)

where, Nc is the number of capacitor components. Q””" and Q! are the minimum and maximum limits of the
shunt compensators.

® Security constraints:
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VI <V S VIS i=1,..,Npq (51)

Si < S i=1,.,NI (52)

where, Nl is the number of transmission lines. Sj; and S;** indicate the maximum limit of the transmission line.

Simulation results and discussion

This section demonstrates the superiority of the proposed LSDO algorithm through experimentation with 23
benchmark functions. All 23 experiments were conducted using MATLAB (R2020a) on a computer with an
Intel(R) Core(TM) i5-9400F CPU running at 2.90 GHz and 8GB of RAM.

Simulation results of benchmark functions. In this subsection, the effectiveness and accuracy of the
LSDO technique are evaluated using 23 benchmark functions®. These functions are divided into three catego-
ries: uni-modal functions (F1-F7), multi-modal functions (F8-F14), and fixed-dimension multi-modal func-
tions. Table 2 provides the definitions of these functions, with D, UM, and MM representing the dimension,
uni-modal functions, and multi-modal functions, respectively. The performance of the original SDO technique
and three well-known optimization algorithms, namely social network search (SNS), gray wolf optimizer
(GWO)¥, and tunicate swarm algorithm (TSA)®, are also compared. The evaluation metrics include the best,
mean, median, worst values, and standard deviation (std) of the solutions obtained by each algorithm. Table 3
presents the results, where all algorithms were run with a population size of 50 and a maximum of 200 iterations
for 20 independent runs. As shown, the proposed LSDO technique achieves the best values for most benchmark
functions.

In addition, qualitative metrics of the proposed LSDO technique for nine benchmark functions are shown in
Fig. 4, including 2D views of the functions, search history, average fitness history, and convergence curves. The
convergence curves for all algorithms and benchmark functions are illustrated in Fig. 5, while the boxplots are
displayed in Fig. 6. The LSDO algorithm is observed to reach a stable point for all functions, and its boxplots are
narrower than the other techniques for many functions.

The LSDO technique’s performance is compared to other recent algorithms including the original SDO
technique and six well-known optimization algorithms, namely SNS, GWO, TSA, differential evolution (DE),
particle swarm optimizer (PSO)®, and artificial bee colony (ABC)®! on 13 benchmark functions with a dimension
of 100. The results are presented in Table 4. For Function 1, the proposed LSDO technique achieved significantly
better results with a minimum value of 1.7E-145, outperforming other algorithms. Function 2 also demonstrated
the superiority of the LSDO technique, as it obtained a minimum value of 3.77E-68, notably better than the
other algorithms. The LSDO technique performed exceptionally well on Function 3, achieving a minimum value

No Name D Range Type | fmin

F1 Sphere [30, 100] |[—100,100] UM 0

F2 Schwefel 2.22 | [30,100] |[—10,10] UM 0

F3 Schwefel 1.2 [30,100] |[—100,100] UM 0

F4 Schwefel 2.21 | [30,100] |[—100,100] UM 0

F5 Rosenbrock [30,100] |[—30,30] UM 0

F6 Step [30, 100] |[—100,100] UM 0

F7 | Quartic [30,100] |[—1.28,1.28] |UM |o

F8 Schwefel [30, 100] |[—500,500] MM | —12,569.487

F9 Rastrigin [30,100] |[—5.12,5.12] | MM |0

F10 | Ackley [30,100] |[—32,32] MM |0

F11 Griewank [30, 100] |[—600,600] MM |0

F12 Penalized [30, 100] |[—50,50] MM 0

F13 Penalized 2 [30, 100] |[—50,50] MM |0

F14 | Foxholes 2 [—65.536, | MM | 0.998004
65.536]

F15 Kowalik 4 [—5,—5] MM 0.0003075

F16 | Six-hump 2 [—5,—5] MM | -1.0316285

F17 Branin 2 [—5,—5] MM | 0.398

F18 gglcisfein* 2 [-2,2] MM |3

F19 Hartman 3 3 [—1,2] MM —3.862782

F20 Hartman 6 6 [0, 1] MM | -3.32236

F21 | Shekel 5 4 [0, 10] MM | -10.1532

F22 Shekel 7 4 [0, 10] MM -10.4029

F23 Shekel 10 4 [0, 10] MM -10.5364

Table 2. Definition of 23 benchmark functions.
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Function LSDO SDO TSA GWO SNS
Min 8.3E-151 | 1.39E-55 |3.79E-08 |4.47E-12 | 1.03E-28
Average | 4.6E-128 | 1.37E-51 3.92E-07 | 3.12E-11 1.37E-27
F1 Median | 4.4E-140 | 3.74E-54 | 1E-07 2.46E-11 | 4.77E-28
Max 9.1E-127 | 843E-51 |4.09E-06 |8.73E-11 | 1.04E-26
Std 2E-127 2.74E-51 9.2E-07 2.31E-11 2.38E-27
Min 1.01E-69 | 1.83E-29 |2.44E-06 | 1.42E-07 |2.3E-15
Average | 2E-60 3.76E-25 | 1.9E-05 2.77E-07 | 5.64E-15
F2 Median | 6.56E-63 | 1.13E-26 | 1.86E-05 |2.66E-07 |4.21E-15
Max 2.53E-59 |3.98E-24 |3.68E-05 |4.78E-07 |1.4E-14
Std 5.95E-60 | 9.1E-25 9.44E-06 | 9.9E-08 3.51E-15
Min 2.2E-145 | 6.27E-46 |0.027608 0.008462 9.18E-13
Average |8.7E-120 | 6.91E-34 | 1.122677 0.610441 4.18E-08
F3 Median | 9.3E-138 | 1.4E-39 0.772195 0.185412 4.13E-09
Max 1.7E-118 | 1.38E-32 | 3.914695 3.567009 3.9E-07
Std 3.9E-119 |3.09E-33 |1.096313 0.827115 9.17E-08
Min 4.81E-73 | 1.11E-26 |0.67531 0.002608 1.33E-13
Average | 1.63E-67 | 4.52E-23 |3.616654 |0.008 5.45E-13
F4 Median |5.11E-70 |1.14E-23 |3.022253 0.007092 4.09E-13
Max 1.67E-66 | 1.94E-22 |9.361516 0.016667 1.87E-12
Std 4.02E-67 | 6.34E-23 |2.343658 0.003845 4.55E-13
Min 26.36703 27.90967 27.18973 25.92515 | 27.6644
Average |26.99756 | 28.65096 39.01094 27.18903 28.03399
F5 Median |26.86409 |28.74726 28.66203 27.09814 27.97984
Max 28.66131 28.98699 239.7785 28.79035 28.44604
Std 0.508238 0.295026 47.26339 0.72182 0.216873
Min 0.020726 | 0.039957 2.886997 0.252254 0.080879
Average |0.141345 |2.568541 3.800719 0.647554 | 0.292241
F6 Median | 0.082029 |2.038779 3.736935 0.611378 0.255115
Max 0.549917 | 7.250251 4.850371 1.172757 0.75842
Std 0.154727 | 1.852701 0.527851 0.280888 0.181696
Min 3.93E-05 | 8.66E-05 |0.007604 0.001477 0.000168
Average |0.000179 |0.002356 0.019206 0.004433 0.000708
F7 Median |0.000139 |0.001136 0.018479 0.003685 0.000688
Max 0.000513 | 0.013813 0.04436 0.01033 0.002187
Std 0.000146 | 0.003331 0.007628 0.002554 0.000488
Min -1733.12 -1655 —1394.45 —1495.31 -7613.49
Average |-1534.59 |-1312.83 |-1212.82 |-1245.57 |-6358.62
F8 Median |-1536.16 |-1385.86 |[-1232.52 |-1224.18 |-6324.46
Max -1327.7 -598.802 | -976.635 |-1123.85 |-5562.96
Std 94.79719 | 294.008 122.0762 104.0153 538.2484
Min 0.00 4.33E-30 | 156.667 1.062467 | 0.00
Average |0.00 1.75E-22 | 228.0177 9.801018 0.00
F9 Median | 0.00 4.17E-25 |228.634 9.824713 0.00
Max 0.00 3.02E-21 |331.7581 24.96968 0.00
Std 0.00 6.75E-22 | 46.40919 5.565812 0.00
Min 8.88E-16 |8.88E-16 |20.81133 20.76487 | 4.44E-15
Average |8.88E-16 |8.88E-16 |20.9608 20.92344 7.46E-15
F10 Median |8.88E-16 |8.88E-16 |20.99356 20.94465 6.22E-15
Max 8.88E-16 |8.88E-16 |21.0961 21.06309 1.51E-14
Std 0.00 0.00 0.091505 0.083433 3.69E-15
Min 0.00 0.00 1.3E-09 6.56E-13 |0.00
Average |0.00 0.00 0.007018 0.009891 0.00
F11 Median | 0.00 0.00 1.44E-08 |4.55E-12 |0.00
Max 0.00 0.00 0.029126 0.055407 0.00
Std 0.00 0.00 0.010243 0.015766 0.00
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Function LSDO SDO TSA GWO SNS
Min 0.000176 | 0.001152 0.374956 0.006066 0.000696
Average | 0.003854 | 0.23467 2.805889 0.026151 0.00268
F12 Median | 0.002177 | 0.067805 2.009833 0.023474 0.00284
Max 0.01893 1.492821 7.656863 0.047176 0.004893
Std 0.004455 0.352063 2.128936 0.013414 0.001232
Min 0.175696 0.046216 | 2.372295 0.09955 0.057519
Average | 0.834851 1.867552 3.298085 0.613832 | 0.154385
F13 Median | 0.451512 | 1.934246 3.22876 0.609981 0.140323
Max 2.966605 2.999924 4.16073 1.044 0.378672
Std 0.957067 0.961284 0.565835 0.280029 | 0.077659
Min 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004
Average | 0.998004 | 3.494696 8.298683 3.892106 0.998004
F14 Median | 0.998004 | 1.495017 10.76318 2.982105 0.998004
Max 0.998004 | 12.67051 | 18.30431 12.67051 | 0.998004
Std 0.00 3.953203 5.533952 3.727681 1.02E-16
Min 0.000307 | 0.000307 | 0.000308 0.00031 0.000308
Average | 0.000308 | 0.00067 0.007136 0.003547 0.00035
F15 Median | 0.000307 | 0.000527 0.000505 0.000546 0.000313
Max 0.000309 | 0.002121 0.031699 0.020363 0.000582
Std 3.22E-07 | 0.000473 0.010606 0.007255 6.8E-05
Min -1.03163 | -1.03163 |-1.03163 |-1.03163 |-1.03163
Average |-1.03163 |-1.03005 |-1.0253 -1.03158 | -1.03163
F16 Median |-1.03163 |-1.03163 |-1.03163 |-1.03163 |-1.03163
Max -1.03163 | —-1.00046 | -0.99999 |-1.03063 |-1.03163
Std 2.28E-16 | 0.006966 0.012981 0.000223 1.53E-16
Min 0.397887 |0.397887 |0.39789 0.397888 0.397887
Average |0.397887 |0.397987 |0.397927 0.397891 0.397887
F17 Median | 0.397887 |0.397887 |0.397907 0.397891 0.397887
Max 0.397887 | 0.399795 0.398082 0.397897 | 0.397887
Std 0.00 0.000426 4.53E-05 |3.01E-06 |0.00
Min 0.00 3.00 3.000009 3.00 0.00
Average | 0.00 3.00 8.400078 3.000068 0.00
F18 Median | 0.00 3.00 3.000084 3.000036 0.00
Max 0.00 3.00 84.00001 3.000238 0.00
Std 5.49E-16 |5.21E-08 |18.78799 6.53E-05 | 1.6E-15
Min —-0.30048 —0.30048 —-0.30048 —-0.30048 -3.86278
Average |—0.30048 |-0.2893 —-0.30048 | -0.30048 |-3.86278
F19 Median |-0.30048 |-0.30038 |-0.30048 |-0.30048 |-3.86278
Max —-0.30048 | -0.19165 |-0.30048 |-0.30048 |-3.86278
Std 1.14E-16 |0.026531 1.14E-16 |1.14E-16 |2.22E-15
Min -3.322 -3.322 -3.32148 | -3.32198 |-3.322
Average |-3.23283 |-3.09697 |-3.07223 |-3.22876 |-3.29822
F20 Median | -3.2031 -3.2031 -3.20118 —3.26239 -3.322
Max -3.2031 —-0.89904 |-0.20816 |-2.84039 |-3.2031
Std 0.05282 0.550986 0.679321 0.125558 0.048793
Min -10.1532 | -10.1532 |-10.0895 |-10.1502 |-10.1532
Average |-10.1532 |-8.703 —5.89545 | -8.51218 |-10.1532
F21 Median |-10.1532 |-10.1532 |-4.90994 |-10.1413 |[-10.1532
Max -10.1532 | -4.99677 |-2.58642 |-2.62918 |-10.1532
Std 3.36E-15 |2.23952 2.775111 2.963153 2.8E-12
Min -10.4029 |-10.4029 |-10.3637 |-10.4024 |-10.4029
Average |-10.4029 |-845822 |-7.02119 |-10.0134 |-10.4029
F22 Median | -10.4029 |-10.4029 |-9.8942 -10.3959 | -10.4029
Max -10.4029 | -1.0677 —1.82478 | -2.76526 |-10.4029
Std 3.13E-15 |3.128689 3.57071 1.706042 |5.02E-15
Continued

Scientific Reports |

(2023) 13:14501 |

https://doi.org/10.1038/s41598-023-41608-1

nature portfolio



www.nature.com/scientificreports/

Function LSDO SDO TSA GWO SNS
Best -10.5364 | -10.5364 |-10.4599 | -10.5348 |-10.5364
Mean -10.266 —7.90449 | -5.50502 | -9.74305 |-10.5364
F23 Median | -10.5364 | -10.5357 | -2.83596 |-10.5274 |-10.5364
Worst —5.12848 | -3.79083 | -1.66783 | -2.42135 |-10.5364
Std 1.20925 3.015319 | 3.728197 |2.418464 |2E-15

Table 3. Statistical results of 23 benchmark functions by the proposed LSDO technique and other recent
algorithms. The best values obtained are in bold.

of 6.97E-143, which significantly outperformed other algorithms. Function 4 also showed the superiority of
the LSDO technique with a minimum value of 2.06E-73, outclassing other algorithms in this benchmark. For
Function 5, the LSDO technique yielded promising results with a minimum value of 96.87, while maintaining
competitive performance with the other algorithms. Function 6 showcased the strength of the LSDO technique
with a minimum value of 6.7327, outperforming other algorithms. In Function 7, the LSDO technique obtained
an impressively low minimum value of 2.91E-06, significantly improving compared to other algorithms. The
LSDO technique demonstrated its effectiveness in Function 8, achieving a minimum value of —4014.5, which
is significantly better than the results obtained by other algorithms. Function 9 showcased the superiority of
the LSDO technique, as it achieved a minimum value of 0, outperforming other algorithms. Function 10 also
displayed the strength of the LSDO technique with a minimum value of 8.88E—16, demonstrating superior per-
formance compared to other algorithms. The LSDO technique excelled in Function 11, achieving a minimum
value of 0, and outperforming other algorithms. Function 12 showcased the effectiveness of the LSDO technique
with a minimum value of 0.04123, displaying better results compared to other algorithms. In Function 13, the
LSDO technique achieved an excellent minimum value of 5.7551, outclassing other algorithms. Overall, the
LSDO technique consistently displayed superior performance in multiple benchmark functions, achieving the
best results in most cases. These findings indicate the potential effectiveness and competitiveness of the proposed
LSDO technique for solving optimization problems.

Simulation results of optimal power flow. In this section, the detail of the simulation results will be
discussed. To authenticate the performance of the LSDO approach, three well-known standard systems were
considered as IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems considering two types of renewable
energies, which have 24, 33, and 130 control variables, respectively. The main descriptions of these selected grids
are tabulated in Table 5. Furthermore, these considered test systems are executed via ten case studies as described
in Table 6. The obtained results are compared with the classical version SDO and some state-of-the-art stochastic
approaches. The optimal findings are shown in bold text. All the experiment studies are averaged over 30 inde-
pendent runs, they have been done by using MATLAB R2020a, under Microsoft Windows 10 operating system,
and carried out on a personal computer core i5 with 4GB-RAM Processor @1.8GHz. As mentioned before, the
power systems under consideration are analyzed through ten distinct case studies, which are defined as follows:

e Casesl,2,3,4,7, 8,9, and 12: Without renewable energy resources

These cases represent the primary scenarios focused on reducing fuel costs, power loss, voltage deviation, and
emission.

® Cases 5, 6, 10 and 11: With renewable energy resources

These cases are computed based on Eqgs. 36 and 37. They are characterized by considering both wind and PV
power sources. They depict the core scenario centered on the primary objective of diminishing fuel costs, while
accounting for emission, power loss and voltage deviation.

IEEE 30-bus test system. 'The IEEE 30-bus network is the small power system considered in this study. It con-
tains 6 generating units which bus 1 is chosen as the slack bus, 41 branches, 9 shunt reactive power injections,
and 4 transformers. The line and bus data are taken from®2. Additionally, its active and reactive power demands
are 283.4MW and 126.2M VAR, respectively. The voltage limits for all buses are taken between 0.95 and 1.05 p.u.
Also, the least as well as greater tap setting for tap changing transformers are 0.9 p.u. and 1.1 p.u., respectively.
Moreover, The limits of VAR compensators are assumed to vary between 0 and 5 p.u. The comparison of the
obtained results between LSDO and its first version SDO is presented in Table 7. Furthermore, the optimal
control variables are displayed in the same tables. As previously illustrated, two scenarios were considered: the
first without taking into account renewable energy sources (RESs) whereas the second achieve a reduction in the
total fuel cost through the integration of RESs. Specifically, wind power generators have replaced conventional
generators at buses 5 and 11, with these wind turbines totaling 25 and 20 units, respectively. Additionally, a PV
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Figure 4. Qualitative metrics of nine benchmark functions: 2D views of the functions, search history, average
fitness history, and convergence curve using the proposed LSDO technique.
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Figure 4. (continued)

generator has been introduced to replace the generator at bus 13. The integration and placement of these RESs
within the grid are determined based on the methodology outlined in the study by Biswas et al.”!.

The first case attempted to optimize the quadratic fuel cost. The fitness rates attained are 800.42/h and
800.4223/h for LSDO and SDO, respectively. The objective function considering the minimization of total emis-
sion is taken as the second case, its best fitness values achieved are 0.20483 ton/h and 0.20484 ton/h. The obtained
optimum voltage deviation (VD) for both approaches are 0.09152 p.u. and 0.09249 p.u., respectively. Regarding
the power loss minimization, its fitness values recorded 3.0902(M W) and 3.0908(M W) as demonstrated in the
same table. Remarkably, the outcomes reveal that the approach under study produces better solutions compared
to its initial version. Additionally, in terms of the convergence characteristics, it can be seen from the evolution
curves depicted in Fig. 7 that LSDO converges faster in comparison with SDO. Furthermore, according to the
constraints satisfaction, Fig. 8 proves the effectiveness of LSDO-based SF in answering all system constraints.
On the other hand, some of the published results are competitive with those generated by the LSDO technique,
they offered better solutions as listed in Table 8 However, it can be observed carefully that certain of their voltage
load buses are violated. Otherwise, the highest voltage deviation value that must be produced is 1.2p.u. of all
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Figure 5. The convergence curves of studied algorithms for 23 benchmark functions.

PQ buses. More precisely, the infeasibility solutions footnoted in Table 8 can be explained in the following lines.
For case 1 and as reported in®, the EWOA voltage deviation value is higher than 1.2p.u., in which all load buses
exceed the maximum bound except buses 26 and 30. Ref."? reports a VD value of 1.9652p.u. and a violation of
all load voltage. The DSA approach'® has one bus violation at bus number 3. The optimum result taken from' is
an infeasible solution due to the violation in nodes 3, 4, 6, 7, 12, 14, 15, 16, 23, 25, 27, 28, 29, and 30. Referring
to'®, the best results stated for all Rao variants are also infeasible, there are voltage loads violations in buses 3, 4,
10, and 12 for Rao-1, and in buses 3, 4, 6, 10, 12, 14, 15, 16, 17, 20, 21, 22, 23, and 27 for Rao-2, and also in the
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Figure 6. Boxplots of studied algorithms for 23 benchmark functions.

buses 3, 4, 6, 10, 12, 14, 15, 16, 17, 20, 21, 22, 23, 27, and 29 for Rao-3. Additionally, the minimum fitness value

Algorithm

reported in MSA Ref.!” for the emission case is too an infeasible solution owing to nodes 3 and 12.

Regarding the RESs scenario, the results obtained from the proposed LSDO approach are compared with
those from the SDO method, as well as four re-implemented techniques, namely: artificial ecosystem optimi-
zation (AEO)®, particle swarm optimization (PSO)%, artificial bee colony (ABC)®!, and deferential evolution
(DE)®. Simulation results were generated using 50 populations, and their convergence was assessed by analyzing
the plots obtained from each case over 500 iterations. To ensure statistical reliability, a total of 30 independent
runs were conducted for each scenario. The comparative analysis of numerical outcomes across 30 runs for all
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Function LSDO SDO TSA GWO SNS DE PSO ABC
Min 1.7E-145 | 1.5E-53 0.016 0.0005 1.7E-26 | 35997 198.4 250910
Average | 6.2E-129 | 1.1E-49 0.0865 0.00188 | 4.39E-25 |37253.8 | 269.9 264305.6

F1 Median | 1.5E-138 | 1.25E-51 |0.07846 |0.00162 | 1.38E-25 |36323.4 | 289.52 269156.2
Max 1.23E-127 | 1.34E-48 | 0.2354 0.0037 4.12E-24 |39025.8 | 369.43 269584.1
Std 2.7E-128 | 3.15E-49 | 0.05368 |0.00088 | 9.87E-25 |1527.2 71.8248 8101.7
Min 3.77E-68 | 5.78E-29 |0.01247 |0.00715 |5.07E-14 |171.25 8.823 1.37E+36
Average |2.28E-56 | 2.995E-26 | 0.055 0.00988 | 1.95E-13 | 186.282 | 11.674 5.41E+40

F2 Median | 5.05E-59 | 8.06E-27 | 0.0435 0.0097 1.36E-13 |188.838 | 11.252 6.36E+37
Max 1.87E-55 |1.82E-25 |0.1365 0.015 4.82E-13 |194.866 | 17.426 2.5E+41
Std 4.87E-56 | 4.89E-26 | 0.03697 |0.00188 | 1.28E-13 |9.2358 3.47125 1.12E+41
Min 6.97E-143 | 4.16E-43 | 10404.1 | 1563.5 2.66E-05 | 360641.8 | 19800.8 891967.8
Average |9.13E-121 |6.54E-35 |27016.3 |7361.1 0.00075 | 502022.6 |32155.39 |1072174

F3 | Median |6.57E-132 |1.60E-38 |20987.67 |6745.44 |0.000211 |510654.9 |37007.8 1047367
Max 1.82E-119 |1.26E-33 |57599.01 |17021.3 | 0.005016 |588790.1 |42029.19 |1309319.6
Std 4.08E-120 |2.83E-34 [12914.3 |4420.7 0.00128 | 853132 | 9705.4 169362.2
Min 2.06E-73 | 1.0S8E-26 |46.4652 |2.6979 3.1E-12 | 91.186 18.055 91.8624
Average |3.31E-65 |5.26E-24 |65.0496 |7.2693 L.I1E-11 |92.3478 | 22.8813 94.124

F4 Median |1.54E-68 |1.53E-24 |66.3633 |7.03937 |8.95E-12 |92.637 22.178 94.44
max 2.48E-64 |245E-23 | 78.736 16.437 247E-11 |93.1829 | 26.433 96.5098
Std 745E-65 | 7.52E-24 | 9.1168 3.127 6.81E-12 |0.76617 | 3.4285 1.79575
Min 96.87 97.58 100.32 97.68 97.826 64005640 | 12405.4 11E+07
Average |97.887 98.3307 117.264 | 98.818 98.3699 | 76664058 | 25776.446 | 12E+07

F5 Median | 98.115 98.379 109.315 | 98.804 98.48 74721566 |22752.86 | 11E+07
Max 98.44 98.589 228.648 | 100.563 | 98.57 87181633 |42821.401 | 13E+07
Std 0.5151 0.2830 28.521 0.653 0.2068 9539385 | 11449.8 72615942
Min 7.17914 6.7327 14.112 9.5161 9.2678 35136.3 | 271.043 255833.9
Average |8.7941 11.487 15.60004 [11.71104 |10.699 37918.9  |316.5084 | 266600

F6 Median | 8.8162 11.767 15.664 11.8462  |10.6814  [38504.88 |294.417 260500
Max 10.5304 13.506 17.833 13.6589 | 12.089 39162.08 | 407.805 282601
Std 0.735 1.7938 1.1548 1.2797 0.807 1627.52 | 57.454 12658.97
Min 2.91E-06 |9.33E-05 [0.05508 |0.01187  [0.000204 |101.809 |0.39367 1643.169
Average |0.000314 | 0.00042 0.1225 0.02078  |0.00109  |121.011 | 0.5299 1812.01

F7 Median | 0.00027 0.00036 0.11843  |0.01827  |0.001006 |[118.666  |0.54286 1806.14
Max 0.00086 0.00118 0.20183  [0.03927  |0.002287 |143.151  |0.6279 2020.74
Std 0.00025 0.00029 0.0327 0.0074 0.00059 | 15.237 0.09562 167.748
Min -4014.5 -4014.1 -3428.2 |-33346 [-1156.1 |-3374.3 |-43913 -1.8E+26
Average |-3372.3 —3482.9 -2910.8 |-2906.1 |-803.2 -3246.6 | -4064.9 -4.5E+25

F8 Median |-3342.1 -3560.4 -2929.1 |-2851.5 [-786.94 |-3242.5 |-4072.2 -1.7E+25
Max -2538.5 -2792.5 -24633 |-2321.8 |-4374 -3149.6 | -3785.3 -6.3E+23
Std 374.029 295.14 203.94 261.40 175.47 83.857 263.346 7.6E+25
Min 0 0 943.78 30.692 0 1248.01  |321.17 3610.6
Average |0 0 1186.25 |74.059 0 1328.012 |394.078 3731.58

F9 Median |0 0 1141.7 69.27 0 1354.3 397.8 3764.2
Max 0 0 1547.84 | 124.25 0 1392.99 | 442.77 3788.51
Std 0 0 164.597 | 21.866 0 61.881 50.832 71.380
Min 8.88E-16 | 8.88E-16 | 21.233 21.23 4.8982 20.424 20.44 21.358
Average | 8.88E-16 |8.88E-16 |21.3008 |21.2787 | 18.8026 | 20.439 20.713 21.390

F10 |Median |8.88E-16 |8.88E-16 |21.297 21.285 20.0276 | 20.445 20.65 21.402
Max 8.88E-16 | 8.88E-16 | 21.355 21.327 20.182 20.457 21.044 21.425
Std 0 0 0.0307 0.03007 | 3.9447 0.01447 | 0.22407 0.0297
Min 0 0 0.00025 | 1.25E-05 |0 8.852 1.0257 64.195
Average |0 0 0.0451 0.0104 0 9.5616 1.0672 68.988

F11 |Median |0 0 0.0021 2.92E-05 |0 9.560 1.06673 68.47
Max 0 0 0.2698 0.06162 |0 9.966 1.1216 72.342
Std 0 0 0.06533 | 0.0215 0 0.454 0.0385 3.4515

Continued
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Function LSDO SDO TSA GWO SNS DE PSO ABC
Best 0.10077 0.1015 2.034 0.1216 0.04123 8.07285 0.01817 23.785
Mean 0.1437 0.2024 6.5839 0.19454 0.06863 9.372 0.1017 28.10153393

F12 Median | 0.142185 0.20857 7.0242 0.19686 0.06945 9.76723 0.04821 27.996
Worst 0.216855 0.28339 11.057 0.2953 0.0906 10.3628 0.2977 32.4397
Std 0.030715 0.042936 3.08675 0.0503 0.01411 1.00302 0.11347 3.13609
Best 9.9177 9.85719 14.169 5.7551 6.0079 6.3E+09 17289.9 1.0E+11
Mean 9.9278 9.9391 105.421 8.9011 8.705 8.7E+09 88551.5 1.1E+11

F13 Median | 9.927 9.942 93.656 9.088 8.9605 8.8E+09 96054.8 1.1E+11
Worst 9.9347 9.959 473.7 10.85 9.391 11.8E+09 | 122522 1.15E+11
Std 0.0045 0.0207 102.92 1.2576 0.879 2.03E+09 | 42982.3 4.36E+09

Table 4. Statistical results of 13 benchmark functions (Dim = 100) by the proposed LSDO technique and
other recent algorithms. The best values obtained are in bold.

Systems IEEE-30 IEEE-57 IEEE-118

Characteristics Value | Details Value | Details Value Details

Buses 30 02 57 63 118 o4

Branches 41 - 80 - 186 -
Buses:1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25,
26,27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55,

Generators 6 Buses: 1,2,5,8,11 and 13 7 Buses: 1, 2, 3,6, 8,9 and 12 54 56, 59, 61, 62, 65, 66, 69, 70, 72, 73, 74, 76,
77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103,
104, 105, 107, 110, 111, 112, 113 and 116

Slack bus 1 Buses: 1 1 Buses: 1 Buses: 1 | 69

Wind generators 2 Buses: 5 and 11 2 Buses: 2 and 6 - -

Solar generators 1 Buses: 13 1 Buses: 9 - -

. i Buses:5, 34, 37, 44, 45, 46, 48,74, 79, 82,
Shunts 9 Buses: 10, 12, 15, 17, 20, 21, 23,24 and 29 | 3 Buses: 18, 25, and 53 14 83,105, 107, 110
. Buses: 19, 20, 31, 35, 36, 37, 41, 46, 54, 58, Branches:8, 32, 36, 51, 93, 95, 102, 107
Transformers 4 Branches: 11, 12, 15 and 36 17 59, 65, 66, 71, 73, 76, and 13 9 and 127
Control variables 24 - 33 - 130 -

Table 5. The basic specifications of the IEEE test systems.

Cost | Emission | P,y | VD
Casel |/
Case 2 Vv
Case 3 N
Case 4 J
Case 5
Case 6
Case7 |/
Case 8 Vv
IEEE-57 Case 9 N
Case 10
Case 11
IEEE-118 | Case12 |./

IEEE-30

Table 6. Different case studies.

competing methods is provided in Tables 9, 10. These tables encompass the optimal configurations of control
variables, their allowable ranges, and the corresponding numerical best outcomes for each objective. As observed
in these presented tables, the LSDO approach showcases a commendable ability to produce competitive results in
comparison to both its initial version and other contemporary techniques across case studies. Figure 9 displays
the convergence characteristics and distribution runs obtained for each case study of LSDO and the competi-
tor algorithms. This figure illustrates the performance and behavior of the algorithms during the optimization
process for the respective scenarios. The convergence curves clearly demonstrate that the LSDO algorithm
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Case 1 Case 2 Case 3 Case 4

Control variables | Min | Max | SDO LSDO SDO LSDO SDO LSDO SDO LSDO
Pg> 20 80 48.8654 48.6153 67.7502 67.5837 29.7910 73.8103 79.9826 79.9790
Pgs 15 50 214049 | 21.4015 | 49.9997 | 49.9973 24.7736 30.3605 49.9932 | 49.9976
Pgs 10 35 21.1015 | 21.3178 34.9994 | 34.9986 | 28.3303 15.7616 34.9998 34.9996
Peny 10 30 11.9564 11.6592 29.9974 29.9934 22.9054 19.1346 29.9951 29.9906
Pg13 12 40 12.0049 12.0101 40.0000 | 39.9999 16.7438 20.7435 39.9938 | 39.9586
Va1 095 | 1.1 1.0823 1.0833 1.0642 1.0613 1.0229 1.0194 1.0612 1.0607
Vg2 095 | 1.1 1.0628 1.0636 1.0598 1.0548 1.0115 1.0131 1.0572 1.0567
Vs 0.95 | 1.1 1.0322 1.0316 1.0377 1.0309 1.0189 1.0187 1.0363 1.0359
Vs 0.95 | 1.1 1.0373 1.0371 1.0398 1.0388 1.0046 1.0042 1.0450 1.0435
Veni 095 | 1.1 1.0787 1.0867 1.0827 1.0855 1.0281 1.0319 1.0888 1.0821
Vi3 095 | 1.1 1.0485 1.0469 1.0564 1.0595 1.0019 1.0030 1.0477 1.0544
Qcio0 0 5 3.8509 3.6239 1.8352 2.1188 4.6393 4.7964 0.0422 1.8110
Q12 0 5 2.5683 0.8028 1.0072 2.6961 1.0379 1.2061 3.6747 3.0673
Q15 0 5 2.9863 4.0522 3.1281 3.2531 4.8235 4.9231 3.2459 4.3718
Qc17 0 5 4.7312 4.9483 4.1349 2.8464 0.5307 0.1258 4.7300 3.6981
Qc20 0 5 4.1167 3.7935 4.3456 2.8350 4.9772 4.9837 4.2526 3.5623
Qea1 0 5 4.9293 4.9778 2.1946 4.3615 4.9418 4.9478 4.9824 4.9991
Qc23 0 5 3.0081 2.6271 2.1445 3.4747 4.8950 4.9863 3.9797 3.6530
Qe 0 5 4.9895 4.8870 2.0953 3.0982 4.9451 4.9916 4.9381 4.9868
Qc29 0 5 2.3247 2.3386 3.7650 2.3354 2.3090 2.0533 3.2013 2.5615
Tn 0.9 1.1 1.0291 1.0281 1.0284 1.0229 1.0439 1.0469 1.0592 1.0187
Tiz 0.9 1.1 0.9457 0.9534 0.9419 0.9280 0.9001 0.9014 0.9200 0.9610
Tis 0.9 1.1 0.9734 0.9681 0.9828 0.9989 0.9612 0.9659 0.9855 0.9951
T 0.9 1.1 0.9730 0.9724 0.9850 0.9690 0.9645 0.9619 0.9825 0.9798
Fuel Cost ($/h) - - 800.4223 | 800.42 944.7892 | 944.4218 |816.3608 | 832.8700 | 967.5433 | 967.4535
Emission (t/h) - - 0.36609 | 0.36708 | 0.20484 | 0.20483 | 0.34210 0.27505 0.20726 | 0.20727
VD (p.u.) - - 0.9075 0.91576 | 0.81458 | 0.89701 0.09249 0.09152 0.91790 | 0.90258
Pr, (MW) - - 9.006 9.0202 3.2821 3.2522 8.9451 7.8115 3.0908 3.0902
Pg1 50 200 | 177.0728 | 177.4163 | 63.9355 | 64.0793 169.80105 | 131.40115 | 51.52628 | 51.56473

Table 7. The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 30-bus.
The best values obtained are in bold.

outperforms its competitors by converging more rapidly towards the optimal solution. This ability to converge
faster highlights the efficiency and effectiveness of the LSDO approach in finding high-quality solutions within
a shorter number of iterations compared to other competing methods. Furthermore, the obtained optimal PQ
voltage profile is depicted in Fig. 10. These visualizations demonstrate that all voltage profile constraints are
satisfied, affirming that the feasibility is rigorously examined without any violations of constraints.

IEEE 57-bus test system. To check the scalability of the algorithm under study, the medium IEEE 57-bus test
system is examined. This network contains seven generators and the slack generator is at bus 1, 80 branches, 50
load buses, three shunt reactive power injections, and 15 transformers. Its active and reactive power demands
are 1250.8 MW and 336.4 MVAR, respectively. This system has total of 33 control variables for the OPF prob-
lem, their bounds and the achieved optimized values for the three objective functions are listed in Table 11.
The obtained fitness values from the LSDO and SDO algorithms for fuel cost, voltage deviation, and power loss
are (41667.7190/h-41668.7587/h), (0.62165-0.63354 p.u.), and (10.2332-10.4552 MW), respectively. Based on
these outcomes, it is obvious that the modified approach LSDO provides the optimum fitness value of all objec-
tive functions as compared to its classical version SDO. Figure 11 illustrates the convergence of the functions
evolution of both algorithms. Based on these curves, it is clearly seen that the LSDO has a steady and speed
convergence acceleration toward the global optimum than SDO. Table 8 gives a comparative study with other
stochastic approaches stated in the literature, the listed best value for this system stated in'! case 1, is an infeasible
solution, it knows a load voltage violations at buses 7, 18, 25, 29, 41, and 45. For the voltage deviation case, the
Rao-3'¢ seems to converge to the optimum solution than the suggested LSDO optimizer. However, after careful
observation, node 25 violates the constraints with voltage values of 1.06687p.u.. In addition, the optimum value
of DE algorithm® is due to higher limits for the shunt compensators. Nevertheless, the optimizer under study
LSDO gives a better solution without any constraint violation, as shown in Fig. 12 The voltage of the 50 loads
buses (PQ bus) are satisfying all system constraints for all cases, which proves that all system constraints are
checked.

In the context of the renewable energy sources (RESs), the outcomes achieved using the proposed LSDO
approach are compared with those obtained from the SDO method, AEO®, PSO%, ABC®!, and DE* approaches.

Scientific Reports |

(2023) 13:14501 |

https://doi.org/10.1038/s41598-023-41608-1 nature portfolio



www.nature.com/scientificreports/

860 T T T T T

850

®

B

o
T

o}

W

o
T

Fuel Cost ($/h)

o}

n

o
T

810 [

800

0 50 100 150 200 250

Iterations

(a) Case 1

300

350

400 450 500

o
o
©
B
[
T

0.094

0.0935

0.093

Voltage Deviation (p.u.)

0.0925 -

0.092

1

1

0.0915 t - 5 - 5
0 50 100 150 200 250

Iterations

(c) Case 3

Figure 7. Characteristics of convergence of the proposed LSDO vs SDO for IEEE 30-bus system.
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Approaches ‘ IEEE 30-bus | IEEE 57-bus | IEEE 118-bus
Case 1: fuel cost ($/h)

LSDO 800.42 41667.719 137105.9933
SDO 800.4223 41668.7587 139923.6969
ACO? 802.097 - 138809.3896
EWOA’ 799.210* - 142756.67
MSA 800.5099 41673.72 -

AGSO! 801.75 - -

ICBO" 799.0353* 41697.33 -

DSAB 800.3887* 41686.82 -

woH 800.92 41768.49 -

ISA"® 799.2776* 41676.9466 -

Rao-1'¢ 800.4391 41771.1088 129241.1787*
Rao-2'° 799.9918* 41872.0668 129256.5242*
Rao-3'° 799.9683* 41659.2621% | 129220.6794*
SSAY - 41672.30 -

DE® - 41682 -

HHODE®® 800.9959 - -

SKH'® 800.5141 - -

NN 801.5733 - -

HHO® 801.8290 - -

PSO/APO® 801.708 - -

Case 2: Emission (ton/h)

LSDO 0.20483 - -
SDO 0.20484 - -
MSA 0.20482* - -
AGSO! 0.2059 - -
DSA™ 0.20583 - -
wo 0.20521 - -
HHO® 0.2850 - -
Case 3: VD (p.u.)
LSDO 0.091521 0.62165 -
SDO 0.092494 0.63354 -
Rao-1'° 0.1031 0.9882 -
Rao-2'° 0.0993 0.7645 -
Rao-31¢ 0.1001 0.5725* -
SSAY - 0.7569 -
DE® - 0.5839* -
TSA® - 0.72 -
Case 4: Power Loss (MW)
LSDO 3.0902 10.2332 -
SDO 3.0908 10.4552 -
MSA 3.1005 - -
DSAB 3.0945 - -
HHO® 3.49 - -
wo 4.847 24.19 -
DE® - 10.2642 -
SSAY - 11.32 -
TSA%® - 12.473 -

Table 8. Comparison of the LSDO and SDO algorithms and previous studies for IEEE 30-bus system. * :
Infeasible solution.

This comparison assesses the performance and efficacy of the LSDO approach in optimizing the RESs integration
and addressing the associated objectives. The comparative analysis of numerical outcomes from the 30 independ-
ent runs for all competing methods is provided in Tables 12, 13. These tables present the optimal configura-
tions of allowable ranges, control variables, and the corresponding best numerical outcomes achieved for each
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Variables Min | Max |LSDO SDO ABC AEO DE PSO
Py 20 80 27.4952 28.1190 29.2181 27.8672 29.3493 27.4586
Py 0 75 42.5964 42.4655 43.6871 43.3611 44.0153 44.4882
Py 10 35 10.0003 10.0168 10.0000 10.0000 10.0070 10.0000
Pys» 0 60 36.3138 35.8283 37.2811 37.2411 36.9425 36.9460
Py 0 50 37.6781 37.6680 33.8187 35.5632 33.7036 35.1731
Vi 095 | 1.1 1.0712 1.0736 1.0705 1.0715 1.0720 1.0764
Va2 095 | 1.1 1.0567 1.0566 1.0547 1.0569 1.0570 1.0610
Vs 095 | 1.1 1.0350 1.0318 1.0266 1.0350 1.0347 1.0356
Vs 095 | 1.1 1.0339 1.0372 1.0386 1.0381 1.0383 1.0399
\Z3% 095 | 1.1 1.0576 1.0861 1.0377 1.0969 1.0679 1.1000
Vo3 095 | 1.1 1.0640 1.0466 1.0582 1.0532 1.0476 1.0301
Qc1o 0 5 0.9424 4.1096 5.0000 1.6484 3.6814 2.6581
Qc12 0 5 2.7784 4.6240 4.0577 0.9597 0.9146 5.0000
Qc1s 0 5 4.5231 4.2841 4.0942 2.6031 4.7725 1.8142
Q17 0 5 4.7475 2.1458 5.0000 2.5202 4.2278 5.0000
Qc20 0 5 2.5055 2.5539 4.7588 3.6337 3.7487 1.9695
Qe21 0 5 4.3127 4.5084 5.0000 3.8520 4.5469 3.5004
Qc23 0 5 1.6562 2.2216 2.1084 3.3026 4.3059 4.4025
Qc4 0 5 4.9079 4.1379 4.9920 4.6778 3.6728 4.1748
Qc29 0 5 2.3821 1.9546 3.1337 1.8963 2.0644 3.2827
Tn 0.9 1.1 1.0224 1.0453 1.0571 1.0272 1.0595 1.0093
Ty 0.9 1.1 0.9262 0.9400 0.9000 0.9470 0.9245 1.0445
Tis 0.9 1.1 1.0018 0.9784 0.9976 0.9811 0.9814 0.9397
T36 0.9 1.1 0.9718 0.9751 0.9903 0.9720 0.9767 0.9846
Tc ($/h) - - 781.0465 | 781.0633 | 781.5679 | 781.5613 |781.8429 | 781.8984
W ($/h) - - 240.1276 | 238.0496 |247.1789 | 2459129 |247.1596 | 248.8258
Sc ($/h) - - 103.6752 | 103.6431 | 91.2099 97.1776 91.1570 95.9508
E (t/h) - - 1.7623 1.7622 1.7683 1.7622 1.7648 1.7623
VD (p.u.) - - 0.8136 0.8011 0.7702 0.8816 0.7889 0.7628
Pr (MW) - - 5.5916 5.6057 5.5719 5.5407 5.5521 5.5739
Pgy 50 140 134.9079 | 134.9080 | 134.9668 | 134.9079 | 134.9343 | 134.9079

Table 9. Achieved solutions of the proposed LSDO and its competitors for case 5. The best values obtained are
in bold.

objective. The data in these tables offer valuable insights into the performance and effectiveness of each method
in solving the optimization problems in the given scenario. Figure 13 presents the convergence characteristics
and distribution runs obtained for each case study of the LSDO approach and the competitor algorithms. This
figure indicates that the LSDO algorithm outperforms its competitors by converging more rapidly towards the
optimal solution. The figure emphasizes the robustness and competitiveness of the LSDO approach in address-
ing the optimization challenges in this considered system. Additionally, the obtained optimal PQ voltage profile
is illustrated in Fig. 14. These visualizations effectively demonstrate that all voltage profile constraints are met,
thereby confirming that the feasibility of the solutions is thoroughly verified without any violations of constraints.
The optimal PQ voltage profile adheres to the operational limits, ensuring a stable and reliable performance of
the power system. These qualitative and quantitative results illustrate that the LSDO approach exhibits a com-
mendable capability to generate competitive solutions, performing favorably in comparison to both its initial
version and other contemporary techniques across the different IEEE-57 case studies.

IEEE 118-bus test system. In this part, The LSDO approach has been demonstrated on the IEEE 118-bus test
system as a large scale problem in order to affirm the robustness of this suggested technique. The system active
and reactive power demands are 4242 MW and 1439 MVAr, respectively. This network contains 118 nods, 54
generators in which the slack generator is at node 69, 186 branches, 14 shunt elements, 9 transformers tap,
and 130 control variables. Voltage, shunt capacitors, and transformers tap limits are considered in the range
of [0.95-1.1 p.u.], [0-25 p.u.] p.u., and [0.9-1.1 p.u.], respectively. Table 14 outlines the optimal values of the
objective functions and their optimal control variables for both SDO and its LSDO variant. The total generation
fuel cost for both LSDO and SDO are 137105.9933 /h and 139923.6969 /h, respectively. From these results, we
note a decrease in the objective function for the improved approach. Besides, according to comparison results
described in Table 8, it is apparent that the proposed approach gives a better solution compared to the other
meta-heuristic algorithms stated in Some of the recent literature. Moreover, in the field of convergence charac-
teristics, the graphical comparisons between SDO and LSDO of the fuel cost function are illustrated in Fig. 15a.
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Variables Min | Max |LSDO SDO ABC AEO DE PSO
Py 20 80 32.8384 32.8729 31.9959 33.6714 34.0393 33.7709
Py 0 75 45.6214 45.8477 45.3124 46.3784 46.0525 46.5292
Py 10 35 10.0018 10.0038 10.0049 10.0000 10.0071 10.0000
Pys» 0 60 38.8516 38.5311 38.2687 39.0636 39.2151 39.2387
Py, 0 50 37.6834 37.6979 39.8551 35.5634 35.2538 35.1733
Vi 095 | 1.1 1.0706 1.0691 1.0713 1.0696 1.0710 1.0708
Va2 095 | 1.1 1.0559 1.0560 1.0559 1.0563 1.0565 1.0570
Vs 095 | 1.1 1.0345 1.0335 1.0334 1.0349 1.0345 1.0359
Vs 095 | 1.1 1.0395 1.0383 1.0374 1.0376 1.0381 1.0367
\Z3% 095 | 1.1 1.0829 1.0949 1.0805 1.0752 1.0781 1.0607
Vo3 095 | 1.1 1.0492 1.0519 1.0473 1.0546 1.0518 1.0446
Qc1o 0 5 0.3339 4.0594 3.9513 4.3021 2.1917 1.3419
Qc12 0 5 2.0384 1.1285 4.2833 2.4768 1.0254 5.0000
Qc1s 0 5 4.2634 4.2578 3.4435 3.1776 2.8819 5.0000
Qc17 0 5 4.9328 4.6238 4.7729 4.9975 3.8599 5.0000
Qc20 0 5 3.7234 4.5632 3.9906 4.8392 3.7065 1.3802
Qe21 0 5 4.9655 4.9980 4.9840 4.9269 4.8417 4.1186
Qc23 0 5 4.1069 1.5115 2.9477 2.9978 2.9213 5.0000
Qc4 0 5 4.6444 4.9451 5.0000 4.9772 4.4943 5.0000
Qc29 0 5 1.8727 2.3339 2.1057 2.1668 2.1261 4.6306
Tn 0.9 1.1 1.0381 1.0240 1.0229 1.0027 1.0510 1.0625
Ty 0.9 1.1 0.9365 0.9803 0.9695 0.9862 0.9104 0.9000
Tis 0.9 1.1 0.9804 0.9817 0.9802 0.9894 0.9817 0.9947
T36 0.9 1.1 0.9809 0.9755 0.9724 0.9728 0.9688 0.9993
Cr ($/h) - - 809.5379 | 809.5406 | 810.2063 | 810.3869 | 810.3891 | 810.6643
Cw ($/h) - - 259.4633 | 259.1410 | 256.3126 | 262.9280 |262.2946 | 264.0941
Cs ($/h) - - 103.6924 | 103.7418 | 111.8707 | 97.1782 96.0590 95.9513
E (t/h) - - 0.8875 0.8898 0.8652 0.9034 0.9104 0.9033
VD (p.u.) - - 0.8509 0.8870 0.8691 0.8965 0.8831 0.7246
Pr (MW) - - 5.0458 5.0472 5.0390 5.0358 5.0618 5.0694
Pgy 50 140 123.4492 | 123.4939 | 123.0019 | 123.7589 | 123.8941 | 123.7573

Table 10. Achieved solutions of the proposed LSDO and its competitors for case 6. The best values obtained
are in bold.

The convergence and rapid speed are marked for the enhanced method LSDO, in which it converges more stead-
ily toward the optimum solution. Similar to the aforementioned systems, all constraints are diligently satisfied
using the superiority of feasible solution SF constraint handling technique. As depicted in Fig. 15b. it is obvious
that the 64 load voltage buses are within the specified limits values of the load buses, and no bus experienced an
overvoltage.

Statistical results. Table 15 summarizes the statistical comparison of 30 independent runs between SDO and its
improved variant corresponding to their min, mean, max, and standard deviation (SD) of fitness values. As men-
tioned before, the optimal objective function value achieved in each cases by LSDO optimizer outperforms the
SDO solutions. Additionally, the mean, min, and SD are as well better in almost cases. Additionally, the statistical
summary presented in Table 16 comprises the min, mean, max, and SD objective values obtained from 30 inde-
pendent runs. This summary clearly demonstrates that the LSDO algorithm surpasses all other re-implemented
algorithms in terms of performance. Remarkably, the worst fitness values achieved by LSDO are better than the
best fitness values attained by the competing algorithms (i.e. ABC and DE in all cases, AEO in cases 5 and 6, PSO
in all cases except case 10). This indicates that the LSDO algorithm consistently provides superior optimization
outcomes across the considered scenarios, showcasing its effectiveness and robustness.

After a meticulous examination of the results obtained from evaluating different aspects and objectives across
23 benchmark functions and three distinct test networks, it has been established that the LSDO algorithm excels
in effectively addressing the OPF problems compared to other alternative methods. Worth noting is that the
considered cases represent diverse scenarios and conditions in power system, encompassing a wide range of
complexities. Despite the varying characteristics of cases, the LSDO consistently exhibited superior performance
in terms of convergence and attaining optimal solutions. The comparison was based on various metrics, includ-
ing fitness values, convergence rates, and constraint satisfaction, all of which further support the robustness
and effectiveness of the LSDO algorithm in solving the optimization challenges in the power systems domain.
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Case 1 Case 2 Case 3
Control variables Min | Max | SDO LSDO SDO LSDO SDO LSDO
Pg> 30 100 90.6263 90.1633 77.1444 76.0949 55.3909 30.0065
Pgs3 40 140 45.4041 44.7779 54.7384 63.8062 123.6990 112.3814
Pgs 30 100 70.3122 74.0789 63.0807 54.1637 91.3919 91.6064
Pygs 100 550 460.9184 460.5164 315.6719 405.2965 331.1286 326.6915
Pgo 30 100 93.5818 93.4810 48.4015 68.8195 99.1253 99.7742
Pe12 100 | 410 361.7702 360.5197 263.3974 261.0801 409.6722 409.3781
Ve 095 |1.1 1.0629 1.0616 1.0234 1.0316 1.0598 1.0656
Vg2 095 |1.1 1.0609 1.0600 1.0169 1.0211 1.0584 1.0611
Vg3 095 |1.1 1.0540 1.0544 1.0104 1.0082 1.0621 1.0612
Vs 095 |1.1 1.0620 1.0604 1.0061 1.0022 1.0627 1.0600
Vs 095 | 1.1 1.0724 1.0741 1.0241 1.0155 1.0693 1.0630
Vg9 095 |1.1 1.0460 1.0465 1.0048 1.0010 1.0462 1.0451
V12 095 |1.1 1.0466 1.0458 1.0268 1.0302 1.0491 1.0544
Qc18 0 20 10.2617 12.8767 10.2150 5.6659 5.1816 10.8859
Qc2s 0 20 13.3938 13.3632 12.9599 18.4242 8.6958 13.9401
Qcs3 0 20 11.7915 10.7761 19.5538 17.5290 8.9473 15.8698
Tig 0.9 1.1 1.0126 1.0880 1.0387 0.9875 1.0004 1.0319
Tao 0.9 1.1 0.9896 0.9384 0.9795 1.0001 0.9736 0.9777
Tz 0.9 1.1 1.0193 1.0140 0.9709 0.9686 1.0101 0.9823
T3s 0.9 1.1 1.0502 1.0151 1.0337 1.0352 0.9789 1.0055
Tse 0.9 1.1 0.9683 1.0128 1.0041 1.0575 1.0327 0.9792
Ts; 0.9 1.1 1.0208 1.0284 1.0281 1.0049 1.0469 0.9943
T4 0.9 1.1 0.9965 0.9961 0.9811 0.9869 1.0084 0.9969
Tae 0.9 1.1 0.9607 0.9572 0.9179 0.9242 0.9937 0.9780
Ts4 0.9 1.1 0.9526 0.9179 0.9010 0.9027 0.9548 0.9255
Tsg 0.9 1.1 0.9780 0.9785 0.9291 0.9343 0.9799 0.9822
Tse 0.9 1.1 0.9633 0.9591 0.9740 0.9702 0.9671 0.9845
Tes 0.9 1.1 0.9721 0.9713 1.0055 1.0061 0.9730 0.9979
Tes 0.9 1.1 0.9339 0.9341 0.9030 0.9011 0.9480 0.9550
T 0.9 1.1 0.9630 0.9687 0.9636 0.9537 1.0103 0.9729
Ty 0.9 1.1 1.0165 0.9973 0.9622 0.9987 1.0563 0.9501
T7e 0.9 1.1 0.9867 0.9685 0.9269 0.9020 1.0049 0.9802
Tgo 0.9 1.1 0.9881 0.9863 0.9994 0.9793 1.0059 0.9879
Fuel Cost ($/h) - - 41668.7587 | 41667.7190 | 50990.2155 | 45681.7670 | 43796.8998 | 43612.0992
Emission (ton/h) - - 1.35777 1.35367 1.78130 1.49988 1.10023 1.15161
Voltage Deviation (p.u.) - - 1.61981 1.69704 0.63354 0.62165 1.44485 1.53517
Power Loss (MW) - - 14.8667 14.9243 29.7593 23.1825 10.4552 10.2332
Pg1 0 576 143.05363 142.18709 458.12503 344.72168 150.84732 191.19500

Table 11. The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 57-bus.
The best values obtained are in bold.

Conclusion

This paper presents an ameliorate SDO algorithm for solving one of the power system issues considering renew-
able energy powers. In order to confirm the effectiveness of this algorithm, a set of test functions have been
employed to benchmark the performance of the LSDO approach from different perspectives; then, three power
system models and different case studies were investigated. The improved algorithm LSDO-based SF constraint
handling method has been accomplished successfully and proves the utility of the SF strategy in dealing with
the systems’ constraints. Accordingly, the obtained statistical results confirm the efficiency and capability of the
LSDO in getting the best solutions, as it outstripped the standard version SDO and the well-known approaches
TSA, GWO, SNS, ABC, DE, AEO, and PSO. Along these lines, this proposed LSDO algorithm has the ability to
handle the various drawbacks of its basic algorithm, in terms of balancing between the exploration and exploita-
tion processes. Furthermore, the LSDO convergence feature appears to have improved and shows a reasonable
convergence speed to the fitness value than its initial version. In addition, the comparative study of LSDO, SDO
and competitor algorithms affirms the potential of LSDO in finding accurate solutions notably for large-scale
power systems and solving constrained non-linear complex real-world problems. In accordance with these
remarkable outcomes, the authors recommend an LSDO-based SF strategy to handle the OPF issue for a realistic
and higher dimension as considered in this present research.
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Variables |Min |Max | LSDO SDO ABC AEO DE PSO
Py 0 150 149.9968 149.9149 150.0000 149.9607 144.5646 150.0000
Pg3 40 140 40.0596 44.6584 132.8028 41.2343 68.4754 40.0000
Pys 0 150 149.9959 149.9181 150.0000 149.9662 149.6426 150.0000
Pys 100 | 550 378.8350 384.6096 223.1031 387.2554 402.3747 390.3843
Py 0 120 119.9969 119.9445 105.4476 119.9906 107.8691 120.0000
Po1z 100 | 410 315.6892 309.6422 316.7675 306.9151 292.5309 306.6320
Vet 095 | 1.1 1.0596 1.0336 1.0388 1.0402 1.0431 1.0585
Vg2 095 |1.1 1.0625 1.0301 1.0336 1.0378 1.0314 1.0534
Vg3 095 |11 1.0572 1.0249 1.0227 1.0344 1.0375 1.0531
Pys 095 | 1.1 1.0653 1.0399 1.0327 1.0572 1.0369 1.0590
Ves 095 | 1.1 1.0449 1.0447 1.0465 1.0583 1.0316 1.0409
Vg9 0.95 |1.1 1.0297 1.0229 1.0169 1.0380 1.0211 1.0287
Vo2 095 | 1.1 1.0372 1.0271 1.0168 1.0501 1.0421 1.0566
Qe1s 0 20 18.7913 14.6511 3.9084 8.7065 10.3670 16.8329
Qo2 0 20 16.8467 15.7788 10.4987 13.8436 13.0369 19.9816
Qcss 0 20 5.5652 7.2514 13.8125 12.7174 19.0196 9.9873
Tio 09 |11 1.0668 0.9850 0.9970 1.0219 0.9398 1.0562
Ty 09 |11 0.9928 1.0229 1.0194 1.0236 1.0274 1.0978
T3 09 |11 1.0072 1.0090 1.0094 1.0337 0.9462 0.9600
Tss 09 |11 1.0818 1.0780 1.0747 1.0236 0.9998 1.0755
Ts6 09 |11 0.9311 0.9868 0.9687 0.9751 1.0441 0.9990
Ts; 09 |11 1.0398 1.0483 1.1000 1.0329 1.0677 1.0646
Ty 09 |11 1.0079 0.9762 0.9731 1.0094 0.9680 0.9766
Tas 09 |11 0.9644 0.9895 0.9000 0.9327 0.9500 0.9952
Tsy 09 |11 1.0226 0.9595 0.9703 0.9961 0.9332 0.9955
Tsg 09 |11 0.9813 0.9512 0.9433 0.9578 0.9568 1.0399
Tso 09 |11 0.9922 0.9491 0.9541 0.9801 1.0382 1.0591
Tes 09 |11 0.9899 1.0342 1.0295 1.0012 0.9597 1.0172
Tes 09 |11 0.9448 0.9519 0.9415 0.9786 0.9355 0.9062
Tr 09 |11 0.9827 0.9549 0.9303 0.9961 0.9840 1.0383
Tzs 09 |11 0.9919 1.0501 0.9551 1.0316 0.9147 0.9726
Tye 09 |11 0.9653 1.0026 1.1000 0.9617 1.0116 0.9549
Tso 09 |11 1.0546 1.0213 0.9862 0.9890 1.0895 0.9746
Cr ($/h) - - 26491.8072 | 26529.4584 | 30539.0423 | 26498.1112 |27458.7947 |26565.5122
Cw ($/h) - - 1231.2046 1230.4574 | 1231.2389 | 1230.8971 1204.5255 | 1231.2389
Cs ($/h) - - 461.9679 461.6379 395.9494 463.0663 407.6080 462.7849
E (t/h) - - 0.8984 0.9016 0.6918 0.9082 0.9253 0.9177
VD (pu) |- - 1.2561 1.0096 1.1084 1.1498 1.2434 1.5757
P (MW) | - - 17.1841 18.0821 18.6802 17.9220 21.1848 19.9461
P,y 0 575.88 | 113.4107 110.1944 191.3593 113.3998 106.5275 113.7299

Table 12. Achieved solutions of the proposed LSDO and its competitors for case 10. The best values obtained
are in bold.
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Variables |Min |Max | LSDO SDO ABC AEO DE PSO

Py 0 150 149.9869 149.9979 101.6808 149.9480 149.9373 150.0000
Pg3 40 140 40.0190 41.4222 75.5268 41.9813 65.0723 40.0000
Pys 0 150 149.9852 149.9998 150.0000 149.9726 143.1387 149.5369
Pys 100|550 384.0763 370.1775 397.0061 392.0774 371.4336 367.3130
Pys 0 120 119.9840 119.9928 114.9231 119.9816 114.5233 120.0000
Po12 100 | 410 309.2269 323.9497 303.1151 305.3395 285.2056 324.1490
Ve 095 | 1.1 1.0468 1.0458 1.0844 1.0421 1.0247 1.0294
Vg2 095 |1.1 1.0480 1.0402 1.0736 1.0441 1.0227 1.0232
Vg3 095 |1.1 1.0435 1.0381 1.0505 1.0392 1.0048 0.9904
Pys 095 | 1.1 1.0653 1.0473 1.0397 1.0622 1.0206 0.9918
Ves 095 | 1.1 1.0651 1.0314 1.0225 1.0731 1.0265 0.9865
Vo 095 |1.1 1.0436 1.0121 1.0135 1.0331 0.9951 0.9650
Vo2 095 | 1.1 1.0498 1.0293 1.0382 1.0166 1.0033 0.9821
Qe1s 0 20 15.7069 4.7349 13.6560 16.3110 17.1528 0.0000
Qo2 0 20 13.8184 14.6576 16.4312 8.7039 16.8865 20.0000
Qcss 0 20 12.5339 13.4582 12.6849 8.2655 0.9974 0.0000
Tio 09 |11 1.0664 1.0617 1.0539 1.0525 0.9865 0.9155
T 09 |11 0.9797 1.0693 1.0982 0.9991 0.9696 0.9029
T3 09 |11 0.9923 1.0077 1.0287 0.9962 1.0061 0.9438
Tss 09 |11 0.9882 0.9602 0.9987 0.9187 0.9579 1.0336
Ts6 09 |11 1.0285 0.9671 1.0419 1.0095 1.0001 0.9000
Ts; 09 |11 0.9924 0.9521 1.0031 1.0264 0.9825 0.9908
Ty 09 |11 1.0048 0.9921 0.9903 1.0054 1.0146 1.0186
Tas 09 |11 0.9856 0.9922 0.9632 0.9494 0.9748 0.9906
Tsy 09 |11 0.9241 1.0152 1.0358 0.9083 0.9499 0.9292
Tsg 09 |11 0.9668 1.0236 0.9655 0.9638 0.9664 0.9000
Tso 09 |11 0.9893 0.9714 0.9479 0.9600 0.9439 0.9529
Tes 09 |11 1.0178 0.9550 1.0245 0.9954 0.9331 1.0066
Tes 09 |11 0.9478 0.9059 0.9299 0.9476 0.9318 0.9000
Tr 09 |11 0.9689 0.9416 0.9453 0.9968 0.9411 0.9100
Tzs 09 |11 0.9822 1.0071 0.9218 0.9889 1.0581 1.0111
Tye 09 |11 0.9903 0.9966 0.9575 0.9753 0.9156 0.9003
Tso 09 |11 1.0264 0.9753 0.9487 0.9738 0.9815 0.9000
Cr ($/h) - - 26490.4174 | 26560.9184 | 28755.3530 | 26500.9984 |27247.6331 |26695.5204
Cw ($/h) - - 1231.1081 1231.2280 | 1009.1192 | 1230.8696 | 1198.2998 | 1229.0353
Cs ($/h) - - 461.2707 461.3112 439.2436 461.9111 437.0527 463.1334
E (t/h) - - 0.9039 0.8874 0.9483 0.9164 0.8554 0.8870
VD (puw) |- - 1.1424 1.3345 1.2478 1.0188 1.0682 1.4830
P (MW) | - - 17.1879 17.6400 19.6197 17.6620 19.5208 20.5897
P,y 0 575.88 | 114.7097 112.9001 128.1678 109.1615 141.0100 120.3908

Table 13. Achieved solutions of the proposed LSDO and its competitors for case 11. The best values obtained
are in bold.
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Figure 13. Comparison of convergence and run of LSDO vs state-of-the-art algorithms for cases 5 and 6.
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Figure 14. Voltage profile of PQ buses for IEEE-57 REs cases.
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Control variables | SDO LSDO Control Variables | SDO LSDO
Pg1 40.1063 64.4748 V31 1.0368 1.0116
Pgy 43.8024 34.3105 V3 1.0306 1.0359
Pgs 55.3404 30.5358 Vi34 1.0329 1.0020
Pgs 55.5974 30.1350 V36 1.0317 0.9965
Pg10 192.3171 | 307.7051 | Vg0 0.9938 1.0065
Pe12 73.4690 63.1787 Ve 0.9769 1.0477
Pgis 30.4367 69.2999 Vgas 1.0100 1.0017
Pg1g 30.9970 37.4440 Va9 1.0069 1.0181
Pg19 44.1664 30.1235 V54 1.0370 0.9989
P2 57.6019 31.1649 Vigss 1.0311 0.9947
Pgas 119.2457 | 136.1038 | V56 1.0320 0.9967
Pg2s 1513569 | 152.9985 | Vgso 1.0295 1.0074
Pg27 56.0971 32.4025 V61 1.0340 1.0008
Pg3; 32.1709 32.1071 Vg2 1.0277 0.9988
Pg3a 51.6170 30.0514 Ves 1.0306 1.0398
Pgss 320154 |33.4394 | Ve 1.0117 1.0184
Pg36 31.4379 30.0830 V6o 1.0401 1.0372
Pgas 32.3694 31.9403 Vg70 1.0231 1.0133
Poax 30.6368 32.5210 V72 1.0276 1.0123
Pga6 36.1461 35.9978 Vg73 1.0163 0.9956
Pgao 112.0778 | 160.9314 | V74 1.0059 1.0019
Pgss 621124 | 47.7883 | Vg6 0.9781 0.9941
Pgss 54.0745 30.3659 V77 1.0033 1.0202
Pgse 44.3759 44.7771 Vigso 1.0172 1.0369
Pgso 145.3439 | 88.6009 Viss 1.0039 0.9969
Pge1 117.0340 | 126.8220 | Vg7 1.0626 0.9837
Pge2 45.7334 39.6513 Vg9 1.0135 0.9986
Pges 284.0753 | 263.3131 | Voo 1.0207 1.0236
Pge6 172.3229 | 278.0789 | Vo 1.0041 1.0544
Pg70 50.4983 30.0481 Vgo2 1.0037 1.0095
Pe72 32.3044 63.0797 Vg9 1.0198 1.0579
P73 49.1009 53.9478 V100 1.0120 1.0290
Pg7a 55.6390 35.4073 V103 1.0194 1.0151
Pg76 59.7134 52.1510 V104 1.0150 1.0015
P77 30.0000 32.1093 V105 1.0214 1.0018
Pgso 2825561 |289.0136 | Vgio7 1.0604 1.0147
Pgss 30.3429 30.3009 Vgi10 1.0154 1.0027
Pgs7 31.2028 31.2072 Vi1 1.0450 1.0281
Pgso 370.5745 | 390.9766 | Vi1 0.9919 0.9919
Pg90 63.0840 30.7519 Vo3 1.0317 1.0461
Pgoy 40.2548 31.5360 V113 1.0268 1.0272
Pgoa 50.2085 41.3658 Qs 8.4799 9.6180
Pgoo 316909 | 323164 | Qua 12.7735 1.8728
Pg100 200.5469 | 159.9352 | Q37 6.3689 15.4410
Pg103 48.9003 47.5207 Qcaa 8.4943 16.1184
Pg104 30.0499 30.8410 Qcas 21.2064 17.7603
Pg105 30.1693 31.3924 Qca6 11.1423 12.8668
Pg107 30.1765 30.2941 Qcas 13.3364 16.5950
Pei10 37.8482 | 30.8276 | Q4 14.0006 15.7325
Poinn 76.6624 41.3898 Qc79 15.0967 12.5671
Poin2 30.3786 31.8328 Qcs2 8.1848 11.6904
P13 56.1582 30.0014 Qcs3 13.9846 12.7562
Pg116 32.8097 30.4287 Qc10s 16.3278 17.0788
Ve 1.0028 0.9925 Qc107 6.1172 1.8649
Vea 1.0138 1.0211 Qc110 15.8669 1.2406
Ve 1.0173 1.0052 Tg 0.9652 0.9416
Continued

Scientific Reports |

(2023) 13:14501 |

https://doi.org/10.1038/s41598-023-41608-1

nature portfolio



www.nature.com/scientificreports/

Control variables | SDO LSDO Control Variables | SDO LSDO
Vs 1.0256 0.9878 T3 1.0156 0.9997
Viio 1.0286 1.0168 Tae 0.9894 0.9783
V12 1.0199 0.9958 Ts1 0.9879 1.0174
Vgis 1.0041 1.0070 To3 0.9765 1.0166
Veis 1.0023 0.9997 Tos 0.9761 1.0029
Ve19 0.9993 0.9982 Ti02 1.0115 1.0237
Vg2 1.0020 1.0165 Tio7 1.0039 1.0447
Vs 1.0438 1.0252 Ti27 0.9828 1.0427
V26 1.0701 1.0078 Fuel Cost ($/h) 139923.69 | 137105.99
Vg7 1.0407 1.0540 Pgeo 319.5107 374.0803

Table 14. The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 118-
bus. The best values obtained are in bold.
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Figure 15. Convergences and voltage profiles of PQ buses for IEEE 118-bus system.

Systems Cases Min Mean Max SD
Case 1 SDO 800.4223 800.4461 800.4776 1.4516E-2
ase
LSDO | 800.42 800.4404 800.4828 1.4232E-2
Case 2 SDO 0.20484 0.20486 0.20492 2.3422E-5
ase
LSDO | 0.20483 0.20487 0.20491 2.535E-5
IEEE 30
Case 3 SDO 0.092494 0.095292 0.10039 2.6015E-3
ase
LSDO | 0.091521 0.093677 0.10008 2.2197E-3
SDO 3.0908 3.0983 3.1267 1.0211E-2
Case 4
LSDO | 3.0902 3.0932 3.1024 2.6589E-3
Case 6 SDO 41668.7587 | 41669.5291 | 41676.463 | 2.4363
ase
LSDO |41667.719 41667.807 41667.915 | 1.001E-1
SDO 0.63354 0.64428 0.66422 1.5011E-2
IEEE 57 Case 7
LSDO |0.62165 0.63646 0.64016 7.5964E-3
Case 8 SDO 10.4552 10.5735 11.0571 1.8523E-1
ase
LSDO |10.2332 10.2551 10.6719 9.8104E-2
SDO 139923.69 140792.50 144232.38 | 1588.4573
IEEE 118 Case 12
LSDO |137105.99 137354.50 138858.69 | 576.4613

Table 15. Statistical results of the proposed LSDO and original SDO algorithms for case studies without RESs.
Significant values are in bold.
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Systems | Cases LSDO SDO ABC AEO DE PSO
Min 781.0465 781.0633 781.5679 781.5613 781.8429 781.8984
Mean 781.0777 781.1211 781.6922 781.7967 781.9374 785.7463
Case5 | Max 781.1041 781.3601 781.9680 782.8320 782.0656 813.5669
SD 1.8922e-02 | 7.9737e-02 | 9.9345e-02 | 2.5226e-01 |5.4209e-02 | 5.5157e+00
p_value |N/A 7.2253e-02 | 2.7792e-11 | 2.7792e-11 | 2.7792e-11 | 2.7792e-11
IEEE 30 Min 809.5379 809.5406 810.2063 810.3869 810.3891 810.6643
Mean 809.5686 809.5534 810.2226 810.4587 810.4189 812.5426
Case 6 | Max 809.6433 809.6613 810.2596 810.5989 810.4526 828.2575
SD 2.4758e-02 | 2.9860e—02 |1.2469e—02 |6.0906e—-02 |1.7633e—02 | 3.1834e+00
p_value | N/A 2.1627e-05 | 2.8538e-11 |2.8538e-11 |2.8538e-11 |2.8538e-11
Min 26491.8072 | 26529.4584 | 30539.0423 | 26496.6212 | 27458.7947 | 26565.5122
Mean 26509.1985 | 26544.8073 | 35120.4814 | 29735.3255 | 29253.3064 | 34947.4702
Case 10 | Max 26571.5093 | 26577.9994 | 40518.7080 | 41637.2155 |32302.3813 | 56398.4406
SD 2.0740e+01 | 1.6977e+01 | 2.5649e+03 | 3.4953e+03 | 1.1643e+03 | 7.6620e+03
IEEE 57 p_value |N/A 4.0707e-08 | 2.2204e-11 1.9203e-08 | 2.2204e-11 |2.4579e-11
Min 26490.4174 | 26560.9184 | 28755.3530 | 26500.9984 |27247.6331 | 26695.5204
Mean 26513.1831 |26561.6940 | 35555.4767 | 29647.0590 |29235.2903 | 33617.4824
Case 11 | Max 26547.1563 | 26563.0338 | 51597.0759 | 45841.5302 |31924.7822 | 54730.8211
SD 2.4701e+01 | 1.0368e+00 |4.9651e+03 | 4.5404e+03 |1.1092e+03 | 6.8201e+03
p_value |N/A 9.9140e-12 | 2.4446e-11 |6.0580e—09 |2.4446e-11 |2.4446e-11

Table 16. Statistical results of the proposed LSDO and its competitors for case studies with RESs. Significant
values are in bold.
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