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A leader supply‑demand‑based 
optimization for large scale optimal 
power flow problem considering 
renewable energy generations
Fatima Daqaq 1, Mohamed H. Hassan 2, Salah Kamel 3 & Abdelazim G. Hussien 4,5,6*

The supply-demand-based optimization (SDO) is among the recent stochastic approaches that 
have proven its capability in solving challenging engineering tasks. Owing to the non-linearity and 
complexity of the real-world IEEE optimal power flow (OPF) in modern power system issues and like 
the existing algorithms, the SDO optimizer necessitates some enhancement to satisfy the required 
OPF characteristics integrating hybrid wind and solar powers. Thus, a SDO variant namely leader 
supply-demand-based optimization (LSDO) is proposed in this research. The LSDO is suggested to 
improve the exploration based on the simultaneous crossover and mutation mechanisms and thereby 
reduce the probability of trapping in local optima. The LSDO effectiveness has been first tested on 
23 benchmark functions and has been assessed through a comparison with well-regarded state-of-
the-art competitors. Afterward, Three well-known constrained IEEE 30, 57, and 118-bus test systems 
incorporating both wind and solar power sources were investigated in order to authenticate the 
performance of the LSDO considering a constraint handling technique called superiority of feasible 
solutions (SF). The statistical outcomes reveal that the LSDO offers promising competitive results not 
only for its first version but also for the other competitors.

During the past decades, optimization has aroused an increase due to its importance in various fields includ-
ing engineering design, economics, computer science, business, operational research, etc. Besides, the most 
popular real word optimization problem is the optimal power flow in power system operation and planning1. 
The OPF is regarded as a high-dimensional, non-convex, non-linear, complex issue. Solving the OPF problem 
efficiently and accurately plays a vital role in power system operation and planning. By achieving an optimal 
dispatch of generation resources, OPF helps to improve system efficiency. Additionally, OPF enables the integra-
tion of renewable energy sources, enhances grid resilience, and facilitates the reliable and secure operation of 
power systems, thereby ensuring the provision of reliable and affordable electricity to consumers. Furthermore, 
the primary objective function is minimizing fuel cost, then the emission, voltage deviation, power loss, etc, 
taking into account numerous constraints on generators, bus voltage, line capacity, transformer tap, and also 
active and reactive power of generators, which should be satisfied. Moreover, the OPF problem can be mainly 
solved via two categories of optimization techniques: the first one is classical or deterministic approaches that 
converged to local optima and suffered from convexity. The second is the intelligent or stochastic approaches 
that are considered an effective methods for finding optimal solutions. In general, many scholars have been suc-
cessfully applied various stochastic approaches to address the power system issues including adaptive constraint 
differential evolution (ACDE) algorithm2, an improved version of the coyote optimization algorithm (COA)3, 
teaching-learning-based optimizer (TLBO)4, adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya)5, 
backtracking search algorithm (BSA)6, crisscross search based grey wolf optimizer (CS-GWO)7, ant colony 
optimization (ACO)8, effective whale optimization algorithm (EWOA)9, moth swarm algorithm (MSA)10, adap-
tive group search optimization (AGSO)11, improved colliding bodies optimization (ICBO)12, differential search 
algorithm (DSA)13, invasive weed optimization (IWO)14, interior search algorithm (ISA)15, robust optimization 
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approach (Rao)16, Salp swarm algorithm (SSA)17. Stud krill herd algorithm (SKH)18, symbiotic organisms search 
algorithm (SOS)19, tree-seed algorithm (TSA)20, Hunter-prey optimization (HPO)21, particle swarm optimization 
(PSO)22, fuzzy-based improved comprehensive-learning particle swarm optimization (FBICLPSO) algorithm23, 
hybrid Grey wolf optimizer and particle swarm optimization (GWO-PSO)24, hybrid of the firefly and PSO algo-
rithms (HFAPSO)25, combined genetic algorithm and particle swarm algorithm (GA-PSO)26, multi objective 
genetic algorithm (MOGA)27, artificial bee colony algorithm based on a non-dominated sorting genetic approach 
(ABC-NSGA-II)28, fitness-distance balance based-TLABC (teaching-learning-based artificial bee colony) (FDB-
TLABC)29, non-dominated sorting culture differential evolution algorithm (NSCDE)30, differential evolution 
algorithm based on state transition of specific individuals (DE-TSA)31, multi-objective covariance matrix adapta-
tion evolution strategy (CMA-ES)32, manta ray foraging optimization (MRFO)33,34, dragonfly algorithm (DA)35, 
flower pollination algorithm (FPA)36, etc.

Therefore, the aim of this current work is to improve the SDO algorithm in order to apply it to the OPF IEEE 
30-bus, IEEE 57-bus, and IEEE 118-bus test power systems with and without considering hybrid Wind/Solar 
energy resources. Besides, the implementation of the SDO optimizer to deal with OPF issues is investigated for 
the first time. The SDO approach is a novel stochastic optimizer, introduced by Zhao et al. in 2019 and inspired 
by the supply-demand mechanism in economics37. Numerous academic researchers have employed the SDO 
algorithm such as, in Refs.38,39 the authors apply SDO in order to extract accurate and reliable parameters for 
different PV models. To design an efficient and economic hybrid energy system, the SDO optimizer was used 
in40. According to41, the fitness-distance balance (FDB) method was employed to effectively model the supply-
demand processes in SDO. Additionally, in order to build an accurate equivalent circuit model for proton 
exchange membrane fuel cells, authors in42 tried to apply the SDO algorithm. As introduced in43, the authors 
apply the SDO in order to obtain the unknown parameters of the PIDA controller. Referring to44, Hassan et all. 
improve SDO with a view to enhance the population diversity, the balance between local and global search, and 
the premature convergence of the original supply-demand based optimization (SDO) algorithm. Their proposed 
approach was applied for achieving global solutions to economic load dispatch (ELD) problems in power sys-
tems. In addition, in an attempt to ameliorate the performance of the approach under study, the authors in45 
present a chaotic map-based supply-demand optimization (SDO) algorithm including the fitness-distance bal-
ance (FDB) selection method to solve the Combined heat and power economic dispatch (CHPED) problem; the 
FDB and chaotic maps were used to increase the convergence performance of the algorithm to the global solution 
and to find the global solution in the solution search space. Regarding the work of Zhao et al.46, an enhanced 
fitness-distance balance (EFDB) and the Levy flight are added to the SDO original version to avoid premature 
convergence and improve solution diversity; besides, a mutation mechanism is introduced into the algorithm to 
improve search efficiency; and to enhance the convergence accuracy, an adaptive local search strategy (ALS) is 
integrated, and so on. According to these literature reviews, the supply-demand-based optimization algorithm 
requires an adjustment in terms of the exploration behavior to fit the current problem. This has motivated us to 
suggest the leader supply-demand-based optimization approach (LSDO). Thus, during each SDO’ generation a 
leader-based mutation selection adaptively perched over the exploration phase.

The contributions of this paper are:

•	 The proposed LSDO algorithm is evaluated by testing it on various benchmark functions. It is compared 
against established algorithms such as Social Network Search (SNS), Gray Wolf Optimizer (GWO), Tunicate 
Swarm Algorithm (TSA), and the original SDO algorithm. This evaluation helps assess the performance and 
effectiveness of the LSDO algorithm.

•	 The LSDO algorithm is implemented to solve the Optimal Power Flow (OPF) problem on three well-known 
standard systems: IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems considering Wind and Solar 
powers. These systems have different numbers of control variables (24, 33, and 130, respectively). By con-
sidering these standard systems, the paper ensures a comprehensive evaluation of the LSDO algorithm’s 
capabilities.

•	 Comparative studies are conducted between the proposed LSDO technique and the original SDO technique 
for solving the OPF problem. By comparing these two approaches, the paper aims to highlight the advantages 
and improvements achieved by the LSDO algorithm.

•	 The OPF problem is solved using both the proposed LSDO and the original SDO techniques in eight different 
cases with single objectives. These objectives include total cost minimization, total emission minimization, 
active power loss minimization, and voltage deviation minimization. By addressing these different objectives, 
the paper demonstrates the versatility and applicability of the LSDO algorithm in tackling various aspects of 
the OPF problem.

•	 Through comparative analysis, the paper shows that the proposed LSDO technique exhibits high robustness 
and outperforms the conventional SDO algorithm and other recent techniques in addressing the OPF prob-
lem. This analysis highlights the superior performance of the LSDO algorithm and its potential as a powerful 
optimization tool.

Overall, the paper contributes to the field by evaluating the performance of the LSDO algorithm, demonstrating 
its effectiveness in solving the OPF problem incorporating wind/solar powers, and showcasing its robustness 
and improved performance compared to existing techniques.

The following sections of this paper are organized as follows: In The proposed optimization methodology 
section, you will find a detailed explanation of the original SDO, and its improved variant LSDO, besides a brief 
introduction of the constraint handling strategy SF. Problem Formulation Methodology section introduces the 
formulation of the OPF problem considering renewable energy resources. Simulation Results and Discussion 
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section of this paper delves into a comprehensive numerical statistical analysis and discussions. Ultimately, the 
paper concludes with a summary of the findings.

The proposed optimization methodology
In this section, the supply-demand-based optimization (SDO) algorithm is briefly explained then the process of 
the leader SDO (LSDO) algorithm is described.

The supply‑demand‑based optimization (SDO) algorithm.  According to the SDO algorithm pro-
posed in37, it is presumed that there exist multiple markets for commodities, each with a consistent quantity 
and cost for every product. The cost of each commodity and the corresponding market volume is presented as 
follows:

where d refers to the commodity prices number while n denotes the markets number. Moreover, 
x
j
i(i = 1, . . . , n; j = 1, . . . , d) represents the jth commodity cost in the ith market and xi(i = 1, . . . , n) refers to 

the ith the vector of commodity cost. yji(i = 1, . . . , n; j = 1, . . . , d) represents the jth commodity quantity in the 
ith market. yi(i = 1, . . . , n) denotes the ith the vector of the commodity quantity.

The values of the decision variable in the fitness function are determined by the cost and quantity of com-
modities for each market, which are evaluated as follows:

where T denotes the transpose of the matrix.
To prevent the SDO algorithm from becoming trapped in local optima, the balance costs y0 and balance 

volume vector x0 are chosen randomly, with a probability distribution determined by their likelihood of being 
successful.

The quantities and costs of the product presented below are adjusted using the supply-factor α and demand-factor 
β , which are determined based on the equilibrium cost and balance quantity:
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During the ith iteration, xi(t) and yi(t) represent the ith cost and total quantity of a given product. The cost of 
the commodity can be expressed as:

In order to balance exploration and exploitation, alpha and beta are denoted as:

here t refers to the current iteration, r is a random vector, and T denotes the total number of iterations.
To facilitate an efficient transition between exploration and exploitation within the SDO technique, a novel 

variable L is formulated as follows:

The cost of each demand varies between the balance cost when |L| > 1 , and the converged balance cost when 
|L| < 1.

The proposed leader supply‑demand‑based optimization (LSDO) algorithm.  The proposed 
technique is called Leader-based mutation-selection47. Its purpose is to address the possibility of the optimal 
value falling into local optima. This approach involves using the best location vector xtbest , the second-best loca-
tion vector xt(best−1) , and the third-best location vector xt(best−2) based on the objective function value of the 
new location vector xi(new) relative to the population size. The new mutation position vector xi(mut) is then 
calculated as:

Then, the next location is updated using the following equation48:

Finally, the optimal solution can be updated as follows49:

The diagram in Fig. 1 illustrates the flowchart of the Leader supply-demand-based optimization (LSDO) algo-
rithm. It also depicts the position of Leader-based mutation selection in the algorithm. This modification has 
been incorporated to improve the exploration capability of the LSDO algorithm by performing simultaneous 
crossover and mutation using the three best leaders.

Constraint handling superiority of feasible solutions (SF).  It is worth noting that the majority of 
optimization problems have both equality and inequality constraints that must be handled. However, almost all 
stochastic algorithms are unconstrained approaches. thereby, researchers process by employing the well-known 
static penalty strategy that is not reliable and requires control parameter settings. Along these lines, a superiority 
of feasible solutions (SF) constraint handling method is integrated into this study to deal with the constraints on 
state variables. Deb50 proposed the use of the Dominance-based approach for handling constraints, known as 
the SF strategy. This strategy is based on the concept of a dominant relationship, which gives priority to feasible 
solutions over infeasible ones. According to this strategy, a feasible candidate can always dominate an infeasible 
one, and a candidate with a smaller violation degree dominates the one with a higher violation value. The SF 
strategy employs a tournament selection operator, where two solutions are compared at a time. The solution Xi 
is considered superior to Xj if:

•	 An infeasible solution Xj is dominated by a feasible one Xi
•	 if both Xi , Xj are feasible, but Xj is worst than Xi
•	 if both Xi , Xj are infeasible, and Xj has the greatest constraint violation.

The equality constraints are transformed into inequality constraints, resulting in the introduction of a total 
constraint as:
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where δ is a tolerance parameter for the equality constraints, Hi(X) represents the inequality constraints. The 
expression of the constraint violation for an infeasible solution can be represented as:

(18)Hi(X) =
{

max (hi(X), 0)
max

(

|gi(X)| − δ, 0
)

Figure 1.   Flowchart of the proposed LSDO algorithm.
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where wi is a weight factor, Hmax,i is the maximum value for violation of constraint.

Problem formulation methodology
Renewable energy model.  Presently, the integration of renewable energy resources (RESs) into power 
systems is rapidly advancing, with particular focus on wind and PV power. These RESs play a pivotal role in 
reducing CO2 emissions and bolstering the power system’s overall quality and reliability. To model solar irradi-
ance and wind distribution, Lognormal and Weibull probability density functions are respectively utilized51. 
Through 8000 iterations of the Monte Carlo simulation, the Lognormal fitting of solar irradiance, Weibull fitting 
of wind speed, and Frequency distribution are obtained and visualized in Figs. 2, 352. Each of these resources is 
associated with three cost components: direct cost, penalty cost, and reserve cost51. Table 1 provides a compre-
hensive description of all the parameters related to solar and wind energy sources.

Wind power.  The variability of wind flow is modeled using a Weibull probability distribution function53.

where the parameters k and c represent the shape and scale factors of the Weibull distribution, respectively.
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g
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Hmax,i

(20)f (v) =
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(v
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exp

[

−
(v

c
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Figure 2.   Distribution of wind speed for wind generators.

Figure 3.   Distribution of solar irradiance for solar generator at 13th buses.
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The wind generator’s output power is determined by the stochastic wind speed and can be expressed as 
follows53:

where vout , vin , vr , v and pwr are cut-out wind speed, cut-in wind speed, rated wind speed, actual wind speed, 
and rated output power, respectively.

The total cost of wind energy encompasses the following components51: direct Cost associated with the sched-
uled power generated by the wind turbine, penalty Cost of Underestimation, and reserve Cost for Overestima-
tion. These factors together contribute to determining the overall cost associated with wind energy generation 
as represented below:

with,

where dw,i is the coefficient of direct cost of ith wind generator. Koew,i and Kuew,i are the over and under estima-
tion cost coefficients pertaining to ith wind power plant. pws,i is the scheduled power. fw

(

pw,i
)

 is the probability 
density function of ith wind power plant.

Solar power.  The lognormal distribution is employed as the probability distribution function to calculate the 
PV output power, as illustrated below53:

The available power Ps(G) of solar irradiation G is calculated in the following manner, as shown in53:

where Psr , Gstd , G, and Rc are the rated output power of solar PV, solar irradiation in standard environment, 
forecasted solar irradiation, and certain irradiance point, respectively.

The PVs total cost is formulated as follows51:

with,
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Table 1.   Characteristic details of wind-solar generators.

Test 
systems

Wind power PV power

Wind
No of 
turbines Pwr (MW) Parameters of Weibull PDF Solar Psr (MW)

Parameters of
Lognormal PDF

IEEE-30
1(bus 5) 25 75 k = 2, c = 9

(bus 13) 50 µ = 6, σ = 0.6
2(bus 11) 20 60 k = 2, c = 10

IEEE-57
1(bus 2) 50 150 k = 2, c = 10

(bus 9) 50 µ = 6, σ = 0.6
2(bus 6) 40 120 k = 2, c = 10
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where ds,i is the coefficient of direct cost of ith wind generator. Pss,i is the scheduled power. Koes,i and Kues,i are 
the over and under estimation cost coefficients of solar power plant. fs

(

ps,i
)

 is the probability density function 
of the ith solar power plant.

Optimal power flow model.  Generally speaking, OPF is considered a complex, non-convex, non-linear in 
power system optimization problem. The purpose of OPF is to minimize various competing objective functions 
subject to diverse control and state variables, as well as power flow equations and unit operating limits as equality 
and inequality constraints, respectively.

Objective functions.  In this work, six competing objective functions will be outlined.

Fuel cost.   The total fuel cost of the network’s generators is modeled as a quadratic function, expressed as 
follows51:

where ai , bi and ci are the cost coefficients of the conventional units.

Emission.   The emission function is represented using an exponential function that is formulated based on the 
previous quadratic function as follows51:

where αi , βi , γi , ξi , and �i are the emission coefficients of the power plant.

Voltage deviation.   The load bus voltages are set to 1.0 per unit to ensure a desirable voltage profile. The voltage 
deviation is defined as follows54:

Power loss.   The transmission system experiences power losses due to the inherent resistance of the transmis-
sion lines. This can be mathematically modeled using the following expression54:

where, Gl(i,j) represents the conductance of line l. δij = δi − δj represents the voltage angle difference between 
bus i and bus j.

Cost considering renewable energy powers.   The total cost of the network, considering the combined contribu-
tions of wind, solar, and thermal powers, is expressed as follows51.

where Fc , CTw , and CTs are fuel cost, wind’s total cost, and PV’s total cost, respectively.

Cost considering renewable energy powers with the carbon tax.   Over the past decade, numerous countries 
have responded to global environmental concerns by introducing carbon taxes as a measure to mitigate carbon 
emissions into the environment. The calculation of emissions cost ($/ton) involves the application of a carbon 
tax ( CTax ) on emitted pollutants51:

avec

where E presents the emission, and CTax = 20.
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Variables.  The set of state variables s can be defined as51:

where, Pg1 is the active power output at the slack bus. VL is the voltage magnitude at PQ buses. Qg is the reactive 
power output of all generator units. Sl is the transmission line loading (line flow). Npq , Ng , and Nl denote the 
number of load buses, number of generating units, and number of transmission lines, respectively.

The set of control variables c can be expressed as51:

The expression represents the modeling of transmission system power losses, which occur due to the resistance 
of lines. The active power generation at the PV buses, except the slack bus, is denoted by Pg , and Vg represents 
the voltage magnitude at PV buses. The transformer tap settings are represented by T, and Qc is the shunt VAR 
compensation. Ng , Nc , and NT are the number of generators, regulating transformers, and VAR compensators 
(shunt), respectively.

Constraints.  As previously mentioned, the OPF problem comprises both equality and inequality constraints, 
which are crucial in optimal power flow investigations as they represent the physical limitations of the equip-
ment. The constraints are modeled as follows:

Equality constraints The power flow equations are assumed as equality constraints that are represented by:

The number of buses in the system is denoted by Nb. The active and reactive power generated at bus i are rep-
resented by Pgi and Qgi , respectively, while the active and reactive power demand at bus i are represented by Pdi 
and Qdi , respectively. The admittance matrix components are denoted by Gij and Bij . Yij = Gij + jBij named the 
conductance and susceptance.

Inequality constraints The inequality constraints are given below:

•	 Generator constraints:

where Vmin
i  and Vmax

i  indicate the minimum and maximum bounds of the bus voltage. Pmin
gi  and Pmax

gi  represent 
the lower and upper bounds of active power generators. Qmin

gi  and Qmax
gi  are the minimum and maximum reactive 

power bounds of the generator. Pmin
ws,i  , P

max
ws,i  , Pmin

ss,i  , Pmax
ss,i  , Qmin

ws,i , Q
max
ws,i  , Qmin

ss,i  , and Qmax
ss,i  are the bounds of energy 

resources. Ng, Nwg, and Nsg are the number of generation, wind, and solar, respectively.

•	 Transformer constraints:

where, NT is the number of tap changer transformers. Tmin
i  and Tmax

i  represent the minimum and maximum 
limits of the transformer, respectively.

•	 Shunt VAR compensators constraints:

where, Nc is the number of capacitor components. Qmin
c,i  and Qmax

c,i  are the minimum and maximum limits of the 
shunt compensators.

•	 Security constraints:

(39)s = [Pg1,VL1, ...,VLNpq,Qg1, ...,QgNg , Sl1, ..., SlNl]

(40)c = [Pg2, ..., PgNg ,Vg1, ...,VgNg ,Qc1, ...,QcNc ,T1, ...,TNT ]

(41)

{

Pgi − Pdi − |Vi|
∑Nb

j=1 |Vj|[Gijcos(θij)+ Bijsin(θij)] = 0

Qgi − Qdi − |Vi|
∑Nb

j=1 |Vj|[Gijsin(θij)−Bijcos(θij)] = 0

(42)Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1, ...,Ng

(43)Pmin
gi ≤ Pgi ≤ Pmax

gi i = 1, ...,Ng

(44)Pmin
ws,i ≤ Pws,i ≤ Pmax

ws,i i = 1, ...,Nwg

(45)Pmin
ss,i ≤ Pss,i ≤ Pmax

ss,i i = 1, ...,Nsg

(46)Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1, ...,Ng

(47)Qmin
ws,i ≤ Qws,i ≤ Qmax

ws,i i = 1, ...,Nwg

(48)Qmin
ss,i ≤ Qss,i ≤ Qmax

ss,i i = 1, ...,Nsg

(49)Tmin
i ≤ Ti ≤ Tmax

i i = 1, ...,NT

(50)Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, ...,Nc
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where, Nl is the number of transmission lines. Sli and Smax
li  indicate the maximum limit of the transmission line.

Simulation results and discussion
This section demonstrates the superiority of the proposed LSDO algorithm through experimentation with 23 
benchmark functions. All 23 experiments were conducted using MATLAB (R2020a) on a computer with an 
Intel(R) Core(TM) i5-9400F CPU running at 2.90 GHz and 8GB of RAM.

Simulation results of benchmark functions.  In this subsection, the effectiveness and accuracy of the 
LSDO technique are evaluated using 23 benchmark functions55. These functions are divided into three catego-
ries: uni-modal functions (F1–F7), multi-modal functions (F8–F14), and fixed-dimension multi-modal func-
tions. Table 2 provides the definitions of these functions, with D, UM, and MM representing the dimension, 
uni-modal functions, and multi-modal functions, respectively. The performance of the original SDO technique 
and three well-known optimization algorithms, namely social network search (SNS)56, gray wolf optimizer 
(GWO)57, and tunicate swarm algorithm (TSA)58, are also compared. The evaluation metrics include the best, 
mean, median, worst values, and standard deviation (std) of the solutions obtained by each algorithm. Table 3 
presents the results, where all algorithms were run with a population size of 50 and a maximum of 200 iterations 
for 20 independent runs. As shown, the proposed LSDO technique achieves the best values for most benchmark 
functions.

In addition, qualitative metrics of the proposed LSDO technique for nine benchmark functions are shown in 
Fig. 4, including 2D views of the functions, search history, average fitness history, and convergence curves. The 
convergence curves for all algorithms and benchmark functions are illustrated in Fig. 5, while the boxplots are 
displayed in Fig. 6. The LSDO algorithm is observed to reach a stable point for all functions, and its boxplots are 
narrower than the other techniques for many functions.

The LSDO technique’s performance is compared to other recent algorithms including the original SDO 
technique and six well-known optimization algorithms, namely SNS, GWO, TSA, differential evolution (DE)59, 
particle swarm optimizer (PSO)60, and artificial bee colony (ABC)61 on 13 benchmark functions with a dimension 
of 100. The results are presented in Table 4. For Function 1, the proposed LSDO technique achieved significantly 
better results with a minimum value of 1.7E−145, outperforming other algorithms. Function 2 also demonstrated 
the superiority of the LSDO technique, as it obtained a minimum value of 3.77E−68, notably better than the 
other algorithms. The LSDO technique performed exceptionally well on Function 3, achieving a minimum value 

(51)Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, ...,Npq

(52)Sli ≤ Smax
li i = 1, ...,Nl

Table 2.   Definition of 23 benchmark functions.

No Name D Range Type fmin

F1 Sphere [30, 100] [−100, 100] UM 0

F2 Schwefel 2.22 [30, 100] [−10, 10] UM 0

F3 Schwefel 1.2 [30, 100] [−100, 100] UM 0

F4 Schwefel 2.21 [30, 100] [−100, 100] UM 0

F5 Rosenbrock [30, 100] [−30, 30] UM 0

F6 Step [30, 100] [−100, 100] UM 0

F7 Quartic [30, 100] [−1.28, 1.28] UM 0

F8 Schwefel [30, 100] [−500, 500] MM −12, 569.487

F9 Rastrigin [30, 100] [−5.12, 5.12] MM 0

F10 Ackley [30, 100] [−32, 32] MM 0

F11 Griewank [30, 100] [−600, 600] MM 0

F12 Penalized [30, 100] [−50, 50] MM 0

F13 Penalized 2 [30, 100] [−50, 50] MM 0

F14 Foxholes 2 [−65.536,

65.536]
MM 0.998004

F15 Kowalik 4 [−5,−5] MM 0.0003075

F16 Six-hump 2 [−5,−5] MM −1.0316285

F17 Branin 2 [−5,−5] MM 0.398

F18 Goldstein-

Price
2 [−2, 2] MM 3

F19 Hartman 3 3 [−1, 2] MM −3.862782

F20 Hartman 6 6 [0, 1] MM −3.32236

F21 Shekel 5 4 [0, 10] MM −10.1532

F22 Shekel 7 4 [0, 10] MM −10.4029

F23 Shekel 10 4 [0, 10] MM −10.5364
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Function LSDO SDO TSA GWO SNS

F1

Min 8.3E−151 1.39E−55 3.79E−08 4.47E−12 1.03E−28

Average 4.6E−128 1.37E−51 3.92E−07 3.12E−11 1.37E−27

Median 4.4E−140 3.74E−54 1E−07 2.46E−11 4.77E−28

Max 9.1E−127 8.43E−51 4.09E−06 8.73E−11 1.04E−26

Std 2E−127 2.74E−51 9.2E−07 2.31E−11 2.38E−27

F2

Min 1.01E−69 1.83E−29 2.44E−06 1.42E−07 2.3E−15

Average 2E−60 3.76E−25 1.9E−05 2.77E−07 5.64E−15

Median 6.56E−63 1.13E−26 1.86E−05 2.66E−07 4.21E−15

Max 2.53E−59 3.98E−24 3.68E−05 4.78E−07 1.4E−14

Std 5.95E−60 9.1E−25 9.44E−06 9.9E−08 3.51E−15

F3

Min 2.2E−145 6.27E−46 0.027608 0.008462 9.18E−13

Average 8.7E−120 6.91E−34 1.122677 0.610441 4.18E−08

Median 9.3E−138 1.4E−39 0.772195 0.185412 4.13E−09

Max 1.7E−118 1.38E−32 3.914695 3.567009 3.9E−07

Std 3.9E−119 3.09E−33 1.096313 0.827115 9.17E−08

F4

Min 4.81E−73 1.11E−26 0.67531 0.002608 1.33E−13

Average 1.63E−67 4.52E−23 3.616654 0.008 5.45E−13

Median 5.11E−70 1.14E−23 3.022253 0.007092 4.09E−13

Max 1.67E−66 1.94E−22 9.361516 0.016667 1.87E−12

Std 4.02E−67 6.34E−23 2.343658 0.003845 4.55E−13

F5

Min 26.36703 27.90967 27.18973 25.92515 27.6644

Average 26.99756 28.65096 39.01094 27.18903 28.03399

Median 26.86409 28.74726 28.66203 27.09814 27.97984

Max 28.66131 28.98699 239.7785 28.79035 28.44604

Std 0.508238 0.295026 47.26339 0.72182 0.216873

F6

Min 0.020726 0.039957 2.886997 0.252254 0.080879

Average 0.141345 2.568541 3.800719 0.647554 0.292241

Median 0.082029 2.038779 3.736935 0.611378 0.255115

Max 0.549917 7.250251 4.850371 1.172757 0.75842

Std 0.154727 1.852701 0.527851 0.280888 0.181696

F7

Min 3.93E−05 8.66E−05 0.007604 0.001477 0.000168

Average 0.000179 0.002356 0.019206 0.004433 0.000708

Median 0.000139 0.001136 0.018479 0.003685 0.000688

Max 0.000513 0.013813 0.04436 0.01033 0.002187

Std 0.000146 0.003331 0.007628 0.002554 0.000488

F8

Min −1733.12 −1655 −1394.45 −1495.31 −7613.49

Average −1534.59 −1312.83 −1212.82 −1245.57 −6358.62

Median −1536.16 −1385.86 −1232.52 −1224.18 −6324.46

Max −1327.7 −598.802 −976.635 −1123.85 −5562.96

Std 94.79719 294.008 122.0762 104.0153 538.2484

F9

Min 0.00 4.33E−30 156.667 1.062467 0.00

Average 0.00 1.75E−22 228.0177 9.801018 0.00

Median 0.00 4.17E−25 228.634 9.824713 0.00

Max 0.00 3.02E−21 331.7581 24.96968 0.00

Std 0.00 6.75E−22 46.40919 5.565812 0.00

F10

Min 8.88E−16 8.88E−16 20.81133 20.76487 4.44E−15

Average 8.88E−16 8.88E−16 20.9608 20.92344 7.46E−15

Median 8.88E−16 8.88E−16 20.99356 20.94465 6.22E−15

Max 8.88E−16 8.88E−16 21.0961 21.06309 1.51E−14

Std 0.00 0.00 0.091505 0.083433 3.69E−15

F11

Min 0.00 0.00 1.3E−09 6.56E−13 0.00

Average 0.00 0.00 0.007018 0.009891 0.00

Median 0.00 0.00 1.44E−08 4.55E−12 0.00

Max 0.00 0.00 0.029126 0.055407 0.00

Std 0.00 0.00 0.010243 0.015766 0.00

Continued
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Function LSDO SDO TSA GWO SNS

F12

Min 0.000176 0.001152 0.374956 0.006066 0.000696

Average 0.003854 0.23467 2.805889 0.026151 0.00268

Median 0.002177 0.067805 2.009833 0.023474 0.00284

Max 0.01893 1.492821 7.656863 0.047176 0.004893

Std 0.004455 0.352063 2.128936 0.013414 0.001232

F13

Min 0.175696 0.046216 2.372295 0.09955 0.057519

Average 0.834851 1.867552 3.298085 0.613832 0.154385

Median 0.451512 1.934246 3.22876 0.609981 0.140323

Max 2.966605 2.999924 4.16073 1.044 0.378672

Std 0.957067 0.961284 0.565835 0.280029 0.077659

F14

Min 0.998004 0.998004 0.998004 0.998004 0.998004

Average 0.998004 3.494696 8.298683 3.892106 0.998004

Median 0.998004 1.495017 10.76318 2.982105 0.998004

Max 0.998004 12.67051 18.30431 12.67051 0.998004

Std 0.00 3.953203 5.533952 3.727681 1.02E−16

F15

Min 0.000307 0.000307 0.000308 0.00031 0.000308

Average 0.000308 0.00067 0.007136 0.003547 0.00035

Median 0.000307 0.000527 0.000505 0.000546 0.000313

Max 0.000309 0.002121 0.031699 0.020363 0.000582

Std 3.22E−07 0.000473 0.010606 0.007255 6.8E−05

F16

Min −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Average −1.03163 −1.03005 −1.0253 −1.03158 −1.03163

Median −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Max −1.03163 −1.00046 −0.99999 −1.03063 −1.03163

Std 2.28E−16 0.006966 0.012981 0.000223 1.53E−16

F17

Min 0.397887 0.397887 0.39789 0.397888 0.397887

Average 0.397887 0.397987 0.397927 0.397891 0.397887

Median 0.397887 0.397887 0.397907 0.397891 0.397887

Max 0.397887 0.399795 0.398082 0.397897 0.397887

Std 0.00 0.000426 4.53E−05 3.01E−06 0.00

F18

Min 0.00 3.00 3.000009 3.00 0.00

Average 0.00 3.00 8.400078 3.000068 0.00

Median 0.00 3.00 3.000084 3.000036 0.00

Max 0.00 3.00 84.00001 3.000238 0.00

Std 5.49E−16 5.21E−08 18.78799 6.53E−05 1.6E−15

F19

Min −0.30048 −0.30048 −0.30048 −0.30048 −3.86278

Average −0.30048 −0.2893 −0.30048 −0.30048 −3.86278

Median −0.30048 −0.30038 −0.30048 −0.30048 −3.86278

Max −0.30048 −0.19165 −0.30048 −0.30048 −3.86278

Std 1.14E−16 0.026531 1.14E−16 1.14E−16 2.22E−15

F20

Min −3.322 −3.322 −3.32148 −3.32198 −3.322

Average −3.23283 −3.09697 −3.07223 −3.22876 −3.29822

Median −3.2031 −3.2031 −3.20118 −3.26239 −3.322

Max −3.2031 −0.89904 −0.20816 −2.84039 −3.2031

Std 0.05282 0.550986 0.679321 0.125558 0.048793

F21

Min −10.1532 −10.1532 −10.0895 −10.1502 −10.1532

Average −10.1532 −8.703 −5.89545 −8.51218 −10.1532

Median −10.1532 −10.1532 −4.90994 −10.1413 −10.1532

Max −10.1532 −4.99677 −2.58642 −2.62918 −10.1532

Std 3.36E−15 2.23952 2.775111 2.963153 2.8E−12

F22

Min −10.4029 −10.4029 −10.3637 −10.4024 −10.4029

Average −10.4029 −8.45822 −7.02119 −10.0134 −10.4029

Median −10.4029 −10.4029 −9.8942 −10.3959 −10.4029

Max −10.4029 −1.0677 −1.82478 −2.76526 −10.4029

Std 3.13E−15 3.128689 3.57071 1.706042 5.02E−15

Continued
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of 6.97E−143, which significantly outperformed other algorithms. Function 4 also showed the superiority of 
the LSDO technique with a minimum value of 2.06E−73, outclassing other algorithms in this benchmark. For 
Function 5, the LSDO technique yielded promising results with a minimum value of 96.87, while maintaining 
competitive performance with the other algorithms. Function 6 showcased the strength of the LSDO technique 
with a minimum value of 6.7327, outperforming other algorithms. In Function 7, the LSDO technique obtained 
an impressively low minimum value of 2.91E−06, significantly improving compared to other algorithms. The 
LSDO technique demonstrated its effectiveness in Function 8, achieving a minimum value of −4014.5, which 
is significantly better than the results obtained by other algorithms. Function 9 showcased the superiority of 
the LSDO technique, as it achieved a minimum value of 0, outperforming other algorithms. Function 10 also 
displayed the strength of the LSDO technique with a minimum value of 8.88E−16, demonstrating superior per-
formance compared to other algorithms. The LSDO technique excelled in Function 11, achieving a minimum 
value of 0, and outperforming other algorithms. Function 12 showcased the effectiveness of the LSDO technique 
with a minimum value of 0.04123, displaying better results compared to other algorithms. In Function 13, the 
LSDO technique achieved an excellent minimum value of 5.7551, outclassing other algorithms. Overall, the 
LSDO technique consistently displayed superior performance in multiple benchmark functions, achieving the 
best results in most cases. These findings indicate the potential effectiveness and competitiveness of the proposed 
LSDO technique for solving optimization problems.

Simulation results of optimal power flow.  In this section, the detail of the simulation results will be 
discussed. To authenticate the performance of the LSDO approach, three well-known standard systems were 
considered as IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems considering two types of renewable 
energies, which have 24, 33, and 130 control variables, respectively. The main descriptions of these selected grids 
are tabulated in Table 5. Furthermore, these considered test systems are executed via ten case studies as described 
in Table 6. The obtained results are compared with the classical version SDO and some state-of-the-art stochastic 
approaches. The optimal findings are shown in bold text. All the experiment studies are averaged over 30 inde-
pendent runs, they have been done by using MATLAB R2020a, under Microsoft Windows 10 operating system, 
and carried out on a personal computer core i5 with 4GB-RAM Processor @1.8GHz. As mentioned before, the 
power systems under consideration are analyzed through ten distinct case studies, which are defined as follows:

•	 Cases 1, 2, 3, 4, 7, 8, 9, and 12: Without renewable energy resources

These cases represent the primary scenarios focused on reducing fuel costs, power loss, voltage deviation, and 
emission.

•	 Cases 5, 6, 10 and 11: With renewable energy resources

These cases are computed based on Eqs. 36 and 37. They are characterized by considering both wind and PV 
power sources. They depict the core scenario centered on the primary objective of diminishing fuel costs, while 
accounting for emission, power loss and voltage deviation.

IEEE 30‑bus test system.  The IEEE 30-bus network is the small power system considered in this study. It con-
tains 6 generating units which bus 1 is chosen as the slack bus, 41 branches, 9 shunt reactive power injections, 
and 4 transformers. The line and bus data are taken from62. Additionally, its active and reactive power demands 
are 283.4MW and 126.2MVAR, respectively. The voltage limits for all buses are taken between 0.95 and 1.05 p.u. 
Also, the least as well as greater tap setting for tap changing transformers are 0.9 p.u. and 1.1 p.u., respectively. 
Moreover, The limits of VAR compensators are assumed to vary between 0 and 5 p.u. The comparison of the 
obtained results between LSDO and its first version SDO is presented in Table 7. Furthermore, the optimal 
control variables are displayed in the same tables. As previously illustrated, two scenarios were considered: the 
first without taking into account renewable energy sources (RESs) whereas the second achieve a reduction in the 
total fuel cost through the integration of RESs. Specifically, wind power generators have replaced conventional 
generators at buses 5 and 11, with these wind turbines totaling 25 and 20 units, respectively. Additionally, a PV 

Function LSDO SDO TSA GWO SNS

F23

Best −10.5364 −10.5364 −10.4599 −10.5348 −10.5364

Mean −10.266 −7.90449 −5.50502 −9.74305 −10.5364

Median −10.5364 −10.5357 −2.83596 −10.5274 −10.5364

Worst −5.12848 −3.79083 −1.66783 −2.42135 −10.5364

Std 1.20925 3.015319 3.728197 2.418464 2E−15

Table 3.   Statistical results of 23 benchmark functions by the proposed LSDO technique and other recent 
algorithms. The best values obtained are in bold.
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Figure 4.   Qualitative metrics of nine benchmark functions: 2D views of the functions, search history, average 
fitness history, and convergence curve using the proposed LSDO technique.
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generator has been introduced to replace the generator at bus 13. The integration and placement of these RESs 
within the grid are determined based on the methodology outlined in the study by Biswas et al.51.

The first case attempted to optimize the quadratic fuel cost. The fitness rates attained are 800.42 /h and 
800.4223 /h for LSDO and SDO, respectively. The objective function considering the minimization of total emis-
sion is taken as the second case, its best fitness values achieved are 0.20483 ton/h and 0.20484 ton/h. The obtained 
optimum voltage deviation (VD) for both approaches are 0.09152 p.u. and 0.09249 p.u., respectively. Regarding 
the power loss minimization, its fitness values recorded 3.0902(MW) and 3.0908(MW) as demonstrated in the 
same table. Remarkably, the outcomes reveal that the approach under study produces better solutions compared 
to its initial version. Additionally, in terms of the convergence characteristics, it can be seen from the evolution 
curves depicted in Fig. 7 that LSDO converges faster in comparison with SDO. Furthermore, according to the 
constraints satisfaction, Fig. 8 proves the effectiveness of LSDO-based SF in answering all system constraints. 
On the other hand, some of the published results are competitive with those generated by the LSDO technique, 
they offered better solutions as listed in Table 8 However, it can be observed carefully that certain of their voltage 
load buses are violated. Otherwise, the highest voltage deviation value that must be produced is 1.2p.u. of all 

Figure 4.   (continued)
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PQ buses. More precisely, the infeasibility solutions footnoted in Table 8 can be explained in the following lines. 
For case 1 and as reported in9, the EWOA voltage deviation value is higher than 1.2p.u., in which all load buses 
exceed the maximum bound except buses 26 and 30. Ref.12 reports a VD value of 1.9652p.u. and a violation of 
all load voltage. The DSA approach13 has one bus violation at bus number 3. The optimum result taken from15 is 
an infeasible solution due to the violation in nodes 3, 4, 6, 7, 12, 14, 15, 16, 23, 25, 27, 28, 29, and 30. Referring 
to16, the best results stated for all Rao variants are also infeasible, there are voltage loads violations in buses 3, 4, 
10, and 12 for Rao-1, and in buses 3, 4, 6, 10, 12, 14, 15, 16, 17, 20, 21, 22, 23, and 27 for Rao-2, and also in the 
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Figure 5.   The convergence curves of studied algorithms for 23 benchmark functions.
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buses 3, 4, 6, 10, 12, 14, 15, 16, 17, 20, 21, 22, 23, 27, and 29 for Rao-3. Additionally, the minimum fitness value 
reported in MSA Ref.10 for the emission case is too an infeasible solution owing to nodes 3 and 12.

Regarding the RESs scenario, the results obtained from the proposed LSDO approach are compared with 
those from the SDO method, as well as four re-implemented techniques, namely: artificial ecosystem optimi-
zation (AEO)69, particle swarm optimization (PSO)60, artificial bee colony (ABC)61, and deferential evolution 
(DE)59. Simulation results were generated using 50 populations, and their convergence was assessed by analyzing 
the plots obtained from each case over 500 iterations. To ensure statistical reliability, a total of 30 independent 
runs were conducted for each scenario. The comparative analysis of numerical outcomes across 30 runs for all 
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Figure 6.   Boxplots of studied algorithms for 23 benchmark functions.
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Function LSDO SDO TSA GWO SNS DE PSO ABC

F1

Min 1.7E−145 1.5E−53 0.016 0.0005 1.7E−26 35997 198.4 250910

Average  6.2E−129 1.1E−49 0.0865 0.00188 4.39E−25 37253.8 269.9 264305.6

Median 1.5E−138 1.25E−51 0.07846 0.00162 1.38E−25 36323.4 289.52 269156.2

Max 1.23E−127 1.34E−48 0.2354 0.0037 4.12E−24 39025.8 369.43 269584.1

Std 2.7E−128 3.15E−49 0.05368 0.00088 9.87E−25 1527.2 71.8248 8101.7

F2

Min 3.77E−68 5.78E−29 0.01247 0.00715 5.07E−14 171.25 8.823 1.37E+36

Average 2.28E−56 2.995E−26 0.055 0.00988 1.95E−13 186.282 11.674 5.41E+40

Median 5.05E−59 8.06E−27 0.0435 0.0097 1.36E−13 188.838 11.252 6.36E+37

Max 1.87E−55 1.82E−25 0.1365 0.015 4.82E−13 194.866 17.426 2.5E+41

Std 4.87E−56 4.89E−26 0.03697 0.00188 1.28E−13 9.2358 3.47125 1.12E+41

 F3

Min 6.97E−143 4.16E−43 10404.1 1563.5 2.66E−05 360641.8 19800.8 891967.8

Average 9.13E−121 6.54E−35 27016.3 7361.1 0.00075 502022.6 32155.39 1072174

Median 6.57E−132 1.60E−38 20987.67 6745.44 0.000211 510654.9 37007.8 1047367

Max 1.82E−119 1.26E−33 57599.01 17021.3 0.005016 588790.1 42029.19 1309319.6

Std 4.08E−120 2.83E−34 12914.3 4420.7 0.00128 85313.2 9705.4 169362.2

F4

Min 2.06E−73 1.08E−26 46.4652 2.6979 3.1E−12 91.186 18.055 91.8624

Average 3.31E−65 5.26E−24 65.0496 7.2693 1.11E−11 92.3478 22.8813 94.124

Median 1.54E−68 1.53E−24 66.3633 7.03937 8.95E−12 92.637 22.178 94.44

max 2.48E−64 2.45E−23 78.736 16.437 2.47E−11 93.1829 26.433 96.5098

Std 7.45E−65 7.52E−24 9.1168 3.127 6.81E−12 0.76617 3.4285 1.79575

F5

Min 96.87 97.58 100.32 97.68 97.826 64005640 12405.4 11E+07

Average 97.887 98.3307 117.264 98.818 98.3699 76664058 25776.446 12E+07

Median 98.115 98.379 109.315 98.804 98.48 74721566 22752.86 11E+07

Max 98.44 98.589 228.648 100.563 98.57 87181633 42821.401 13E+07

Std 0.5151 0.2830 28.521 0.653 0.2068 9539385 11449.8 72615942

F6

Min 7.17914 6.7327 14.112 9.5161 9.2678 35136.3 271.043 255833.9

Average 8.7941 11.487 15.60004 11.71104 10.699 37918.9 316.5084 266600

Median 8.8162 11.767 15.664 11.8462 10.6814 38504.88 294.417 260500

Max 10.5304 13.506 17.833 13.6589 12.089 39162.08 407.805 282601

Std 0.735 1.7938 1.1548 1.2797 0.807 1627.52 57.454 12658.97

F7

Min 2.91E−06 9.33E−05 0.05508 0.01187 0.000204 101.809 0.39367 1643.169

Average 0.000314 0.00042 0.1225 0.02078 0.00109 121.011 0.5299 1812.01

Median 0.00027 0.00036 0.11843 0.01827 0.001006 118.666 0.54286 1806.14

Max 0.00086 0.00118 0.20183 0.03927 0.002287 143.151 0.6279 2020.74

Std 0.00025 0.00029 0.0327 0.0074 0.00059 15.237 0.09562 167.748

F8

Min −4014.5 −4014.1 −3428.2 −3334.6 −1156.1 −3374.3 −4391.3 −1.8E+26

Average −3372.3 −3482.9 −2910.8 −2906.1 −803.2 −3246.6 −4064.9 −4.5E+25

Median −3342.1 −3560.4 −2929.1 −2851.5 −786.94 −3242.5 −4072.2 −1.7E+25

Max −2538.5 −2792.5 −2463.3 −2321.8 −437.4 −3149.6 −3785.3 −6.3E+23

Std 374.029 295.14 203.94 261.40 175.47 83.857 263.346 7.6E+25

F9

Min 0 0 943.78 30.692 0 1248.01 321.17 3610.6

Average 0 0 1186.25 74.059 0 1328.012 394.078 3731.58

Median 0 0 1141.7 69.27 0 1354.3 397.8 3764.2

Max 0 0 1547.84 124.25 0 1392.99 442.77 3788.51

Std 0 0 164.597 21.866 0 61.881 50.832 71.380

F10

Min 8.88E−16 8.88E−16 21.233 21.23 4.8982 20.424 20.44 21.358

Average 8.88E−16 8.88E−16 21.3008 21.2787 18.8026 20.439 20.713 21.390

Median 8.88E−16 8.88E−16 21.297 21.285 20.0276 20.445 20.65 21.402

Max 8.88E−16 8.88E−16 21.355 21.327 20.182 20.457 21.044 21.425

Std 0 0 0.0307 0.03007 3.9447 0.01447 0.22407 0.0297

F11

Min 0 0 0.00025 1.25E−05 0 8.852 1.0257 64.195

Average 0 0 0.0451 0.0104 0 9.5616 1.0672 68.988

Median 0 0 0.0021 2.92E−05 0 9.560 1.06673 68.47

Max 0 0 0.2698 0.06162 0 9.966 1.1216 72.342

Std 0 0 0.06533 0.0215 0 0.454 0.0385 3.4515

Continued
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competing methods is provided in Tables 9, 10. These tables encompass the optimal configurations of control 
variables, their allowable ranges, and the corresponding numerical best outcomes for each objective. As observed 
in these presented tables, the LSDO approach showcases a commendable ability to produce competitive results in 
comparison to both its initial version and other contemporary techniques across case studies. Figure 9 displays 
the convergence characteristics and distribution runs obtained for each case study of LSDO and the competi-
tor algorithms. This figure illustrates the performance and behavior of the algorithms during the optimization 
process for the respective scenarios. The convergence curves clearly demonstrate that the LSDO algorithm 

Table 4.   Statistical results of 13 benchmark functions (Dim = 100) by the proposed LSDO technique and 
other recent algorithms. The best values obtained are in bold.

Function LSDO SDO TSA GWO SNS DE PSO ABC

F12

Best 0.10077 0.1015 2.034 0.1216 0.04123 8.07285 0.01817 23.785

Mean 0.1437 0.2024 6.5839 0.19454 0.06863 9.372 0.1017 28.10153393

Median 0.142185 0.20857 7.0242 0.19686 0.06945 9.76723 0.04821 27.996

Worst 0.216855 0.28339 11.057 0.2953 0.0906 10.3628 0.2977 32.4397

Std 0.030715 0.042936 3.08675 0.0503 0.01411 1.00302 0.11347 3.13609

F13

Best 9.9177 9.85719 14.169 5.7551 6.0079 6.3E+09 17289.9 1.0E+11

Mean 9.9278 9.9391 105.421 8.9011 8.705 8.7E+09 88551.5 1.1E+11

Median 9.927 9.942 93.656 9.088 8.9605 8.8E+09 96054.8 1.1E+11

Worst 9.9347 9.959 473.7 10.85 9.391 11.8E+09 122522 1.15E+11

Std 0.0045 0.0207 102.92 1.2576 0.879 2.03E+09 42982.3 4.36E+09

Table 5.   The basic specifications of the IEEE test systems.

Systems IEEE-30 IEEE-57 IEEE-118

 Characteristics Value Details Value Details Value Details

Buses 30 62 57 63 118 64

Branches 41 – 80 – 186 –

Generators 6 Buses: 1, 2, 5, 8, 11 and 13 7 Buses: 1, 2, 3, 6, 8, 9 and 12 54

Buses:1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 
26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 
56, 59, 61, 62, 65, 66, 69, 70, 72, 73, 74, 76, 
77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 
104, 105, 107, 110, 111, 112, 113 and 116

Slack bus 1 Buses: 1 1 Buses: 1 Buses: 1 69

Wind generators 2 Buses: 5 and 11 2 Buses: 2 and 6 – –

Solar generators 1 Buses: 13 1 Buses: 9 – –

Shunts 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24 and 29 3 Buses: 18, 25, and 53 14 Buses:5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 
83, 105, 107, 110

Transformers 4 Branches: 11, 12, 15 and 36 17 Buses: 19, 20, 31, 35, 36, 37, 41, 46, 54, 58, 
59, 65, 66, 71, 73, 76, and 13 9 Branches:8, 32, 36, 51, 93, 95, 102, 107 

and 127

Control variables 24 – 33 – 130 –

Table 6.   Different case studies.

Cost Emission Ploss VD

IEEE-30

Case 1
√

Case 2
√

Case 3
√

Case 4
√

Case 5

Case 6

IEEE-57

Case 7
√

Case 8
√

Case 9
√

Case 10

Case 11

IEEE-118 Case 12
√
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outperforms its competitors by converging more rapidly towards the optimal solution. This ability to converge 
faster highlights the efficiency and effectiveness of the LSDO approach in finding high-quality solutions within 
a shorter number of iterations compared to other competing methods. Furthermore, the obtained optimal PQ 
voltage profile is depicted in Fig. 10. These visualizations demonstrate that all voltage profile constraints are 
satisfied, affirming that the feasibility is rigorously examined without any violations of constraints.

IEEE 57‑bus test system.  To check the scalability of the algorithm under study, the medium IEEE 57-bus test 
system is examined. This network contains seven generators and the slack generator is at bus 1, 80 branches, 50 
load buses, three shunt reactive power injections, and 15 transformers. Its active and reactive power demands 
are 1250.8 MW and 336.4 MVAR, respectively. This system has total of 33 control variables for the OPF prob-
lem, their bounds and the achieved optimized values for the three objective functions are listed in Table 11. 
The obtained fitness values from the LSDO and SDO algorithms for fuel cost, voltage deviation, and power loss 
are ( 41667.7190/h–41668.7587/h), (0.62165–0.63354 p.u.), and (10.2332–10.4552 MW), respectively. Based on 
these outcomes, it is obvious that the modified approach LSDO provides the optimum fitness value of all objec-
tive functions as compared to its classical version SDO. Figure 11 illustrates the convergence of the functions 
evolution of both algorithms. Based on these curves, it is clearly seen that the LSDO has a steady and speed 
convergence acceleration toward the global optimum than SDO. Table 8 gives a comparative study with other 
stochastic approaches stated in the literature, the listed best value for this system stated in11 case 1, is an infeasible 
solution, it knows a load voltage violations at buses 7, 18, 25, 29, 41, and 45. For the voltage deviation case, the 
Rao-316 seems to converge to the optimum solution than the suggested LSDO optimizer. However, after careful 
observation, node 25 violates the constraints with voltage values of 1.06687p.u.. In addition, the optimum value 
of DE algorithm65 is due to higher limits for the shunt compensators. Nevertheless, the optimizer under study 
LSDO gives a better solution without any constraint violation, as shown in Fig. 12 The voltage of the 50 loads 
buses (PQ bus) are satisfying all system constraints for all cases, which proves that all system constraints are 
checked.

In the context of the renewable energy sources (RESs), the outcomes achieved using the proposed LSDO 
approach are compared with those obtained from the SDO method, AEO69, PSO60, ABC61, and DE59 approaches. 

Table 7.   The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 30-bus. 
The best values obtained are in bold.

Control variables Min Max

Case 1 Case 2 Case 3 Case 4

SDO LSDO SDO LSDO SDO LSDO SDO LSDO

Pg2 20 80 48.8654 48.6153 67.7502 67.5837 29.7910 73.8103 79.9826 79.9790

Pg5 15 50 21.4049 21.4015 49.9997 49.9973 24.7736 30.3605 49.9932 49.9976

Pg8 10 35 21.1015 21.3178 34.9994 34.9986 28.3303 15.7616 34.9998 34.9996

Pg11 10 30 11.9564 11.6592 29.9974 29.9934 22.9054 19.1346 29.9951 29.9906

Pg13 12 40 12.0049 12.0101 40.0000 39.9999 16.7438 20.7435 39.9938 39.9586

Vg1 0.95 1.1 1.0823 1.0833 1.0642 1.0613 1.0229 1.0194 1.0612 1.0607

Vg2 0.95 1.1 1.0628 1.0636 1.0598 1.0548 1.0115 1.0131 1.0572 1.0567

Vg5 0.95 1.1 1.0322 1.0316 1.0377 1.0309 1.0189 1.0187 1.0363 1.0359

Vg8 0.95 1.1 1.0373 1.0371 1.0398 1.0388 1.0046 1.0042 1.0450 1.0435

Vg11 0.95 1.1 1.0787 1.0867 1.0827 1.0855 1.0281 1.0319 1.0888 1.0821

Vg13 0.95 1.1 1.0485 1.0469 1.0564 1.0595 1.0019 1.0030 1.0477 1.0544

Qc10 0 5 3.8509 3.6239 1.8352 2.1188 4.6393 4.7964 0.0422 1.8110

Qc12 0 5 2.5683 0.8028 1.0072 2.6961 1.0379 1.2061 3.6747 3.0673

Qc15 0 5 2.9863 4.0522 3.1281 3.2531 4.8235 4.9231 3.2459 4.3718

Qc17 0 5 4.7312 4.9483 4.1349 2.8464 0.5307 0.1258 4.7300 3.6981

Qc20 0 5 4.1167 3.7935 4.3456 2.8350 4.9772 4.9837 4.2526 3.5623

Qc21 0 5 4.9293 4.9778 2.1946 4.3615 4.9418 4.9478 4.9824 4.9991

Qc23 0 5 3.0081 2.6271 2.1445 3.4747 4.8950 4.9863 3.9797 3.6530

Qc24 0 5 4.9895 4.8870 2.0953 3.0982 4.9451 4.9916 4.9381 4.9868

Qc29 0 5 2.3247 2.3386 3.7650 2.3354 2.3090 2.0533 3.2013 2.5615

T11 0.9 1.1 1.0291 1.0281 1.0284 1.0229 1.0439 1.0469 1.0592 1.0187

T12 0.9 1.1 0.9457 0.9534 0.9419 0.9280 0.9001 0.9014 0.9200 0.9610

T15 0.9 1.1 0.9734 0.9681 0.9828 0.9989 0.9612 0.9659 0.9855 0.9951

T36 0.9 1.1 0.9730 0.9724 0.9850 0.9690 0.9645 0.9619 0.9825 0.9798

Fuel Cost ($/h) – – 800.4223 800.42 944.7892 944.4218 816.3608 832.8700 967.5433 967.4535

Emission (t/h) – – 0.36609 0.36708 0.20484 0.20483 0.34210 0.27505 0.20726 0.20727

VD (p.u.) – – 0.9075 0.91576 0.81458 0.89701 0.09249 0.09152 0.91790 0.90258

PL (MW) – – 9.006 9.0202 3.2821 3.2522 8.9451 7.8115 3.0908 3.0902

Pg1 50 200 177.0728 177.4163 63.9355 64.0793 169.80105 131.40115 51.52628 51.56473
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Figure 7.   Characteristics of convergence of the proposed LSDO vs SDO for IEEE 30-bus system.
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Figure 8.   Voltage profiles of PQ buses using the proposed LSDO algorithm for IEEE 30-bus system.
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This comparison assesses the performance and efficacy of the LSDO approach in optimizing the RESs integration 
and addressing the associated objectives. The comparative analysis of numerical outcomes from the 30 independ-
ent runs for all competing methods is provided in Tables 12, 13. These tables present the optimal configura-
tions of allowable ranges, control variables, and the corresponding best numerical outcomes achieved for each 

Table 8.   Comparison of the LSDO and SDO algorithms and previous studies for IEEE 30-bus system. ∗ : 
Infeasible solution.

Approaches IEEE 30-bus IEEE 57-bus IEEE 118-bus

Case 1: fuel cost ($/h)

   LSDO 800.42 41667.719 137105.9933

   SDO 800.4223 41668.7587 139923.6969

   ACO8 802.097 – 138809.3896

   EWOA9 799.210∗ – 142756.67

   MSA10 800.5099 41673.72 –

   AGSO11 801.75 – –

   ICBO12 799.0353∗ 41697.33 –

   DSA13 800.3887∗ 41686.82 –

   IWO14 800.92 41768.49 –

   ISA15 799.2776∗ 41676.9466 –

   Rao-116 800.4391 41771.1088 129241.1787∗

   Rao-216 799.9918∗ 41872.0668 129256.5242∗

   Rao-316 799.9683∗ 41659.2621∗ 129220.6794∗

   SSA17 – 41672.30 –

   DE65 – 41682 –

   HHODE66 800.9959 – –

   SKH18 800.5141 – –

   SOS19 801.5733 – –

   HHO67 801.8290 – –

   PSO/APO68 801.708 – –

Case 2: Emission (ton/h)

   LSDO 0.20483 – –

   SDO 0.20484 – –

   MSA10 0.20482∗ – –

   AGSO11 0.2059 – –

   DSA13 0.20583 – –

   IWO14 0.20521 – –

   HHO67 0.2850 – –

Case 3: VD (p.u.)

   LSDO 0.091521 0.62165 –

   SDO 0.092494 0.63354 –

   Rao-116 0.1031 0.9882 –

   Rao-216 0.0993 0.7645 –

   Rao-316 0.1001 0.5725∗ –

   SSA17 – 0.7569 –

   DE65 – 0.5839∗ –

   TSA58 – 0.72 –

Case 4: Power Loss (MW)

   LSDO 3.0902 10.2332 –

   SDO 3.0908 10.4552 –

   MSA10 3.1005 – –

   DSA13 3.0945 – –

   HHO67 3.49 – –

   IWO14 4.847 24.19 –

   DE65 – 10.2642 –

   SSA17 – 11.32 –

   TSA58 – 12.473 –
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objective. The data in these tables offer valuable insights into the performance and effectiveness of each method 
in solving the optimization problems in the given scenario. Figure 13 presents the convergence characteristics 
and distribution runs obtained for each case study of the LSDO approach and the competitor algorithms. This 
figure indicates that the LSDO algorithm outperforms its competitors by converging more rapidly towards the 
optimal solution. The figure emphasizes the robustness and competitiveness of the LSDO approach in address-
ing the optimization challenges in this considered system. Additionally, the obtained optimal PQ voltage profile 
is illustrated in Fig. 14. These visualizations effectively demonstrate that all voltage profile constraints are met, 
thereby confirming that the feasibility of the solutions is thoroughly verified without any violations of constraints. 
The optimal PQ voltage profile adheres to the operational limits, ensuring a stable and reliable performance of 
the power system. These qualitative and quantitative results illustrate that the LSDO approach exhibits a com-
mendable capability to generate competitive solutions, performing favorably in comparison to both its initial 
version and other contemporary techniques across the different IEEE-57 case studies.

IEEE 118‑bus test system.  In this part, The LSDO approach has been demonstrated on the IEEE 118-bus test 
system as a large scale problem in order to affirm the robustness of this suggested technique. The system active 
and reactive power demands are 4242 MW and 1439 MVAr, respectively. This network contains 118 nods, 54 
generators in which the slack generator is at node 69, 186 branches, 14 shunt elements, 9 transformers tap, 
and 130 control variables. Voltage, shunt capacitors, and transformers tap limits are considered in the range 
of [0.95–1.1 p.u.], [0–25 p.u.] p.u., and [0.9–1.1 p.u.], respectively. Table 14 outlines the optimal values of the 
objective functions and their optimal control variables for both SDO and its LSDO variant. The total generation 
fuel cost for both LSDO and SDO are 137105.9933 /h and 139923.6969 /h, respectively. From these results, we 
note a decrease in the objective function for the improved approach. Besides, according to comparison results 
described in Table 8, it is apparent that the proposed approach gives a better solution compared to the other 
meta-heuristic algorithms stated in Some of the recent literature. Moreover, in the field of convergence charac-
teristics, the graphical comparisons between SDO and LSDO of the fuel cost function are illustrated in Fig. 15a. 

Table 9.   Achieved solutions of the proposed LSDO and its competitors for case 5. The best values obtained are 
in bold.

Variables Min Max LSDO SDO ABC AEO DE PSO

Pg2 20 80 27.4952 28.1190 29.2181 27.8672 29.3493 27.4586

Pws1 0 75 42.5964 42.4655 43.6871 43.3611 44.0153 44.4882

Pg8 10 35 10.0003 10.0168 10.0000 10.0000 10.0070 10.0000

Pws2 0 60 36.3138 35.8283 37.2811 37.2411 36.9425 36.9460

Pss 0 50 37.6781 37.6680 33.8187 35.5632 33.7036 35.1731

Vg1 0.95 1.1 1.0712 1.0736 1.0705 1.0715 1.0720 1.0764

Vg2 0.95 1.1 1.0567 1.0566 1.0547 1.0569 1.0570 1.0610

Vg5 0.95 1.1 1.0350 1.0318 1.0266 1.0350 1.0347 1.0356

Vg8 0.95 1.1 1.0339 1.0372 1.0386 1.0381 1.0383 1.0399

Vg11 0.95 1.1 1.0576 1.0861 1.0377 1.0969 1.0679 1.1000

Vg13 0.95 1.1 1.0640 1.0466 1.0582 1.0532 1.0476 1.0301

Qc10 0 5 0.9424 4.1096 5.0000 1.6484 3.6814 2.6581

Qc12 0 5 2.7784 4.6240 4.0577 0.9597 0.9146 5.0000

Qc15 0 5 4.5231 4.2841 4.0942 2.6031 4.7725 1.8142

Qc17 0 5 4.7475 2.1458 5.0000 2.5202 4.2278 5.0000

Qc20 0 5 2.5055 2.5539 4.7588 3.6337 3.7487 1.9695

Qc21 0 5 4.3127 4.5084 5.0000 3.8520 4.5469 3.5004

Qc23 0 5 1.6562 2.2216 2.1084 3.3026 4.3059 4.4025

Qc24 0 5 4.9079 4.1379 4.9920 4.6778 3.6728 4.1748

Qc29 0 5 2.3821 1.9546 3.1337 1.8963 2.0644 3.2827

T11 0.9 1.1 1.0224 1.0453 1.0571 1.0272 1.0595 1.0093

T12 0.9 1.1 0.9262 0.9400 0.9000 0.9470 0.9245 1.0445

T15 0.9 1.1 1.0018 0.9784 0.9976 0.9811 0.9814 0.9397

T36 0.9 1.1 0.9718 0.9751 0.9903 0.9720 0.9767 0.9846

TC ($/h) – – 781.0465 781.0633 781.5679 781.5613 781.8429 781.8984

WC ($/h) – – 240.1276 238.0496 247.1789 245.9129 247.1596 248.8258

SC ($/h) – – 103.6752 103.6431 91.2099 97.1776 91.1570 95.9508

E (t/h) – – 1.7623 1.7622 1.7683 1.7622 1.7648 1.7623

VD (p.u.) – – 0.8136 0.8011 0.7702 0.8816 0.7889 0.7628

PL (MW) – – 5.5916 5.6057 5.5719 5.5407 5.5521 5.5739

Pg1 50 140 134.9079 134.9080 134.9668 134.9079 134.9343 134.9079
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Figure 9.   Comparison of convergence and run of LSDO vs state-of-the-art algorithms for cases 5 and 6.
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Figure 10.   Voltage profile of PQ buses for IEEE-30 REs cases.
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The convergence and rapid speed are marked for the enhanced method LSDO, in which it converges more stead-
ily toward the optimum solution. Similar to the aforementioned systems, all constraints are diligently satisfied 
using the superiority of feasible solution SF constraint handling technique. As depicted in Fig. 15b. it is obvious 
that the 64 load voltage buses are within the specified limits values of the load buses, and no bus experienced an 
overvoltage.

Statistical results.  Table 15 summarizes the statistical comparison of 30 independent runs between SDO and its 
improved variant corresponding to their min, mean, max, and standard deviation (SD) of fitness values. As men-
tioned before, the optimal objective function value achieved in each cases by LSDO optimizer outperforms the 
SDO solutions. Additionally, the mean, min, and SD are as well better in almost cases. Additionally, the statistical 
summary presented in Table 16 comprises the min, mean, max, and SD objective values obtained from 30 inde-
pendent runs. This summary clearly demonstrates that the LSDO algorithm surpasses all other re-implemented 
algorithms in terms of performance. Remarkably, the worst fitness values achieved by LSDO are better than the 
best fitness values attained by the competing algorithms (i.e. ABC and DE in all cases, AEO in cases 5 and 6, PSO 
in all cases except case 10). This indicates that the LSDO algorithm consistently provides superior optimization 
outcomes across the considered scenarios, showcasing its effectiveness and robustness.

After a meticulous examination of the results obtained from evaluating different aspects and objectives across 
23 benchmark functions and three distinct test networks, it has been established that the LSDO algorithm excels 
in effectively addressing the OPF problems compared to other alternative methods. Worth noting is that the 
considered cases represent diverse scenarios and conditions in power system, encompassing a wide range of 
complexities. Despite the varying characteristics of cases, the LSDO consistently exhibited superior performance 
in terms of convergence and attaining optimal solutions. The comparison was based on various metrics, includ-
ing fitness values, convergence rates, and constraint satisfaction, all of which further support the robustness 
and effectiveness of the LSDO algorithm in solving the optimization challenges in the power systems domain.

Table 10.   Achieved solutions of the proposed LSDO and its competitors for case 6. The best values obtained 
are in bold.

Variables Min Max LSDO SDO ABC AEO DE PSO

Pg2 20 80 32.8384 32.8729 31.9959 33.6714 34.0393 33.7709

Pws1 0 75 45.6214 45.8477 45.3124 46.3784 46.0525 46.5292

Pg8 10 35 10.0018 10.0038 10.0049 10.0000 10.0071 10.0000

Pws2 0 60 38.8516 38.5311 38.2687 39.0636 39.2151 39.2387

Pss 0 50 37.6834 37.6979 39.8551 35.5634 35.2538 35.1733

Vg1 0.95 1.1 1.0706 1.0691 1.0713 1.0696 1.0710 1.0708

Vg2 0.95 1.1 1.0559 1.0560 1.0559 1.0563 1.0565 1.0570

Vg5 0.95 1.1 1.0345 1.0335 1.0334 1.0349 1.0345 1.0359

Vg8 0.95 1.1 1.0395 1.0383 1.0374 1.0376 1.0381 1.0367

Vg11 0.95 1.1 1.0829 1.0949 1.0805 1.0752 1.0781 1.0607

Vg13 0.95 1.1 1.0492 1.0519 1.0473 1.0546 1.0518 1.0446

Qc10 0 5 0.3339 4.0594 3.9513 4.3021 2.1917 1.3419

Qc12 0 5 2.0384 1.1285 4.2833 2.4768 1.0254 5.0000

Qc15 0 5 4.2634 4.2578 3.4435 3.1776 2.8819 5.0000

Qc17 0 5 4.9328 4.6238 4.7729 4.9975 3.8599 5.0000

Qc20 0 5 3.7234 4.5632 3.9906 4.8392 3.7065 1.3802

Qc21 0 5 4.9655 4.9980 4.9840 4.9269 4.8417 4.1186

Qc23 0 5 4.1069 1.5115 2.9477 2.9978 2.9213 5.0000

Qc24 0 5 4.6444 4.9451 5.0000 4.9772 4.4943 5.0000

Qc29 0 5 1.8727 2.3339 2.1057 2.1668 2.1261 4.6306

T11 0.9 1.1 1.0381 1.0240 1.0229 1.0027 1.0510 1.0625

T12 0.9 1.1 0.9365 0.9803 0.9695 0.9862 0.9104 0.9000

T15 0.9 1.1 0.9804 0.9817 0.9802 0.9894 0.9817 0.9947

T36 0.9 1.1 0.9809 0.9755 0.9724 0.9728 0.9688 0.9993

CT ($/h) – – 809.5379 809.5406 810.2063 810.3869 810.3891 810.6643

CW ($/h) – – 259.4633 259.1410 256.3126 262.9280 262.2946 264.0941

CS ($/h) – – 103.6924 103.7418 111.8707 97.1782 96.0590 95.9513

E (t/h) – – 0.8875 0.8898 0.8652 0.9034 0.9104 0.9033

VD (p.u.) – – 0.8509 0.8870 0.8691 0.8965 0.8831 0.7246

PL (MW) – – 5.0458 5.0472 5.0390 5.0358 5.0618 5.0694

Pg1 50 140 123.4492 123.4939 123.0019 123.7589 123.8941 123.7573
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Conclusion
This paper presents an ameliorate SDO algorithm for solving one of the power system issues considering renew-
able energy powers. In order to confirm the effectiveness of this algorithm, a set of test functions have been 
employed to benchmark the performance of the LSDO approach from different perspectives; then, three power 
system models and different case studies were investigated. The improved algorithm LSDO-based SF constraint 
handling method has been accomplished successfully and proves the utility of the SF strategy in dealing with 
the systems’ constraints. Accordingly, the obtained statistical results confirm the efficiency and capability of the 
LSDO in getting the best solutions, as it outstripped the standard version SDO and the well-known approaches 
TSA, GWO, SNS, ABC, DE, AEO, and PSO. Along these lines, this proposed LSDO algorithm has the ability to 
handle the various drawbacks of its basic algorithm, in terms of balancing between the exploration and exploita-
tion processes. Furthermore, the LSDO convergence feature appears to have improved and shows a reasonable 
convergence speed to the fitness value than its initial version. In addition, the comparative study of LSDO, SDO 
and competitor algorithms affirms the potential of LSDO in finding accurate solutions notably for large-scale 
power systems and solving constrained non-linear complex real-world problems. In accordance with these 
remarkable outcomes, the authors recommend an LSDO-based SF strategy to handle the OPF issue for a realistic 
and higher dimension as considered in this present research.

Table 11.   The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 57-bus. 
The best values obtained are in bold.

Control variables Min Max

Case 1 Case 2 Case 3

SDO LSDO SDO LSDO SDO LSDO

Pg2 30 100 90.6263 90.1633 77.1444 76.0949 55.3909 30.0065

Pg3 40 140 45.4041 44.7779 54.7384 63.8062 123.6990 112.3814

Pg6 30 100 70.3122 74.0789 63.0807 54.1637 91.3919 91.6064

Pg8 100 550 460.9184 460.5164 315.6719 405.2965 331.1286 326.6915

Pg9 30 100 93.5818 93.4810 48.4015 68.8195 99.1253 99.7742

Pg12 100 410 361.7702 360.5197 263.3974 261.0801 409.6722 409.3781

Vg1 0.95 1.1 1.0629 1.0616 1.0234 1.0316 1.0598 1.0656

Vg2 0.95 1.1 1.0609 1.0600 1.0169 1.0211 1.0584 1.0611

Vg3 0.95 1.1 1.0540 1.0544 1.0104 1.0082 1.0621 1.0612

Vg5 0.95 1.1 1.0620 1.0604 1.0061 1.0022 1.0627 1.0600

Vg8 0.95 1.1 1.0724 1.0741 1.0241 1.0155 1.0693 1.0630

Vg9 0.95 1.1 1.0460 1.0465 1.0048 1.0010 1.0462 1.0451

Vg12 0.95 1.1 1.0466 1.0458 1.0268 1.0302 1.0491 1.0544

Qc18 0 20 10.2617 12.8767 10.2150 5.6659 5.1816 10.8859

Qc25 0 20 13.3938 13.3632 12.9599 18.4242 8.6958 13.9401

Qc53 0 20 11.7915 10.7761 19.5538 17.5290 8.9473 15.8698

T19 0.9 1.1 1.0126 1.0880 1.0387 0.9875 1.0004 1.0319

T20 0.9 1.1 0.9896 0.9384 0.9795 1.0001 0.9736 0.9777

T31 0.9 1.1 1.0193 1.0140 0.9709 0.9686 1.0101 0.9823

T35 0.9 1.1 1.0502 1.0151 1.0337 1.0352 0.9789 1.0055

T36 0.9 1.1 0.9683 1.0128 1.0041 1.0575 1.0327 0.9792

T37 0.9 1.1 1.0208 1.0284 1.0281 1.0049 1.0469 0.9943

T41 0.9 1.1 0.9965 0.9961 0.9811 0.9869 1.0084 0.9969

T46 0.9 1.1 0.9607 0.9572 0.9179 0.9242 0.9937 0.9780

T54 0.9 1.1 0.9526 0.9179 0.9010 0.9027 0.9548 0.9255

T58 0.9 1.1 0.9780 0.9785 0.9291 0.9343 0.9799 0.9822

T59 0.9 1.1 0.9633 0.9591 0.9740 0.9702 0.9671 0.9845

T65 0.9 1.1 0.9721 0.9713 1.0055 1.0061 0.9730 0.9979

T66 0.9 1.1 0.9339 0.9341 0.9030 0.9011 0.9480 0.9550

T71 0.9 1.1 0.9630 0.9687 0.9636 0.9537 1.0103 0.9729

T73 0.9 1.1 1.0165 0.9973 0.9622 0.9987 1.0563 0.9501

T76 0.9 1.1 0.9867 0.9685 0.9269 0.9020 1.0049 0.9802

T80 0.9 1.1 0.9881 0.9863 0.9994 0.9793 1.0059 0.9879

Fuel Cost ($/h) – – 41668.7587 41667.7190 50990.2155 45681.7670 43796.8998 43612.0992

Emission (ton/h) – – 1.35777 1.35367 1.78130 1.49988 1.10023 1.15161

Voltage Deviation (p.u.) – – 1.61981 1.69704 0.63354 0.62165 1.44485 1.53517

Power Loss (MW) – – 14.8667 14.9243 29.7593 23.1825 10.4552 10.2332

Pg1 0 576 143.05363 142.18709 458.12503 344.72168 150.84732 191.19500
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Figure 11.   Characteristics of convergence of the proposed LSDO vs SDO for IEEE 57-bus system.
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Figure 12.   Voltage profiles of PQ buses using the proposed LSDO for IEEE 57-bus system.
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Table 12.   Achieved solutions of the proposed LSDO and its competitors for case 10. The best values obtained 
are in bold.

Variables Min Max LSDO SDO ABC AEO DE PSO

Pws1 0 150 149.9968 149.9149 150.0000 149.9607 144.5646 150.0000

Pg3 40 140 40.0596 44.6584 132.8028 41.2343 68.4754 40.0000

Pws2 0 150 149.9959 149.9181 150.0000 149.9662 149.6426 150.0000

Pg8 100 550 378.8350 384.6096 223.1031 387.2554 402.3747 390.3843

Pss 0 120 119.9969 119.9445 105.4476 119.9906 107.8691 120.0000

Pg12 100 410 315.6892 309.6422 316.7675 306.9151 292.5309 306.6320

Vg1 0.95 1.1 1.0596 1.0336 1.0388 1.0402 1.0431 1.0585

Vg2 0.95 1.1 1.0625 1.0301 1.0336 1.0378 1.0314 1.0534

Vg3 0.95 1.1 1.0572 1.0249 1.0227 1.0344 1.0375 1.0531

Pg6 0.95 1.1 1.0653 1.0399 1.0327 1.0572 1.0369 1.0590

Vg8 0.95 1.1 1.0449 1.0447 1.0465 1.0583 1.0316 1.0409

Vg9 0.95 1.1 1.0297 1.0229 1.0169 1.0380 1.0211 1.0287

Vg12 0.95 1.1 1.0372 1.0271 1.0168 1.0501 1.0421 1.0566

Qc18 0 20 18.7913 14.6511 3.9084 8.7065 10.3670 16.8329

Qc25 0 20 16.8467 15.7788 10.4987 13.8436 13.0369 19.9816

Qc53 0 20 5.5652 7.2514 13.8125 12.7174 19.0196 9.9873

T19 0.9 1.1 1.0668 0.9850 0.9970 1.0219 0.9398 1.0562

T20 0.9 1.1 0.9928 1.0229 1.0194 1.0236 1.0274 1.0978

T31 0.9 1.1 1.0072 1.0090 1.0094 1.0337 0.9462 0.9600

T35 0.9 1.1 1.0818 1.0780 1.0747 1.0236 0.9998 1.0755

T36 0.9 1.1 0.9311 0.9868 0.9687 0.9751 1.0441 0.9990

T37 0.9 1.1 1.0398 1.0483 1.1000 1.0329 1.0677 1.0646

T41 0.9 1.1 1.0079 0.9762 0.9731 1.0094 0.9680 0.9766

T46 0.9 1.1 0.9644 0.9895 0.9000 0.9327 0.9500 0.9952

T54 0.9 1.1 1.0226 0.9595 0.9703 0.9961 0.9332 0.9955

T58 0.9 1.1 0.9813 0.9512 0.9433 0.9578 0.9568 1.0399

T59 0.9 1.1 0.9922 0.9491 0.9541 0.9801 1.0382 1.0591

T65 0.9 1.1 0.9899 1.0342 1.0295 1.0012 0.9597 1.0172

T66 0.9 1.1 0.9448 0.9519 0.9415 0.9786 0.9355 0.9062

T71 0.9 1.1 0.9827 0.9549 0.9303 0.9961 0.9840 1.0383

T73 0.9 1.1 0.9919 1.0501 0.9551 1.0316 0.9147 0.9726

T76 0.9 1.1 0.9653 1.0026 1.1000 0.9617 1.0116 0.9549

T80 0.9 1.1 1.0546 1.0213 0.9862 0.9890 1.0895 0.9746

CT ($/h) – – 26491.8072 26529.4584 30539.0423 26498.1112 27458.7947 26565.5122

CW ($/h) – – 1231.2046 1230.4574 1231.2389 1230.8971 1204.5255 1231.2389

CS ($/h) – – 461.9679 461.6379 395.9494 463.0663 407.6080 462.7849

E (t/h) – – 0.8984 0.9016 0.6918 0.9082 0.9253 0.9177

VD (p.u.) – – 1.2561 1.0096 1.1084 1.1498 1.2434 1.5757

PL (MW) – – 17.1841 18.0821 18.6802 17.9220 21.1848 19.9461

Pg1 0 575.88 113.4107 110.1944 191.3593 113.3998 106.5275 113.7299
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Table 13.   Achieved solutions of the proposed LSDO and its competitors for case 11. The best values obtained 
are in bold.

Variables Min Max LSDO SDO ABC AEO DE PSO

Pg2 0 150 149.9869 149.9979 101.6808 149.9480 149.9373 150.0000

Pg3 40 140 40.0190 41.4222 75.5268 41.9813 65.0723 40.0000

Pg6 0 150 149.9852 149.9998 150.0000 149.9726 143.1387 149.5369

Pg8 100 550 384.0763 370.1775 397.0061 392.0774 371.4336 367.3130

Pg9 0 120 119.9840 119.9928 114.9231 119.9816 114.5233 120.0000

Pg12 100 410 309.2269 323.9497 303.1151 305.3395 285.2056 324.1490

Vg1 0.95 1.1 1.0468 1.0458 1.0844 1.0421 1.0247 1.0294

Vg2 0.95 1.1 1.0480 1.0402 1.0736 1.0441 1.0227 1.0232

Vg3 0.95 1.1 1.0435 1.0381 1.0505 1.0392 1.0048 0.9904

Pg6 0.95 1.1 1.0653 1.0473 1.0397 1.0622 1.0206 0.9918

Vg8 0.95 1.1 1.0651 1.0314 1.0225 1.0731 1.0265 0.9865

Vg9 0.95 1.1 1.0436 1.0121 1.0135 1.0331 0.9951 0.9650

Vg12 0.95 1.1 1.0498 1.0293 1.0382 1.0166 1.0033 0.9821

Qc18 0 20 15.7069 4.7349 13.6560 16.3110 17.1528 0.0000

Qc25 0 20 13.8184 14.6576 16.4312 8.7039 16.8865 20.0000

Qc53 0 20 12.5339 13.4582 12.6849 8.2655 0.9974 0.0000

T19 0.9 1.1 1.0664 1.0617 1.0539 1.0525 0.9865 0.9155

T20 0.9 1.1 0.9797 1.0693 1.0982 0.9991 0.9696 0.9029

T31 0.9 1.1 0.9923 1.0077 1.0287 0.9962 1.0061 0.9438

T35 0.9 1.1 0.9882 0.9602 0.9987 0.9187 0.9579 1.0336

T36 0.9 1.1 1.0285 0.9671 1.0419 1.0095 1.0001 0.9000

T37 0.9 1.1 0.9924 0.9521 1.0031 1.0264 0.9825 0.9908

T41 0.9 1.1 1.0048 0.9921 0.9903 1.0054 1.0146 1.0186

T46 0.9 1.1 0.9856 0.9922 0.9632 0.9494 0.9748 0.9906

T54 0.9 1.1 0.9241 1.0152 1.0358 0.9083 0.9499 0.9292

T58 0.9 1.1 0.9668 1.0236 0.9655 0.9638 0.9664 0.9000

T59 0.9 1.1 0.9893 0.9714 0.9479 0.9600 0.9439 0.9529

T65 0.9 1.1 1.0178 0.9550 1.0245 0.9954 0.9331 1.0066

T66 0.9 1.1 0.9478 0.9059 0.9299 0.9476 0.9318 0.9000

T71 0.9 1.1 0.9689 0.9416 0.9453 0.9968 0.9411 0.9100

T73 0.9 1.1 0.9822 1.0071 0.9218 0.9889 1.0581 1.0111

T76 0.9 1.1 0.9903 0.9966 0.9575 0.9753 0.9156 0.9003

T80 0.9 1.1 1.0264 0.9753 0.9487 0.9738 0.9815 0.9000

CT ($/h) – – 26490.4174 26560.9184 28755.3530 26500.9984 27247.6331 26695.5204

CW ($/h) – – 1231.1081 1231.2280 1009.1192 1230.8696 1198.2998 1229.0353

CS ($/h) – – 461.2707 461.3112 439.2436 461.9111 437.0527 463.1334

E (t/h) – – 0.9039 0.8874 0.9483 0.9164 0.8554 0.8870

VD (p.u.) – – 1.1424 1.3345 1.2478 1.0188 1.0682 1.4830

PL (MW) – – 17.1879 17.6400 19.6197 17.6620 19.5208 20.5897

Pg1 0 575.88 114.7097 112.9001 128.1678 109.1615 141.0100 120.3908
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Figure 13.   Comparison of convergence and run of LSDO vs state-of-the-art algorithms for cases 5 and 6.
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Figure 14.   Voltage profile of PQ buses for IEEE-57 REs cases.
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Control variables SDO LSDO Control Variables SDO LSDO

Pg1 40.1063 64.4748 Vg31 1.0368 1.0116

Pg4 43.8024 34.3105 Vg32 1.0306 1.0359

Pg6 55.3404 30.5358 Vg34 1.0329 1.0020

Pg8 55.5974 30.1350 Vg36 1.0317 0.9965

Pg10 192.3171 307.7051 Vg40 0.9938 1.0065

Pg12 73.4690 63.1787 Vg42 0.9769 1.0477

Pg15 30.4367 69.2999 Vg46 1.0100 1.0017

Pg18 30.9970 37.4440 Vg49 1.0069 1.0181

Pg19 44.1664 30.1235 Vg54 1.0370 0.9989

Pg24 57.6019 31.1649 Vg55 1.0311 0.9947

Pg25 119.2457 136.1038 Vg56 1.0320 0.9967

Pg26 151.3569 152.9985 Vg59 1.0295 1.0074

Pg27 56.0971 32.4025 Vg61 1.0340 1.0008

Pg31 32.1709 32.1071 Vg62 1.0277 0.9988

Pg32 51.6170 30.0514 Vg65 1.0306 1.0398

Pg34 32.0154 33.4394 Vg66 1.0117 1.0184

Pg36 31.4379 30.0830 Vg69 1.0401 1.0372

Pg44 32.3694 31.9403 Vg70 1.0231 1.0133

Pg42 30.6368 32.5210 Vg72 1.0276 1.0123

Pg46 36.1461 35.9978 Vg73 1.0163 0.9956

Pg49 112.0778 160.9314 Vg74 1.0059 1.0019

Pg54 62.1124 47.7883 Vg76 0.9781 0.9941

Pg55 54.0745 30.3659 Vg77 1.0033 1.0202

Pg56 44.3759 44.7771 Vg80 1.0172 1.0369

Pg59 145.3439 88.6009 Vg85 1.0039 0.9969

Pg61 117.0340 126.8220 Vg87 1.0626 0.9837

Pg62 45.7334 39.6513 Vg89 1.0135 0.9986

Pg65 284.0753 263.3131 Vg90 1.0207 1.0236

Pg66 172.3229 278.0789 Vg91 1.0041 1.0544

Pg70 50.4983 30.0481 Vg92 1.0037 1.0095

Pg72 32.3044 63.0797 Vg99 1.0198 1.0579

Pg73 49.1009 53.9478 Vg100 1.0120 1.0290

Pg74 55.6390 35.4073 Vg103 1.0194 1.0151

Pg76 59.7134 52.1510 Vg104 1.0150 1.0015

Pg77 30.0000 32.1093 Vg105 1.0214 1.0018

Pg80 282.5561 289.0136 Vg107 1.0604 1.0147

Pg85 30.3429 30.3009 Vg110 1.0154 1.0027

Pg87 31.2028 31.2072 Vg111 1.0450 1.0281

Pg89 370.5745 390.9766 Vg112 0.9919 0.9919

Pg90 63.0840 30.7519 Vg113 1.0317 1.0461

Pg91 40.2548 31.5360 Vg113 1.0268 1.0272

Pg92 50.2085 41.3658 Qc5 8.4799 9.6180

Pg99 31.6909 32.3164 Qc34 12.7735 1.8728

Pg100 200.5469 159.9352 Qc37 6.3689 15.4410

Pg103 48.9003 47.5207 Qc44 8.4943 16.1184

Pg104 30.0499 30.8410 Qc45 21.2064 17.7603

Pg105 30.1693 31.3924 Qc46 11.1423 12.8668

Pg107 30.1765 30.2941 Qc48 13.3364 16.5950

Pg110 37.8482 30.8276 Qc74 14.0006 15.7325

Pg111 76.6624 41.3898 Qc79 15.0967 12.5671

Pg112 30.3786 31.8328 Qc82 8.1848 11.6904

Pg113 56.1582 30.0014 Qc83 13.9846 12.7562

Pg116 32.8097 30.4287 Qc105 16.3278 17.0788

Vg1 1.0028 0.9925 Qc107 6.1172 1.8649

Vg4 1.0138 1.0211 Qc110 15.8669 1.2406

Vg6 1.0173 1.0052 T8 0.9652 0.9416

Continued
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Control variables SDO LSDO Control Variables SDO LSDO

Vg8 1.0256 0.9878 T32 1.0156 0.9997

Vg10 1.0286 1.0168 T36 0.9894 0.9783

Vg12 1.0199 0.9958 T51 0.9879 1.0174

Vg 15 1.0041 1.0070 T93 0.9765 1.0166

Vg18 1.0023 0.9997 T95 0.9761 1.0029

Vg19 0.9993 0.9982 T102 1.0115 1.0237

Vg24 1.0020 1.0165 T107 1.0039 1.0447

Vg25 1.0438 1.0252 T127 0.9828 1.0427

Vg26 1.0701 1.0078 Fuel Cost ($/h) 139923.69 137105.99

Vg27 1.0407 1.0540 Pg69 319.5107 374.0803

Table 14.   The obtained results of the proposed LSDO as well as the original SDO techniques for IEEE 118-
bus. The best values obtained are in bold.
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Figure 15.   Convergences and voltage profiles of PQ buses for IEEE 118-bus system.

Table 15.   Statistical results of the proposed LSDO and original SDO algorithms for case studies without RESs. 
Significant values are in bold.

Systems Cases Min Mean Max SD

IEEE 30

Case 1
SDO 800.4223 800.4461 800.4776 1.4516E−2

LSDO 800.42 800.4404 800.4828 1.4232E−2

Case 2
SDO 0.20484 0.20486 0.20492 2.3422E−5

LSDO 0.20483 0.20487 0.20491 2.535E−5

Case 3
SDO 0.092494 0.095292 0.10039 2.6015E−3

LSDO 0.091521 0.093677 0.10008 2.2197E−3

Case 4
SDO 3.0908 3.0983 3.1267 1.0211E−2

LSDO 3.0902 3.0932 3.1024 2.6589E−3

IEEE 57

Case 6
SDO 41668.7587 41669.5291 41676.463 2.4363

LSDO 41667.719 41667.807 41667.915 1.001E−1

Case 7
SDO 0.63354 0.64428 0.66422 1.5011E−2

LSDO 0.62165 0.63646 0.64016 7.5964E−3

Case 8
SDO 10.4552 10.5735 11.0571 1.8523E−1

LSDO 10.2332 10.2551 10.6719 9.8104E−2

IEEE 118 Case 12
SDO 139923.69 140792.50 144232.38 1588.4573

LSDO 137105.99 137354.50 138858.69 576.4613
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
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