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The number of confirmed COVID-19 cases reached over 1.3 million in Ontario, Canada by June 4, 2022.
The continued spread of the virus underlying COVID-19 has been spurred by the emergence of variants
since the initial outbreak in December, 2019. Much attention has thus been devoted to tracking

and modelling the transmission of COVID-19. Compartmental models are commonly used to mimic
epidemic transmission mechanisms and are easy to understand. Their performance in real-world
settings, however, needs to be more thoroughly assessed. In this comparative study, we examine five
compartmental models—four existing ones and an extended model that we propose—and analyze
their ability to describe COVID-19 transmission in Ontario from January 2022 to June 2022.

Humans have faced severe infectious diseases throughout history, some of which have been classified as world-
wide pandemics’, including the Spanish flu in 1917 and Hong Kong flu (H3N2) in 1968. The most recent example
is the spread of the coronavirus disease 2019 (COVID-19). COVID-19 is the infectious disease caused by the
novel coronavirus of severe acute respiratory syndrome (SARS-CoV-2), and the first case was detected in the
Wholesale Seafood Market in Wuhan City, Hubei province, China, on December 3, 20192. The disease then
spread all over the world, such that in February 2020 the World Health Organization (WHO) declared COVID-
19 to be a worldwide pandemic. In a variety of ways, COVID-19 and its associated public health policies have
had serious impacts on human physical and mental health since then, in many regions of the world. Up to June
2022, the cumulative confirmed cases of COVID-19 worldwide reached 530 million, and continue to increase
rapidly due to the spread of variants.

Mutations in the virus underlying COVID-19 have led to a number of variants of concern, including Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)%. Omicron was the most
recently detected variant in Ontario, Canada, first identified in a traveller by the Public Health Ontario labora-
tory on November 22, 2021* As of January 20, 2022, Omicron (and its subvariants) has become dominant and
represents the majority of infections in Ontario.

Mathematical models are widely used to describe the evolution of epidemics. In particular, compartmental
models are one of the most popular classes of models in epidemiology to mimic the transmission dynamics.
They have played an instrumental role in tracking epidemiological trends, generating predictions, and informing
decisions of policy-makers. For example, in May 2020 the British Columbia government released a management
strategy for COVID-19 that heavily relied on the results of a fitted dynamic compartmental model’. Their model
predicted the number of people who would require critical care under different levels of social contacts, which
in turn informed the level of lockdown restrictions implemented by the government to protect the health system
from being overwhelmed.

Compartmental models divide the total population into a number of different compartments; then the flow
of the population through these compartments is usually modelled via a system of differential equations. Names
of compartment models are usually given in acronym form, by abbreviating the first letter of each compartment
and arranging the letters according to how the population tends to flow through the different compartments®.
The earliest and simplest compartmental model was the SIR model”. The SIR model consists of three compart-
ments that divide the total population into susceptible (S), infected (I) and recovered (R) individuals, along with
a system of three differential equations which describes the flow rate in and out of each compartment. Since then,
researchers have devoted much attention towards developing extensions to the basic SIR model.
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The choice of compartments, flow directions, and parameters included in these models depends mainly on
the characteristics of the disease. We briefly overview the variety of compartmental models that have been used
to describe the transmission of COVID-19. Starting from the SIR model®, the SEIR®, SEIRD'?, and SMEIHRDV!!
are examples of models that divide the overall population into finer compartments. Other compartmental mod-
els stratify the population into different groups to describe the transmission dynamics of COVID-19 in a more
targeted way: e.g., stratification by age groups, such as the young, adults and seniors'? profession stratification,
such as healthcare workers and others'®; gender stratification'®. Some researchers combine these two approaches
by setting up compartments within strata. A SEAPIR model", which was used to model Omicron cases in Brit-
ish Columbia!®, stratified the susceptible population by vaccination status, i.e., vaccinated and unvaccinated.
Moreover, it added an asymptomatic infection compartment to account for the high asymptomatic carriage
rate of the Omicron variant'”. Finally, a SV2(AIR)® model'® not only considered asymptomatic infections and
vaccination status, but also added the impact of policy measures and competition between different variants.

For illustration, this paper also develops our proposed extension to the SEAPIR model. As in the SEAPIR
model, we stratify the population by vaccination status and include compartments for asymptomatic (A) and
pre-symptomatic (P) infections. We incorporate a time-dependent function that aggregates the policy measures
that the government has imposed to reduce COVID-19 transmission. In addition, we introduce a new compart-
ment (Q) for individuals in self-isolation, and consider the interaction between groups with different vaccination
statuses in the disease transmission stage.

With the plethora of models available, the choice of a suitable one to describe epidemic transmission is there-
fore an important consideration. Simple models (e.g., SIR) rely on few parameters and assumptions, and thus
tend to provide an oversimplified representation of reality. In contrast, a complex model will often have been
designed to provide a more comprehensive description of transmission dynamics and population behaviour.
However, a complex model requires a larger number of unknown parameters, which can significantly impact its
performance. Unknown parameters either need to be calibrated or have their values assumed—the former can
increase the variance and uncertainty of the model predictions, while the latter can introduce significant bias.

Conventional methods for parameter calibration, such as non-linear least squares (NLS) and maximum likeli-
hood, may fail to adequately capture the uncertainties of the calibrated parameters. Their calibration results are
largely dependent on the stability of the known parameters, such as recovery rate and disease incubation rate,
which are often borrowed from the existing literature. Moreover, for the NLS method, the global optimum can be
difficult to find when the parameter space is large, which may result in misleading inferences. Therefore, besides
using NLS for our proposed model, we also adopt a Bayesian approach to inference and apply Markov Chain
Monte Carlo (MCMC) methods for parameter calibration. A Bayesian framework allows us to incorporate prior
information and coherently accounts for the uncertainty of the parameters via their posterior distributions; e.g.,
parameters that are not well-calibrated from data will tend to have wide credible intervals.

As a specific case study, this paper focuses on modeling confirmed COVID-19 infections in Ontario from
January 2022 to June 2022. This task is potentially more challenging with Omicron’s prevalence, compared to
the original wild-type strain. First, there are the effects of vaccination. As COVID-19 vaccines have become
widely available in Ontario, most of the population of Ontario has taken a complete dose of vaccination (i.e.,
fully vaccinated with one or two doses of a Health Canada authorized COVID-19 vaccine), and furthermore,
some have also taken a booster dose (i.e., fully vaccinated plus one additional booster dose). However, indi-
viduals who are vaccinated or have recovered from COVID-19 in the past are still likely to be infected: vaccine
effectiveness against the Omicron variant exhibits a continuous and consistent decrease after injection, and
vaccination provides more limited protection against symptomatic disease caused by the Omicron variant’. As
a result, national re-infection associated with Omicron emergence was observed in South Africa®, the United
States?!, and Canada®. Second, the limited availability of COVID-19 testing in Ontario, especially as case loads
increased due to Omicron’s highly transmissible nature, hinders estimation of true infection and re-infection
rates. Third, Omicron is thought to have higher rates of asymptomatic infection'’, and thus detection is more
elusive. Fourth, Ontario moved through a series of reopening phases during this period®, which has impacts
on the social behavior of the population.

To the best of our knowledge, few studies have investigated whether simple models perform worse or better
than complex models for describing the recent transmission dynamics of COVID-19 in Ontario. Therefore, a
comparative study between models can help address this research question. This paper considers five different
models: SIR®, vaccination-stratified SIR?, SEIRD?, SV2(AIR)?'® and our SEAPIR-extended model. We calibrate
their adjustable parameters according to their proposed methods and evaluate their fits to Ontarios confirmed
daily case counts. By examining their performance in this real-world setting, we gain insight into the relative
strengths and shortcomings of compartmental models that range from simple to complex.

Methods

Data description. The COVID-19 data used in this paper are obtained from Public Health Ontario. We
investigate the daily confirmed COVID-19 cases from January 6 to June 4, 2022, which spans five reopening
phases as determined by the Ontario government®. The first phase is from January 6 to January 30, when the
province returned to a modified Step 2 of the reopening plan®® with restrictions on social activities. The second
phase is from January 31 to February 16, when the Ontario government began the process of gradually easing
restrictions while maintaining protective measures?. The third phase is from February 17 to February 28, when
the Ontario government further eased public health measures®. The fourth phase is from March 1 to March 20,
when the proof of vaccination requirement was lifted for all settings®”. The data ends with a portion of the fifth
phase from March 21 to June 4, which corresponds to the time when the Ontario government scrapped most
mask mandates®®. Daily vaccination counts were also available for this investigated time period.
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As the Ontario government moved from one reopening phase to the next, the restrictions on indoor and
outdoor public activities were relaxed, which led to out-of-home mobility increasing over this time period. These
phase-to-phase changes in restrictions may be quantified via the ‘Oxford Stringency Index’ (denoted by A(1)),
which is an aggregate value (ranging from 0 to 100%) that quantifies the “overall impact of policy measures on
workplace closures, school closures, travel bans, and vaccination requirements”.

The daily COVID-19 cases stratified by vaccination status shown in Fig. 1 provide a more detailed look at
the data®®. We note that the Ontario government changed its stratification rules for reporting cases during the
investigated time period. From January 6 to March 10 (before the dashed line in Fig. 1), the Ontario govern-
ment used three strata for reporting infections: unvaccinated, partially vaccinated, and fully vaccinated (which
includes infections among both those with a completed primary series and those with an additional booster
dose). From March 11 to June 4 (after the dashed line in Fig. 1), the Ontario government changed the composi-
tions of the three strata it used for reporting infections: not fully vaccinated (which included partially vaccinated
and unvaccinated), completely vaccinated, and vaccinated with booster dose. Table 1 shows these two different
stratification rules in detail.

Model descriptions. In this section, the SIR®, vaccination-stratified SR>, SEIRD?, SV2(AIR)*'%, and a new
model that we call vaccination-stratified SEPAIQRD, are introduced.

01-06 01-20 02-03 02-17 03-03 03-17

Date

- Unvaccinated Not fully vaccinated
Partially vaccinated - Completely vaccinated
- Fully vaccinated Vaccinated with booster dose

03-31 04-14 04-28 05-12 05-26

Figure 1. Daily confirmed COVID-19 cases in Ontario. The total infections are stratified by unvaccinated,
partially vaccinated and fully vaccinated infection in Ontario from January 6 to March 10 (before the dashed
line). From March 11 to June 4 (after the dashed line), the total infections are stratified by not fully vaccinated,
completely vaccinated, and vaccinated with booster dose.

One dose of two-dose primary Primary series with additional

Date range Stratum name Not vaccinated | series Completed primary series | booster dose

Unvaccinated v
January 6 to March 10 | Partially vaccinated v

Fully vaccinated v v

Not fully vaccinated v v
March 11 to June 4 Completely vaccinated v

Vaccinated with booster dose v

Table 1. Strata definitions used by Ontario government for reporting daily confirmed COVID-19 case counts,
from January 2022 to June 2022.
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SIR model. Among others, Cooper et al.® used the basic SIR model to track the spread of COVID-19. The total
population size, N, is represented as N = S(¢) + I(¢) + R(t), where S(1), I(t), and R(t) respectively denote the
number of susceptible, infected, and recovered individuals at time ¢. The SIR model is governed by the system of
differential equations in Eq. (1):

a$s _ Bl
de —
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=¥ ()
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where y and f are the two parameters to be calibrated. The parameter §, as seen in the first two equations, governs
the rate at which individuals move from the S to the I compartment; it is called the disease transmission rate,
representing the average number of susceptible individuals in the S compartment that a contagious individual in
the I compartment infects in a day. The parameter y, as seen in the last two equations, governs the rate at which
individuals move from the I to the R compartment; it is called the removal rate, representing the probability per
day that an I-individual transits to R (which can encompass both recovered and deceased individuals). Thus, the
average duration of infection under this model is 1/y. Note that the last equation implies that R is an absorbing
state, since individuals can no longer leave once they enter this compartment (e.g., reinfections are not possible
in this model). The unknown parameters 8 and y can be calibrated by minimizing the sum of squared errors
(SSE) between the model-fitted daily case counts and actual case counts.

Vaccination-stratified SIR model.  Fisman et al.** proposed a modified SIR model by stratifying the population
into vaccinated and unvaccinated groups. They also considered the impact of interaction (or mixing) between
the vaccinated and unvaccinated sub-populations on COVID-19 transmission, by introducing the parameters f;;
for the fraction of contacts among individuals in the i-th group [i.e., vaccinated or unvaccinated, denoted respec-
tively by Vand Uin Eq. (2)] with those in the j-th group. Immunity from vaccination (when effective) is assumed
to be permanent. The parameters y and B have the same interpretation as in the basic SIR model.

The system of differential equations governing this model is shown in Eq. (2):
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where N; = S;(t) + Li(t) + R;(t) is the subpopulation size of the i-th group.

The authors mainly obtained their parameters from other literature and numerically solved the differential
equations with predetermined initial conditions. Their modeling approach does not involve parameter calibra-
tion from data, and for simplicity their chosen parameter values are also adopted in our implementation of the
model. In principle, a procedure for better fitting the model to data could be developed, to handle situations
where their original assumptions do not hold.

SEIRD model. Melo® proposed an SEIRD model to provide a fuller description of COVID-19 progression,
which divides the population into finer compartments. Susceptible individuals S first move to the exposed com-
partment E with disease transmission rate f, rather than directly moving to I. After the disease incubation
period (an average of 1 /y days), exposed individuals will transit into the I compartment. Infected individuals will
then either move to the recovered R compartment (with a rate of ¢) or the dead D compartment (with a rate of
p). Their governing system of differential equations is shown in Eq. (3):
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dt — IN
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As in the SIR model, the unknown parameters 8, y, p, i can be calibrated by minimizing the SSE between the
model-fitted daily confirmed case counts and the actual ones.

SV2(AIR)? model. Layton and Sadria'® introduced the SV2(AIR)? model to provide a more comprehen-
sive description of COVID-19 epidemic progression in Ontario. The authors included additional parameters
that measured the impact of waning immunity, vaccine effectiveness, and policy measures that restrict public
activities. The quantitative values of measuring the policy strictness are equivalent to the previously introduced
Oxford Stringency Index. The compartmental setup considered two vaccine types (hence V2), asymptomatic
infections (A), and competition among the three main variant types as of Fall 2021, i.e., wild, Alpha, and Delta.
The authors also modeled the potential spread of a hypothetical new-emerging variant.

The model parameters that describe the clinical characteristics of the COVID-19 variants are obtained from
published studies. Other parameters related to the demographics and social behaviours of the Ontario popula-
tion are obtained from published provincial statistics. In total, the model has 69 parameters. To calibrate the
model, we update nine parameters pertaining to their new-emerging variant to mimic the characteristics of the
actual Omicron variant, including higher values for Omicron’s transmission rate and fraction of asymptomatic
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infection. We also use the actual values of the Oxford Stringency Index during our investigated period, which
serve as scaling factors in the model. Tables S1 and S2 in the Supplementary Information respectively show the
model parameters with respect to wild-type, Alpha-type, Delta-type, and our updated Omicron-type variants.

Vaccination-stratified SEPAIQRD model. We introduce an extension of the SEAPIR model to describe the
dynamic mechanisms of COVID-19 transmission in Ontario over the investigated period, which we call the
vaccination-stratified SEPAIQRD model. A summary of its key features is as follows: more compartments are
added to reflect the situation in Ontario; the population is stratified by the four vaccination statuses as defined
by Ontario; migration between susceptible compartments of the different vaccination statuses occurs, according
to the daily reported vaccination counts; time-varying parameters describe testing efficacy and asymptomatic
infections.

The COVID-19 data released by Public Health Ontario of confirmed COVID-19 cases are split into three
strata up to and including March 10, as presented in the Data Description section. During this period, the ‘fully
vaccinated’ infections counted both completely vaccinated and vaccinated with booster dose infections. For sim-
plicity, we further split these fully vaccinated’ infections according to the daily-updated proportion of completely
vaccinated and vaccinated with booster dose populations in Ontario. After March 10, we further split the ‘not
fully vaccinated’ infections according to the daily-updated proportion of unvaccinated population and partially
vaccinated population in Ontario. Figure S1 in the Supplementary Information plots the case counts stratified
by the four vaccination statuses after this processing step. In the following description, the subscript index 7 for
i = 1,2,3,4will respectively denote the unvaccinated, partially vaccinated, completely vaccinated, and vaccinated
with booster dose populations. We let N; denote the size for each of these populations. The flow of susceptible
individuals with these four vaccination statuses will be tracked in the model using parallel compartments.

Susceptible individuals (in the ‘S’ compartment) can move to the exposed compartment (denoted as ‘E;’)
when in contact with contagious individuals. We let § ;; denote the transmission rate from the contagious
compartment k in the i-th group to the susceptible individuals in the j-th group. The construction of the disease
transmission matrix that governs such interactions follows a previous approach!? and is described in Section B.2
of the Supplementary Information, with Table S3 showing the contact matrix given different vaccination sta-
tuses. Tables S4 and S5 in the Supplementary Information show the transmission matrix of different contagious
compartments. These disease transmission rates will be scaled multiplicatively by 1 — A(¢), which quantifies the
impact of policy measures via the Oxford Stringency Index.

After exposure, asymptomatic individuals are assumed to follow the flow E; — A; (asymptomatic) — RA;
(recovered asymptomatic). Those with mild to severe symptoms follow the flow E; — P; (pre-symptomatic);
then after the disease incubation period, they either recover without testing (P; — R}, e.g., mild symptoms) or
are documented by the Ontario government as confirmed cases (P; — I;, e.g., more serious symptoms). Finally,
individuals with confirmed cases follow one of three flows: I; — D; (death); I; - Q; (quarantined) — R; for
those who self-isolate and then recover; I; — R; for those who recover without self-isolation. These compart-
ments and flows are all illustrated in the overall schematic of the model in Fig. 2.

The flows in Fig. 2 are governed by a number of fixed and time-varying parameters. The fixed x parameters
are various transition rates; e.g., kg governs the E; — P; transition rate, with the interpretation that an individual
spends an average of1/kp days in the E; compartment. The death rate is «;, whose value depends on vaccination
status®!. The fixed € parameter is the proportion of infected individuals who comply with self-isolation after
testing positive. Table S6 in the Supplementary Information lists the values of these fixed parameters. Next, the
time-varying parameter f;(t) is interpreted as the probability of asymptomatic infection; it is treated as unknown
and will be calibrated from data for each vaccination status and reopening phase. Finally, the time-varying
‘case ascertainment rate, denoted as CAR(t), is interpreted as the proportion of symptomatic infections that are
documented by the Ontario government as confirmed cases; it is also treated as unknown and will be calibrated
from data for each reopening phase. Note that T} and T; in Fig. 2 are intermediate compartments set up so that
the parameters CAR(t), fi(t), and € can be interpreted as the proportion of flux-out from the preceding compart-
ment. Table 2 summarizes all of the model parameters and their corresponding definitions.

The final element of the model is the flow of people who migrate between vaccination statuses during the
investigated period. We let V1, V3, and V3 respectively denote the number of individuals taking first, second,
and booster vaccine doses, represented as daily counts reported by the Ontario government. These daily counts
of individuals who get vaccinated govern the flows S; — 82, S2 — S3, and S3 — Sy, as indicated in Fig. 2. The
corresponding population sizes Nj are also updated daily based on these counts.

The overall model incorporates certain assumptions, which we now state explicitly. We assume that the cases
reported by Public Health Ontario units are symptomatic cases. We expect this assumption to be reasonable, since
the Ontario government decided to “limit eligibility for publicly funded PCR tests to high-risk individuals who
are symptomatic beginning from December 31 (2021)”2. This policy was maintained throughout the investigated
time period. We assume that asymptomatic and mild cases are not tested and therefore do not self-isolate. We
assume that the rate at which Ontario government documents confirmed cases and asymptomatic infection rate
are constant within one phase, and allowed to change between phases. Moreover, the model allows the asympto-
matic infection rate to differ by vaccination status and by reopening phase, which will be calibrated from data.

The full system of differential equations, that corresponds to Fig. 5 and incorporates the above considerations,
is provided in Section B.4 of the Supplementary Information.

12,16

Parameter calibration for vaccination-stratified SEPAIQRD model. Our model has two sets of
unknown phase-dependent parameters that need to be calibrated based on data, namely f;(¢t) and CAR(%). Given
initial conditions for each compartment and a set of values for the phase-dependent f; () and CAR(¢), running the
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Symbol | Definition Reference
Bri Transmission rate from contagious compartment k in i-th group to susceptible in j-th 12
group
At) Oxford Stringency Index 2
fi(®) Phase-dependent asymptomatic infection rate of i-th vaccination group Calibrated from data
KE Transition rate from being exposed to being pre-symptomatically infected 334
KA Recovery rate from being asymptomatically infected »
CAR(t) Phase-dependent case ascertainment rate Calibrated from data
Kp Transition rate from being pre-symptomatically infected to being infected with symptoms |
Kp_sR/ Recovery rate directly from being pre-symptomatically infected »
o Death rate of i-th vaccination group 3
€ Proportion of compliance with isolation *
KI—R Recovery rate from being symptomatically infected 37
KI—-Q Isolation delay 2

Table 2. Definitions of model parameters in vaccination-stratified SEPAIQRD model.
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Figure 2. Schematic diagram of vaccination-stratified SEPAIQRD model in the i-th vaccination group. The
arrows indicating flux in and flux out of the S; compartment will depend on vaccination status: there is no V;_;
for the unvaccinated group and no V; for the vaccinated with booster group.

iOKe

numerical ODE solver produces deterministic trajectories of each compartment. Using the hat symbol to denote
the numerical solution, the number of new daily confirmed cases in the i-th vaccination status on the t-th day
can be expressed asAI (t) == I (1) +R (t) + D;(t) + Qz(t) - (I t—-1 —|—R t—1) +D (t—1)+ Q,(t —1).
We denote the actual daily confirmed case counts on the t-th day as AL(¢).

To fit the model using a basic method that is similar to the other models considered, we may calibrate the
values of f;(t) and CAR(t) by minimizing the SSE between AL (t) and AIL;(t), where f;(t) and CAR(t) may vary
by reopening phase. Thus equivalently, we may denote the parameters to calibrate as f; jand CAR;, for vaccina-
tion status i € {1,2, 3,4} and reopening phase j € {1,2, 3,4, 5}. We refer to this method as the NLS model fit in
the subsequent results.

It can be advantageous to take a Bayesian approach to inference and apply MCMC methods for parameter
calibration, and this is the main method we consider for fitting our model. Briefly, the key idea of Bayesian infer-
ence is to incorporate prior information or beliefs concerning the unknown parameters with the likelihood of the
observed data, to generate a posterior distribution for the unknown parameters. Mathematically, for parameters
6 and data y, along with the prior distribution 7 (6) and the likelihood function P(y|6), by Bayes’s Theorem, the
posterior distribution P(f]y) (up to a multiplicative constant) is given by

P(@ly) < P(y|0)m(6). (4)

When closed-form analysis of the posterior distribution is not possible, MCMC methods are often used to gen-
erate samples from P(6|y). To facilitate MCMC sampling, we convert CAR(t) and f;(¢) from their [0, 1] scale to
the real numbers via a logit transformation. We let CAR(¢) and f;(¢) on the logit scale be denoted as & (CAR(t))
and & (fi(1)), where £ (x) = log(7%).

Here, the likelihood provides the probabilistic link between the ODE solution AT;(t) and the observed data
AI;(t). A model for the daily case counts is therefore needed; the Poisson and negative binomial are common
probability distributions used to model count data®. As the variance in daily case counts tends to exceed the
mean (i.e., overdispersion)***’, we adopt a negative binomial model for the likelihood as shown in Eq. (5):

ALi(t)|Z (fi(1), £ (CAR(Y), $i(t) ~ NegBin(ALi(1), g5 (1)), (5)

where ¢;(t) is the phase-dependent parameter that accounts for overdispersion in the i-th group, i.e., conditional
on the ODE solution, we assume independence of the negative binomial across different days*.
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To complete the Bayesian model, prior distributions need to be specified for the unknown phase-depend-
ent parameters & (fi(¢)), & (CAR(t)), and the overdispersion parameter ¢;(¢). These are chosen to be weakly
informative: we use them to encode some a priori beliefs and knowledge, while letting the data likelihood be
the main contributor to the posterior. First, we believe a priori that vaccinated individuals are more likely to be
asymptomatically infected, as it is commonly accepted that mild or severe COVID-19 symptoms are reduced by
vaccinations and boosters*'. Second, the immunity conferred by vaccination wanes over time, especially against
Omicron'’; with most booster doses in Ontario being administered in early 2022, their overall effect is expected
to wane over the investigated period. These considerations are encoded by ordering the prior means for & (f;(¢))
according to vaccination status and phase. Third, the daily case counts are highest in January and decrease over
our investigated period, and the Ontario government may more readily document cases when daily infections
are lower. Thus, the prior means for & (CAR(t)) are set to increase with reopening phase. Due to our uncertain-
ties about these unknown parameters, a relatively large standard deviation of the priors is chosen, so that the
posterior distributions will be primarily informed by the data. The full list of priors is shown in Table S7 in the
Supplementary Information for Z (f; ;), & (CAR;), and (¢; ,j)’l, for vaccination statusi € {1, 2, 3,4} and reopen-
ing phase j € {1,2, 3,4, 5}. As seen in Fig. 6, the prior densities (blue) chosen are relatively flat, indicating they
encode some knowledge without strongly contributing to the posterior.

Multiplying the likelihood and prior (Eq. 4) yields the posterior distribution of the unknown parameters
CARj, ¢i,j>fi,j in Eq. (6):

150 4 5

P(Z (CAR), ($)"", 2 (HIAD o [[TT[[ PAL®1Z (CAR), (¢i)™", £ (£i)) ©
t=1i=1 j=1 6

-7 ((@if)"1) - 7 (L (CAR) - 7 (L (fi),

where CAR,¢,f, and AI are the concatenated vector forms of CAR;, ¢i,j,f,-,j, and AI;(t), with
ie{1,2,3,4},j € {1,2,3,4,5).

To obtain samples from the posterior distribution of the parameters, we use Stan 2.21.5% and R 4.1.1, running
2000 MCMC iterations and four chains. Let AI be the concatenated vector form of the daily case counts AI; (%),
and AT, pred the corresponding model estimates. The posterior distribution of AT, pred is then approximated using
the MCMC samples via Eq. (7):

K
~ : ~ 1 ~
P(AlpredlAI) = /P(AIpredlo)P(elAI)do ~ E § P(AIpred|0(k))a (7)
k=1

where = (& (CAR), (¢)~ ', & (f))and (), . . ., O(x) are the MCMC samples of §. We treat the posterior mean
as the model-fitted daily case counts. Further, credlble intervals can be easily obtained in the Bayesian framework,
e.g., we take the 0.025 and 0.975 quantiles of the posterior distribution for AT, pred (based on the MCMC samples)
to form 95% credible intervals. We refer to this Bayesian approach as the MCMC model fit in the subsequent
results.

We note that our investigated period is divided into several reopening phases. When the Ontario government
moved from one reopening phase to another, the Oxford Stringency Index will immediately reflect the change,
whereas the actual social behaviour in response to the change is likely to be more gradual. Jump discontinuities
from the piece-wise function A(t) and the phase-dependent parameters (CAR; and f; ;) would lead to correspond-
ing jumps in estimated case counts. Locally weighted linear regression (LOESS)* is a nonparametric technique
that is useful for estimating a smoothed curve, e.g., in volatile time series data. This technique has been used to
smooth SIR model predictions on the total number of deaths, in the presence of a time-varying case ascertain-
ment rate*!. Here, we also apply LOESS with automatic bandwidth and span selection to our fitted daily case
counts (for both NLS and MCMC fits) and credible boundaries (for the MCMC fit). Another technique could be
to use a smooth linear function to interpolate A(¢) over a 1-week period after the start of a new phase’; however,
it is less applicable here due to the presence of other phase-dependent parameters (CAR;, f; ).

Initial conditions for the models. The total population size is a key input to each of the compartmental
models described. We set N = 14,051,980, according to the total population in Ontario as recorded in the Cana-
dian census®. The true initial conditions for the different compartments are generally unknown, so an estima-
tion procedure is needed. The number of active infections on a given day (e.g., corresponding to compartment
I) is estimated by the number of hospitalized patients with COVID-19 divided by the 1.9% hospitalization rate
of COVID-19%. As of January 5, 2022, the number of confirmed COVID-19 cases in Ontario was approximately
840,000%. However, due to the high re-infection rate of the Omicron variant, previously infected individuals
were still likely to be susceptible. Thus, for simplicity, we only used confirmed case counts in early January to
set initial conditions for the remaining compartments. Specifically, with Omicron having an average recovery
time of five days, we used the case count on January 1 to set the initial size of the recovered compartment. Since
840,000 represents about only 6% of the Ontario population, this modeling choice will only have a small effect
on the total number of remaining susceptible individuals, and thus compartmental model dynamics. Similar
reasoning is used to obtain initial conditions for quarantined, exposed, and pre-symptomatic compartments
(where applicable to the model), based on the infection counts recorded on January 5, January 11 and January
8, respectively.
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Results and discussion

This section presents the results of our comparative study, where the five compartmental models are fitted to
the Ontario COVID-19 data over our investigated period. After calibrating the relevant parameters in each
model to these data as described in the “Methods” section, the numerical solution of each model is computed
from January 6 to June 4, 2022. These model trajectories are compared to the actual daily case counts to assess
their goodness-of-fit to the data. For models that encode fewer vaccination statuses than the stratification rules
for case counts used by the Ontario government, the proportion of sub-populations with different vaccination
statuses will be used to allocate the estimated case counts. This is to ensure that all of the model fits can be fairly
compared to the ground truth provided by the Ontario government. Furthermore, we emphasize that the quality
of fit for a given model will depend not only on the choice of its structure and compartments, but also on the
choice of which of its parameters to calibrate from data and how that calibration is done. For example, we adopted
a number of predetermined parameter values from the original studies for the vaccination-stratified SIR and
SV2(AIR)® models. If their methods were modified to allow some or all of these predetermined parameter values
to instead be calibrated from data, the empirical performance of those models might be improved; however, such
an investigation is beyond the scope of the current study.

Assessing the model fits.  We first present graphical summaries of the model fits, by overlaying the actual
confirmed daily case counts on the fitted model trajectories. To account for the effect of weekends (which are
associated with reduced testing activity), a centered 7-day moving average of the case counts is also shown
to help visualize the case trends over time. The fits are shown according to the six strata definitions used by
the Ontario government for reporting cases in Table 1. The trajectories of the calibrated SIR and SEIRD mod-
els are plotted in Fig. 3, while the trajectories of the vaccination-stratified SIR model and Omicron-calibrated
SV2(AIR)® model are plotted in Fig. 4. Finally, the trajectories of the calibrated vaccination-stratified SEPAIQRD
model fitted by NLS and MCMC are plotted in Fig. 5, with the green bands representing the credible region with
95% probability under the Bayesian posterior.

A corresponding quantitative measure of model performance can be provided by the root mean squared
error (RMSE) between the model-fitted daily confirmed case counts and the actual case counts. We first compute
the RMSEs for each model based on the total daily case counts (regardless of vaccination status) over the entire
investigated period, as shown in Table 3. Then, we compute the RMSEs of the fitted case counts according to
Ontario’s stratification rules: Table 4 shows the results for January 6 to March 10, and Table 5 shows the results
for March 11 to June 4.

The graphical and RMSE summaries indicate that none of the compartmental models can fully capture the
trends in Ontario’s COVID-19 case counts during the investigated period. Of the five models considered, the
proposed vaccination-stratified SEPAIQRD provides the closest fit to the data, both for total and stratified daily
case counts (lowest RMSE in each column of Tables 3, 4, 5), with the Bayesian approach providing a slightly better
fit than NLS. Visually, it is the only model with estimated trajectories that can partially capture the resurgence of
cases in late March, and almost all actual counts lie within the 95% credible bands in Fig. 5.

The simple SIR and SEIRD models provide similar RMSEs, performing relatively well among the models
considered. However, they cannot capture the resurgence of cases that occurs in late March. The limited number
of model parameters only allow them to fit the general downward trend of case counts, and they lack the flex-
ibility to model more complex scenarios, e.g., multiple waves of the epidemic within the investigated period.
The additional compartments ‘E” and ‘D’ introduced in the SEIRD model do not provide the capacity to help in
that regard. While these two models do not explicitly account for different vaccination statuses, simply allocat-
ing the estimated cases according to the proportion of the population in each strata provides reasonable results.

The vaccination-stratified SIR model does not perform well on this dataset, having the largest RMSEs overall
of the models considered. This might be attributed to the stringent assumptions employed by its authors. First,
they encoded assumptions on the efficacy of the vaccine, such that 80% of vaccinated individuals have perma-
nent immunity, while 20% of unvaccinated individuals are assumed to be immune. Second, values of the model
parameters were obtained by authors from existing literature, without proposing a calibration process from real
data. Simply reusing their parameter values does not provide an adequate fit over our investigated period. Thus,
while stratifying by vaccination status could potentially provide more granularity for predictions, the perfor-
mance of the model is hindered by its fixed parameters.

The SV2(AIR)? model incorporates the impact of vaccine efficacy, policy measures, and clinical characteristics
of specific COVID-19 variants. We updated the model parameters according to the characteristics of the Omi-
cron variant, and used the actual values of the Oxford Stringency Index over the investigated period. However,
we were unable to calibrate model trajectories that fit the data well: unvaccinated cases show an increasing rate
of growth from mid-March to the end of our investigated period (Fig. 4), which is opposite to the trend in the
actual data. Furthermore, while we adjusted the vaccine efficacy against the Omicron variant to be only 30%
when fully vaccinated (compared to the authors’ original assumption of 75% for the hypothetical variant), the
model still vastly underestimates the number of vaccinated cases. Only towards the end of the fifth reopening
phase, with the loosest restrictions, do the model trajectories start to show an uptick in vaccinated cases. Thus,
while the SV2(AIR)? model should theoretically have the flexibility to capture complex transmission dynamics, a
more sophisticated method of calibrating its parameters would likely be needed to adapt it to the present setting.

The proposed vaccination-stratified SEPAIQRD model extended an existing SEAPIR model, by incorporat-
ing four vaccination statuses and adding other relevant compartments. We used a mix of parameters from the
existing literature, together with using daily case counts to calibrate a selective set of time-varying parameters
pertaining to asymptomatic infection and case ascertainment rates. For the investigated period, this approach
provided a good balance between modeling flexibility and fixed parameter assumptions, with good empirical
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Figure 3. Trajectories of the calibrated SIR (green lines) and SEIRD (orange lines) models over our investigated
period. Black points plot the actual confirmed daily case counts, and the red dotted lines indicate their centered
7-day moving average. The panels correspond to the six strata definitions used by the Ontario government in
Table 1. The top panels (a-c) correspond to the period from January 6 to March 10, while the bottom panels
(d-f) plot March 11 to June 4.

performance relative to the other models considered. We note that the overall empirical performance of the
model did not depend strongly on the parameter calibration method used. Both the basic NLS method and the
more sophisticated Bayesian approach with MCMC yielded reasonable fits to the data. While MCMC did perform
slightly better, the NLS fit nonetheless lies within the 95% credible bands of the MCMC fit.

Examining the calibrated parameters. Next, we discuss the values of the fixed and calibrated parameter
values in each model. The parameters of the SIR, SEIRD and vaccination-stratified SIR model are presented in
Table 6. First, we find that calibrating parameters for the SIR and SEIRD models on case counts alone cannot
accurately describe the clinical characteristics of COVID-19. In obtaining the parameters that provide the best
fit to the data for the investigated period, these two models tend to underestimate the transmission rate 8 and the
basic reproduction number Ry. Interestingly, although the SEIRD model could not calibrate a reasonable value
for p (as death counts were not used) and its estimated Ry differs significantly from the SIR model, both models
effectively provided the same quality of fit to the data. This suggests that the calibrated parameter values of these
models should be interpreted with caution, and do not necessarily correspond to the actual clinical characteris-
tics of the disease. The low Ry values are a clear artifact of reasonably fitting the overall downward trend in case
counts during the investigated period. Overall, the simplicity of these models is both a strength and a weakness.
In contrast, the vaccination-stratified SIR model used entirely fixed parameters, as shown in the corresponding
row of Table 6. While its fixed R value might more closely reflect the intrinsic spread of COVID-19, real-world
factors during the investigated period violated that assumption.
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Figure 4. Trajectories of the vaccination-stratified SIR model (orange lines) and Omicron-calibrated
SV2(AIR)? model (green lines) over our investigated period. Black points plot the actual confirmed daily case
counts, and the red dotted lines indicate their centered 7-day moving average. The panels correspond to the six
strata definitions used by the Ontario government in Table 1. The top panels (a—c) correspond to the period
from January 6 to March 10, while the bottom panels (d-f) plot March 11 to June 4.

The full list of model parameters in the SV2(AIR)® model is presented in Tables SI and S2 in the Supple-
mentary Information. The parameters we used for the emerging variant were calibrated to values that reflect
our best knowledge of the Omicron variant. These include a higher asymptomatic proportion (60%, vs. 50% for
previous variants), a higher baseline transmission rate (4.5 times that of Delta in the unvaccinated population),
a shorter recovery time (8 days), and setting the actual start date for its spread in Ontario to be November 22,
2021. We also greatly increased Omicron’s transmission rates in the fully vaccinated population to reflect lower
vaccine efficacy: 70% of the baseline unvaccinated rate (compared to the authors’ 12% for Delta). Despite these
calibrations, the model could not adequately describe the data during the investigated period, especially for
the vaccinated population. This indicates that other assumptions used throughout the model may also require
adjustment, such as the parameters related to waning immunity from vaccination.

In the vaccination-stratified SEPAIQRD model, we used both NLS and Bayesian inference with MCMC to
obtain the calibrated parameters (i.e., f;; and CAR;). For the NLS fit, the summary of the calibrated parameters
is provided in Table 7. For the MCMC fit, all four MCMC chains are observed to have converged (Fig. S2 in the
Supplementary Information). A comparison between the prior and posterior probability densities of f;; and
CAR,; for the five phases is plotted in Fig. 6. A corresponding summary table of the posterior mean, 0.025 lower
quantile, and 0.975 upper quantile of the 95% credible bounds for f;;jand CAR; is presented in Table S8 of the
Supplementary Information.

In general, both the NLS and MCMC fits provide similar findings regarding the asymptomatic infection
proportion ( f; ;). The MCMC posterior means and NLS calibrated values consistently indicate that the asymp-
tomatic infection proportion is small among all four vaccination statuses. We might conclude it is highly likely
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Figure 5. Trajectories of the proposed vaccination-stratified SEPAIQRD model over our investigated time
period, as fitted via NLS (orange lines) and via MCMC (green lines). For the MCMC method, the green-shaded
regions represent 95% credible bands of the trajectories. Black points plot the actual confirmed daily case counts,
and the red dotted lines indicate their centered 7-day moving average. The panels correspond to the six strata
definitions used by the Ontario government in Table 1. The top panels (a—c) correspond to the period from
January 6 to March 10, while the bottom panels (d-f) plot March 11 to June 4.

Model RMSE

SIR model 1610.25
Vaccination-stratified SIR model 272840.60
SEIRD model 1613.71
SV2(AIR)® model 3557.78
Vaccination-stratified SEPAIQRD model (MCMC fit) 837.37
Vaccination-stratified SEPAIQRD model (NLS fit) 853.35

Table 3. RMSE:s of the five models for estimating the total daily case counts in Ontario from January 6 to June
4.

that exposed populations become infected with at least mild symptoms, i.e., asymptomatic infection is a low-
probability event according to the model. However, this cannot be fully tested against reality and could be an
artifact of the model setup. While the NLS and MCMC fits align on this general finding, their calibrated f
values (i.e., for the partially vaccinated group) do noticeably differ. This may explain the relatively poorer NLS
fit seen in Fig. 5b.
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RMSE in strata

Model Unvaccinated | Partially vaccinated | Fully vaccinated
SIR model 218.76 108.62 1437.58
Vaccination-stratified SIR model 84109.78 22078.12 311505.7

SEIRD model 218.20 108.99 1430.15
SVZ2(AIR)? model 340.76 193.26 4363.23
Vaccination-stratified SEPAIQRD model (MCMC fit) 110.37 45.41 795.85
Vaccination-stratified SEPAIQRD model (NLS fit) 125.52 145.51 801.11

Table 4. RMSE:s of the five models for estimating the stratified daily case counts in Ontario from January 6 to
March 10.

RMSE in strata
Model Not fully vaccinated Completely vaccinated Fully vaccinated with booster dose
SIR model 189.20 323.36 1116.02
Vaccination-stratified SIR model 283.56 567.14 1458.50
SEIRD model 190.80 327.00 1122.39
SV2(AIR)? model 369.98 567.08 1458.37
Vaccination-stratified SEPAIQRD model (MCMC fit) 85.82 197.60 509.38
Vaccination-stratified SEPAIQRD model (NLS fit) 105.65 212.27 509.36

Table 5. RMSE:s of the five models for estimating the stratified daily case counts in Ontario from March 11 to
June 4.

Parameter
Model B y o " R¢* n® P VE!
SIR 0.0510 0.0736 - - 0.6933¢ - -
SEIRD 0.4426 0.0321 0.9995 0.9995 0.2117° - - -
Vaccination-stratified SIR 437 73 - - 6 0.5 0.8 0.8

Table 6. Summary of parameters in the SIR, SEIRD, and vaccination-stratified SIR models. *Ry is the basic

reproduction number, which governs the rate of disease spread ®Mixing parameter between vaccinated groups

and unvaccinated groups Proportion of population vaccinated Vaccine effectiveness, i.e., proportion of

V%ccingted population that is immune °R in SIR model is calculated byg fR in SEIRD model is calculated by
.20

o+t N
Parameter
Phase (j) | fi,i f2j fj faj CAR;
1 0.0062 |0.0143 |0.1228 | 0.0002 | 0.1563
2 0.0225 |0.0189 |0.2826 |0.0884 | 0.1161
3 0.1383 | 0.0465 | 0.2983 | 0.2099 | 0.1302
4 0.1819 |[0.1977 |0.4289 |0.3729 | 0.1816
5 0.3830 | 0.4157 | 0.5004 |0.0042 |0.3180

Table 7. Summary of parameters in the SEPAIQRD model calibrated via NLS.

The credible intervals of the f;;’s broadly overlap for the MCMC fit, indicating that there is no observable
difference in their posterior distributions across different vaccination statuses. While the corresponding NLS fit
does not directly yield confidence intervals, its calibrated values of the f;;’s likewise do not exhibit clear trends
in relation to vaccination status. Together, this suggests the asymptomatic infection proportion is not directly
associated with vaccination status and the change of reopening phase, even when prior beliefs (blue densities in
Fig. 6) are encoded in the model. Other confounding factors might also significantly influence the asymptomatic
infection proportion. For example, patients with higher-risk medical histories, such as hypertension and chronic
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Figure 6. Comparison of prior and posterior probability densities for the fraction of asymptomatic infection
and case ascertainment rate. Rows correspond to the five reopening phases, and the first four columns
correspond to the four vaccination statuses in the vaccination-stratified SEPAIQRD model: unvaccinated,
partially vaccinated, completely vaccinated, and vaccinated with additional booster.

obstructive pulmonary disease, were given priority for booster doses. Even with a booster dose, this group is
increasingly likely to be infected with symptoms*®. Furthermore, as the Ontario government continued to relax
social restrictions, the overall increase in social interactions could have a more adverse effect on highly suscep-
tible populations. Finally, case ascertainment rates may not be uniform across different vaccination statuses.

The calibrated values of CAR; generally increase when the Ontario government shifts from one phase to
another, which suggests the Ontario government is more efficient at documenting the infections, or a larger
proportion of infected people get tested when daily infections become fewer. This trend in CAR; is seen in both
the MCMC and NLS fits, indicating good agreement overall with our prior beliefs, i.e., these parameters are
associated with the changes in reopening phases. Since Ontario’s testing policies did not change during our
investigated period, a possible reason is that with the very high daily infections in phase one, it might have been
difficult for the Ontario government to handle the testing volume and people were less likely to get tested. At the
same time, the magnitudes of CAR; tend to differ between the NLS and MCMC fits, with NLS yielding smaller
calibrated values. The MCMC fit exploits the information encoded in the priors, which may have led to more
realistic CAR; values and a slightly better fit to the data.

The need for parameter values to change over time, so that the dynamics of COVID-19 resurgences can be
captured (particularly in the spring of 2022), is an important consideration from this analysis. The vaccination-
stratified SEPAIQRD model accommodates such changes through piece-wise constant parameters ( f;jand CAR;),
and is the key feature that contributes to its good empirical performance over the investigated period. Time-
varying parameters introduce additional complexity to a modeling framework; however, SIR or SIR-like models
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will typically require such adjustments to their parameters over time to capture resurgences and fit data over
multiple epidemic waves. Therefore, judiciously incorporating time-varying parameters in the other four models
might likewise enhance their ability to fit the dataset considered in this paper.

Conclusion

It is necessary to collect, analyze and monitor pandemic data to assess strategies of intervention, management,
and control®. This paper aimed to provide insight into the data analysis step, by presenting a comparative study
of five compartmental models and their ability to fit COVID-19 case data in Ontario, Canada from January 2022
to June 2022. In addition to four existing compartmental models, we presented an extension of the SEAPIR model
to help provide a more comprehensive description of the recent COVID-19 dynamics in Ontario. Each model
was found to have its strengths and weaknesses when applied to the investigated period. The SIR and SEIRD
models had relatively few compartments and simple assumptions, which allowed them to fit the overall downward
trend in cases—but not to reflect more complex situations involving multiple epidemic waves, nor necessarily
have calibrated parameter values that reflect actual clinical characteristics of COVID-19. The trajectories of the
vaccination-stratified STR model and the SV?(AIR)> model appeared to be implausible compared to the actual
case counts, despite them being more sophisticated models. Their implausibility and underperformance might
be due to having some fixed parameters borrowed from existing literature that were no longer appropriate.
Due to the real-world complexities underlying the current Ontario data, more data-driven parameters would
be needed to account for situations such as time-varying case ascertainment rates and vaccine efficacy. These
results practically illustrate the potential tradeoffs between applying simple models versus more complex ones.
For the proposed SEPAIQRD model, the results also illustrate some practical differences between parameter
calibration methods: while the basic NLS fit provided a reasonable depiction of the dynamics, the Bayesian
approach with MCMC was more favorable in terms of the fitted daily case counts and the interpretations of
the calibrated parameter values. While more computationally intensive, the overall advantages of the Bayesian
approach include its ability to account for both the observed data and prior beliefs, and to quantify uncertainty
in both the parameters and fitted case counts.

Nonetheless, some factors that likely play a role in COVID-19 transmission dynamics and disease progres-
sion were largely excluded from the models considered, and we briefly discuss a few such factors. First, disease
progression may vary by age group (e.g., the COVID-19 death rate tends to be higher for older groups), and these
differences could be modeled by stratifying over age groups'?. This may involve adding parallel compartments,
with specific parameters governing each age group (or combination of age and vaccination status, for models that
also stratify by vaccination status). The disease transmission matrix would also need to be expanded to account
for interactions between all the strata under consideration. Second, waning immunity and the possibility of re-
infection were only handled in a simplified way (via assumed parameter values for the SV2(AIR)® model, and
via priors for our SEPAIQRD model) or not at all (for the SIR, vaccination-stratified SIR, and SEIRD models). In
general, this could be modeled by adding flows for vaccinated or recovered individuals to return to the susceptible
(S) state, as suggested in the SV2(AIR)? model. Overall, the inclusion of these factors would introduce additional
complexities to the models, along with parameters that may be difficult to calibrate plausibly from available data.

Several other limitations also exist in our work. On one hand, all model estimates are symptomatic infections.
Although the assumption that Public Health Ontario only documents the number of symptomatic infections
might be reasonable, asymptomatic infection is still worth consideration. At worst, the “infected” here is some
combination of both symptomatic and asymptomatic infections, with the symptomatic very likely being the larger
component. Had the infected been separated out in the data into symptomatic and asymptomatic components,
this could have been incorporated into the model (though likely the asymptomatic would be under-represented
in the data). Second, as with any statistical model, the predictive capacity has not (as yet) been tested on future
case counts. It could very well perform poorly on future counts, especially should the dynamics of disease trans-
mission and health policy change. What is clear from this study, is that the demonstrable failures and inherent
limitations of compartmental models suggest that they should not be relied on too heavily by decision-makers
in forming public health policy on COVID-19. At the same time, we may recognize that this study, along with
others that focus on compartmental models, can help provide insight into the mechanisms behind the spread of
COVID-19. In particular, as models are designed to approximate reality, modeling is useful for identifying the
most relevant aspects of the mechanisms that are necessary to explain the observed data. When our proposed
model is compared to the others considered in this study, we find that time-varying parameters are crucial for
fitting the data well, even though it is challenging to calibrate such parameters in real-time as the pandemic
evolves; in contrast, stratification by vaccination status has only a limited impact on our ability to fit the data.

There are several extensions of our current work that can be considered for further studies. The literature
on compartmental modeling for COVID-19 transmission dynamics is vast. Additional models, including time
series models (e.g., ARIMA and SARIMA) might be considered and compared with those considered in this
study. Data from other time periods or jurisdictions could also be investigated. Finally, while Bayesian parameter
calibration via MCMC methods is effective for obtaining credible bounds for parameters and estimated case
counts, it comes with a relatively large computational cost. Faster computational methods for Bayesian inference
would be useful for larger studies involving compartmental models.

Data availability

The computer code produced in this study for the proposed vaccination-stratified SEPAIQRD model is available
in https://github.com/YuxuanZhaol/Code-for-Vaccination-stratified-SEPAIQRD-model. The datasets analysed
during the current study are available in the Public Health Ontario repository, https://data.ontario.ca/en/datas
et/covid-19-vaccine-data-in-ontario/.
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