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The number of confirmed COVID-19 cases reached over 1.3 million in Ontario, Canada by June 4, 2022. 
The continued spread of the virus underlying COVID-19 has been spurred by the emergence of variants 
since the initial outbreak in December, 2019. Much attention has thus been devoted to tracking 
and modelling the transmission of COVID-19. Compartmental models are commonly used to mimic 
epidemic transmission mechanisms and are easy to understand. Their performance in real-world 
settings, however, needs to be more thoroughly assessed. In this comparative study, we examine five 
compartmental models—four existing ones and an extended model that we propose—and analyze 
their ability to describe COVID-19 transmission in Ontario from January 2022 to June 2022.

Humans have faced severe infectious diseases throughout history, some of which have been classified as world-
wide pandemics1, including the Spanish flu in 1917 and Hong Kong flu (H3N2) in 1968. The most recent example 
is the spread of the coronavirus disease 2019 (COVID-19). COVID-19 is the infectious disease caused by the 
novel coronavirus of severe acute respiratory syndrome (SARS-CoV-2), and the first case was detected in the 
Wholesale Seafood Market in Wuhan City, Hubei province, China, on December 3, 20192. The disease then 
spread all over the world, such that in February 2020 the World Health Organization (WHO) declared COVID-
19 to be a worldwide pandemic. In a variety of ways, COVID-19 and its associated public health policies have 
had serious impacts on human physical and mental health since then, in many regions of the world. Up to June 
2022, the cumulative confirmed cases of COVID-19 worldwide reached 530 million, and continue to increase 
rapidly due to the spread of variants.

Mutations in the virus underlying COVID-19 have led to a number of variants of concern, including Alpha 
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)3. Omicron was the most 
recently detected variant in Ontario, Canada, first identified in a traveller by the Public Health Ontario labora-
tory on November 22, 20214. As of January 20, 2022, Omicron (and its subvariants) has become dominant and 
represents the majority of infections in Ontario.

Mathematical models are widely used to describe the evolution of epidemics. In particular, compartmental 
models are one of the most popular classes of models in epidemiology to mimic the transmission dynamics. 
They have played an instrumental role in tracking epidemiological trends, generating predictions, and informing 
decisions of policy-makers. For example, in May 2020 the British Columbia government released a management 
strategy for COVID-19 that heavily relied on the results of a fitted dynamic compartmental model5. Their model 
predicted the number of people who would require critical care under different levels of social contacts, which 
in turn informed the level of lockdown restrictions implemented by the government to protect the health system 
from being overwhelmed.

Compartmental models divide the total population into a number of different compartments; then the flow 
of the population through these compartments is usually modelled via a system of differential equations. Names 
of compartment models are usually given in acronym form, by abbreviating the first letter of each compartment 
and arranging the letters according to how the population tends to flow through the different compartments6. 
The earliest and simplest compartmental model was the SIR model7. The SIR model consists of three compart-
ments that divide the total population into susceptible (S), infected (I) and recovered (R) individuals, along with 
a system of three differential equations which describes the flow rate in and out of each compartment. Since then, 
researchers have devoted much attention towards developing extensions to the basic SIR model.
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The choice of compartments, flow directions, and parameters included in these models depends mainly on 
the characteristics of the disease. We briefly overview the variety of compartmental models that have been used 
to describe the transmission of COVID-19. Starting from the SIR model8, the SEIR9, SEIRD10, and SMEIHRDV11 
are examples of models that divide the overall population into finer compartments. Other compartmental mod-
els stratify the population into different groups to describe the transmission dynamics of COVID-19 in a more 
targeted way: e.g., stratification by age groups, such as the young, adults and seniors12; profession stratification, 
such as healthcare workers and others13; gender stratification14. Some researchers combine these two approaches 
by setting up compartments within strata. A SEAPIR model15, which was used to model Omicron cases in Brit-
ish Columbia16, stratified the susceptible population by vaccination status, i.e., vaccinated and unvaccinated. 
Moreover, it added an asymptomatic infection compartment to account for the high asymptomatic carriage 
rate of the Omicron variant17. Finally, a SV2(AIR)3 model18 not only considered asymptomatic infections and 
vaccination status, but also added the impact of policy measures and competition between different variants.

For illustration, this paper also develops our proposed extension to the SEAPIR model. As in the SEAPIR 
model, we stratify the population by vaccination status and include compartments for asymptomatic (A) and 
pre-symptomatic (P) infections. We incorporate a time-dependent function that aggregates the policy measures 
that the government has imposed to reduce COVID-19 transmission. In addition, we introduce a new compart-
ment (Q) for individuals in self-isolation, and consider the interaction between groups with different vaccination 
statuses in the disease transmission stage.

With the plethora of models available, the choice of a suitable one to describe epidemic transmission is there-
fore an important consideration. Simple models (e.g., SIR) rely on few parameters and assumptions, and thus 
tend to provide an oversimplified representation of reality. In contrast, a complex model will often have been 
designed to provide a more comprehensive description of transmission dynamics and population behaviour. 
However, a complex model requires a larger number of unknown parameters, which can significantly impact its 
performance. Unknown parameters either need to be calibrated or have their values assumed—the former can 
increase the variance and uncertainty of the model predictions, while the latter can introduce significant bias.

Conventional methods for parameter calibration, such as non-linear least squares (NLS) and maximum likeli-
hood, may fail to adequately capture the uncertainties of the calibrated parameters. Their calibration results are 
largely dependent on the stability of the known parameters, such as recovery rate and disease incubation rate, 
which are often borrowed from the existing literature. Moreover, for the NLS method, the global optimum can be 
difficult to find when the parameter space is large, which may result in misleading inferences. Therefore, besides 
using NLS for our proposed model, we also adopt a Bayesian approach to inference and apply Markov Chain 
Monte Carlo (MCMC) methods for parameter calibration. A Bayesian framework allows us to incorporate prior 
information and coherently accounts for the uncertainty of the parameters via their posterior distributions; e.g., 
parameters that are not well-calibrated from data will tend to have wide credible intervals.

As a specific case study, this paper focuses on modeling confirmed COVID-19 infections in Ontario from 
January 2022 to June 2022. This task is potentially more challenging with Omicron’s prevalence, compared to 
the original wild-type strain. First, there are the effects of vaccination. As COVID-19 vaccines have become 
widely available in Ontario, most of the population of Ontario has taken a complete dose of vaccination (i.e., 
fully vaccinated with one or two doses of a Health Canada authorized COVID-19 vaccine), and furthermore, 
some have also taken a booster dose (i.e., fully vaccinated plus one additional booster dose). However, indi-
viduals who are vaccinated or have recovered from COVID-19 in the past are still likely to be infected: vaccine 
effectiveness against the Omicron variant exhibits a continuous and consistent decrease after injection, and 
vaccination provides more limited protection against symptomatic disease caused by the Omicron variant19. As 
a result, national re-infection associated with Omicron emergence was observed in South Africa20, the United 
States21, and Canada22. Second, the limited availability of COVID-19 testing in Ontario, especially as case loads 
increased due to Omicron’s highly transmissible nature, hinders estimation of true infection and re-infection 
rates. Third, Omicron is thought to have higher rates of asymptomatic infection17, and thus detection is more 
elusive. Fourth, Ontario moved through a series of reopening phases during this period23, which has impacts 
on the social behavior of the population.

To the best of our knowledge, few studies have investigated whether simple models perform worse or better 
than complex models for describing the recent transmission dynamics of COVID-19 in Ontario. Therefore, a 
comparative study between models can help address this research question. This paper considers five different 
models: SIR8, vaccination-stratified SIR24, SEIRD25, SV2(AIR)318 and our SEAPIR-extended model. We calibrate 
their adjustable parameters according to their proposed methods and evaluate their fits to Ontario’s confirmed 
daily case counts. By examining their performance in this real-world setting, we gain insight into the relative 
strengths and shortcomings of compartmental models that range from simple to complex.

Methods
Data description.  The COVID-19 data used in this paper are obtained from Public Health Ontario. We 
investigate the daily confirmed COVID-19 cases from January 6 to June 4, 2022, which spans five reopening 
phases as determined by the Ontario government23. The first phase is from January 6 to January 30, when the 
province returned to a modified Step 2 of the reopening plan26 with restrictions on social activities. The second 
phase is from January 31 to February 16, when the Ontario government began the process of gradually easing 
restrictions while maintaining protective measures27. The third phase is from February 17 to February 28, when 
the Ontario government further eased public health measures23. The fourth phase is from March 1 to March 20, 
when the proof of vaccination requirement was lifted for all settings27. The data ends with a portion of the fifth 
phase from March 21 to June 4, which corresponds to the time when the Ontario government scrapped most 
mask mandates28. Daily vaccination counts were also available for this investigated time period.
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As the Ontario government moved from one reopening phase to the next, the restrictions on indoor and 
outdoor public activities were relaxed, which led to out-of-home mobility increasing over this time period. These 
phase-to-phase changes in restrictions may be quantified via the ‘Oxford Stringency Index’ (denoted by �(t) ), 
which is an aggregate value (ranging from 0 to 100% ) that quantifies the “overall impact of policy measures on 
workplace closures, school closures, travel bans, and vaccination requirements”29.

The daily COVID-19 cases stratified by vaccination status shown in Fig. 1 provide a more detailed look at 
the data30. We note that the Ontario government changed its stratification rules for reporting cases during the 
investigated time period. From January 6 to March 10 (before the dashed line in Fig. 1), the Ontario govern-
ment used three strata for reporting infections: unvaccinated, partially vaccinated, and fully vaccinated (which 
includes infections among both those with a completed primary series and those with an additional booster 
dose). From March 11 to June 4 (after the dashed line in Fig. 1), the Ontario government changed the composi-
tions of the three strata it used for reporting infections: not fully vaccinated (which included partially vaccinated 
and unvaccinated), completely vaccinated, and vaccinated with booster dose. Table 1 shows these two different 
stratification rules in detail.

Model descriptions.  In this section, the SIR8, vaccination-stratified SIR24, SEIRD25, SV2(AIR)318, and a new 
model that we call vaccination-stratified SEPAIQRD, are introduced.
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Figure 1.   Daily confirmed COVID-19 cases in Ontario. The total infections are stratified by unvaccinated, 
partially vaccinated and fully vaccinated infection in Ontario from January 6 to March 10 (before the dashed 
line). From March 11 to June 4 (after the dashed line), the total infections are stratified by not fully vaccinated, 
completely vaccinated, and vaccinated with booster dose.

Table 1.   Strata definitions used by Ontario government for reporting daily confirmed COVID-19 case counts, 
from January 2022 to June 2022.

Date range Stratum name Not vaccinated
One dose of two-dose primary 
series Completed primary series

Primary series with additional 
booster dose

January 6 to March 10

Unvaccinated �

Partially vaccinated �

Fully vaccinated � �

March 11 to June 4

Not fully vaccinated � �

Completely vaccinated �

Vaccinated with booster dose �
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SIR model.  Among others, Cooper et al.8 used the basic SIR model to track the spread of COVID-19. The total 
population size, N, is represented as N = S(t)+ I(t)+ R(t) , where S(t), I(t), and R(t) respectively denote the 
number of susceptible, infected, and recovered individuals at time t. The SIR model is governed by the system of 
differential equations in Eq. (1):

where γ and β are the two parameters to be calibrated. The parameter β , as seen in the first two equations, governs 
the rate at which individuals move from the S to the I compartment; it is called the disease transmission rate, 
representing the average number of susceptible individuals in the S compartment that a contagious individual in 
the I compartment infects in a day. The parameter γ , as seen in the last two equations, governs the rate at which 
individuals move from the I to the R compartment; it is called the removal rate, representing the probability per 
day that an I-individual transits to R (which can encompass both recovered and deceased individuals). Thus, the 
average duration of infection under this model is 1/γ . Note that the last equation implies that R is an absorbing 
state, since individuals can no longer leave once they enter this compartment (e.g., reinfections are not possible 
in this model). The unknown parameters β and γ can be calibrated by minimizing the sum of squared errors 
(SSE) between the model-fitted daily case counts and actual case counts.

Vaccination‑stratified SIR model.  Fisman et al.24 proposed a modified SIR model by stratifying the population 
into vaccinated and unvaccinated groups. They also considered the impact of interaction (or mixing) between 
the vaccinated and unvaccinated sub-populations on COVID-19 transmission, by introducing the parameters fij 
for the fraction of contacts among individuals in the i-th group [i.e., vaccinated or unvaccinated, denoted respec-
tively by V and U in Eq. (2)] with those in the j-th group. Immunity from vaccination (when effective) is assumed 
to be permanent. The parameters γ and β have the same interpretation as in the basic SIR model.

The system of differential equations governing this model is shown in Eq. (2):

where Ni = Si(t)+ Ii(t)+ Ri(t) is the subpopulation size of the i-th group.
The authors mainly obtained their parameters from other literature and numerically solved the differential 

equations with predetermined initial conditions. Their modeling approach does not involve parameter calibra-
tion from data, and for simplicity their chosen parameter values are also adopted in our implementation of the 
model. In principle, a procedure for better fitting the model to data could be developed, to handle situations 
where their original assumptions do not hold.

SEIRD model.  Melo25 proposed an SEIRD model to provide a fuller description of COVID-19 progression, 
which divides the population into finer compartments. Susceptible individuals S first move to the exposed com-
partment E with disease transmission rate β , rather than directly moving to I. After the disease incubation 
period (an average of 1/γ days), exposed individuals will transit into the I compartment. Infected individuals will 
then either move to the recovered R compartment (with a rate of µ ) or the dead D compartment (with a rate of 
ρ ). Their governing system of differential equations is shown in Eq. (3):

As in the SIR model, the unknown parameters β , γ , ρ,µ can be calibrated by minimizing the SSE between the 
model-fitted daily confirmed case counts and the actual ones.

SV
2(AIR)3 model.  Layton and Sadria18 introduced the SV2(AIR)3 model to provide a more comprehen-

sive description of COVID-19 epidemic progression in Ontario. The authors included additional parameters 
that measured the impact of waning immunity, vaccine effectiveness, and policy measures that restrict public 
activities. The quantitative values of measuring the policy strictness are equivalent to the previously introduced 
Oxford Stringency Index. The compartmental setup considered two vaccine types (hence V2 ), asymptomatic 
infections (A), and competition among the three main variant types as of Fall 2021, i.e., wild, Alpha, and Delta. 
The authors also modeled the potential spread of a hypothetical new-emerging variant.

The model parameters that describe the clinical characteristics of the COVID-19 variants are obtained from 
published studies. Other parameters related to the demographics and social behaviours of the Ontario popula-
tion are obtained from published provincial statistics. In total, the model has 69 parameters. To calibrate the 
model, we update nine parameters pertaining to their new-emerging variant to mimic the characteristics of the 
actual Omicron variant, including higher values for Omicron’s transmission rate and fraction of asymptomatic 
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infection. We also use the actual values of the Oxford Stringency Index during our investigated period, which 
serve as scaling factors in the model. Tables S1 and S2 in the Supplementary Information respectively show the 
model parameters with respect to wild-type, Alpha-type, Delta-type, and our updated Omicron-type variants.

Vaccination‑stratified SEPAIQRD model.  We introduce an extension of the SEAPIR model to describe the 
dynamic mechanisms of COVID-19 transmission in Ontario over the investigated period, which we call the 
vaccination-stratified SEPAIQRD model. A summary of its key features is as follows: more compartments are 
added to reflect the situation in Ontario; the population is stratified by the four vaccination statuses as defined 
by Ontario; migration between susceptible compartments of the different vaccination statuses occurs, according 
to the daily reported vaccination counts; time-varying parameters describe testing efficacy and asymptomatic 
infections.

The COVID-19 data released by Public Health Ontario of confirmed COVID-19 cases are split into three 
strata up to and including March 10, as presented in the Data Description section. During this period, the ‘fully 
vaccinated’ infections counted both completely vaccinated and vaccinated with booster dose infections. For sim-
plicity, we further split these ‘fully vaccinated’ infections according to the daily-updated proportion of completely 
vaccinated and vaccinated with booster dose populations in Ontario. After March 10, we further split the ‘not 
fully vaccinated’ infections according to the daily-updated proportion of unvaccinated population and partially 
vaccinated population in Ontario. Figure S1 in the Supplementary Information plots the case counts stratified 
by the four vaccination statuses after this processing step. In the following description, the subscript index i for 
i = 1, 2, 3, 4 will respectively denote the unvaccinated, partially vaccinated, completely vaccinated, and vaccinated 
with booster dose populations. We let Ni denote the size for each of these populations. The flow of susceptible 
individuals with these four vaccination statuses will be tracked in the model using parallel compartments.

Susceptible individuals (in the ‘ Si ’ compartment) can move to the exposed compartment (denoted as ‘ Ei ’) 
when in contact with contagious individuals. We let βk,ij denote the transmission rate from the contagious 
compartment k in the i-th group to the susceptible individuals in the j-th group. The construction of the disease 
transmission matrix that governs such interactions follows a previous approach12 and is described in Section B.2 
of the Supplementary Information, with Table S3 showing the contact matrix given different vaccination sta-
tuses. Tables S4 and S5 in the Supplementary Information show the transmission matrix of different contagious 
compartments. These disease transmission rates will be scaled multiplicatively by 1− �(t) , which quantifies the 
impact of policy measures via the Oxford Stringency Index.

After exposure, asymptomatic individuals are assumed to follow the flow Ei → Ai (asymptomatic) → RAi 
(recovered asymptomatic). Those with mild to severe symptoms follow the flow Ei → Pi (pre-symptomatic); 
then after the disease incubation period, they either recover without testing ( Pi → R′

i , e.g., mild symptoms) or 
are documented by the Ontario government as confirmed cases ( Pi → Ii , e.g., more serious symptoms). Finally, 
individuals with confirmed cases follow one of three flows: Ii → Di (death); Ii → Qi (quarantined) → Ri for 
those who self-isolate and then recover; Ii → Ri for those who recover without self-isolation. These compart-
ments and flows are all illustrated in the overall schematic of the model in Fig. 2.

The flows in Fig. 2 are governed by a number of fixed and time-varying parameters. The fixed κ parameters12,16 
are various transition rates; e.g., κE governs the Ei → Pi transition rate, with the interpretation that an individual 
spends an average of 1/κE days in the Ei compartment. The death rate is αi , whose value depends on vaccination 
status31. The fixed ǫ parameter is the proportion of infected individuals who comply with self-isolation after 
testing positive. Table S6 in the Supplementary Information lists the values of these fixed parameters. Next, the 
time-varying parameter fi(t) is interpreted as the probability of asymptomatic infection; it is treated as unknown 
and will be calibrated from data for each vaccination status and reopening phase. Finally, the time-varying 
‘case ascertainment rate’, denoted as CAR​(t), is interpreted as the proportion of symptomatic infections that are 
documented by the Ontario government as confirmed cases; it is also treated as unknown and will be calibrated 
from data for each reopening phase. Note that T ′

i  and Ti in Fig. 2 are intermediate compartments set up so that 
the parameters CAR​(t), fi(t) , and ǫ can be interpreted as the proportion of flux-out from the preceding compart-
ment. Table 2 summarizes all of the model parameters and their corresponding definitions.

The final element of the model is the flow of people who migrate between vaccination statuses during the 
investigated period. We let V1 , V2 , and V3 respectively denote the number of individuals taking first, second, 
and booster vaccine doses, represented as daily counts reported by the Ontario government. These daily counts 
of individuals who get vaccinated govern the flows S1 → S2 , S2 → S3 , and S3 → S4 , as indicated in Fig. 2. The 
corresponding population sizes Ni are also updated daily based on these counts.

The overall model incorporates certain assumptions, which we now state explicitly. We assume that the cases 
reported by Public Health Ontario units are symptomatic cases. We expect this assumption to be reasonable, since 
the Ontario government decided to “limit eligibility for publicly funded PCR tests to high-risk individuals who 
are symptomatic beginning from December 31 (2021)”32. This policy was maintained throughout the investigated 
time period. We assume that asymptomatic and mild cases are not tested and therefore do not self-isolate. We 
assume that the rate at which Ontario government documents confirmed cases and asymptomatic infection rate 
are constant within one phase, and allowed to change between phases. Moreover, the model allows the asympto-
matic infection rate to differ by vaccination status and by reopening phase, which will be calibrated from data.

The full system of differential equations, that corresponds to Fig. 5 and incorporates the above considerations, 
is provided in Section B.4 of the Supplementary Information.

Parameter calibration for vaccination‑stratified SEPAIQRD model.  Our model has two sets of 
unknown phase-dependent parameters that need to be calibrated based on data, namely fi(t) and CAR​(t). Given 
initial conditions for each compartment and a set of values for the phase-dependent fi(t) and CAR​(t), running the 
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numerical ODE solver produces deterministic trajectories of each compartment. Using the hat symbol to denote 
the numerical solution, the number of new daily confirmed cases in the i-th vaccination status on the t-th day 
can be expressed as �Îi(t) := Îi(t)+ R̂i(t)+ D̂i(t)+ Q̂i(t)− (Îi(t − 1)+ R̂i(t − 1)+ D̂i(t − 1)+ Q̂i(t − 1)) . 
We denote the actual daily confirmed case counts on the t-th day as �Ii(t).

To fit the model using a basic method that is similar to the other models considered, we may calibrate the 
values of fi(t) and CAR​(t) by minimizing the SSE between �Îi(t) and �Ii(t) , where fi(t) and CAR​(t) may vary 
by reopening phase. Thus equivalently, we may denote the parameters to calibrate as fi,j and CARj , for vaccina-
tion status i ∈ {1, 2, 3, 4} and reopening phase j ∈ {1, 2, 3, 4, 5} . We refer to this method as the NLS model fit in 
the subsequent results.

It can be advantageous to take a Bayesian approach to inference and apply MCMC methods for parameter 
calibration, and this is the main method we consider for fitting our model. Briefly, the key idea of Bayesian infer-
ence is to incorporate prior information or beliefs concerning the unknown parameters with the likelihood of the 
observed data, to generate a posterior distribution for the unknown parameters. Mathematically, for parameters 
θ and data y, along with the prior distribution π(θ) and the likelihood function P(y|θ) , by Bayes’s Theorem, the 
posterior distribution P(θ |y) (up to a multiplicative constant) is given by

When closed-form analysis of the posterior distribution is not possible, MCMC methods are often used to gen-
erate samples from P(θ |y) . To facilitate MCMC sampling, we convert CAR​(t) and fi(t) from their [0, 1] scale to 
the real numbers via a logit transformation. We let CAR​(t) and fi(t) on the logit scale be denoted as L (CAR(t)) 
and L (fi(t)) , where L (x) = log( x

1−x ).
Here, the likelihood provides the probabilistic link between the ODE solution �Îi(t) and the observed data 

�Ii(t) . A model for the daily case counts is therefore needed; the Poisson and negative binomial are common 
probability distributions used to model count data38. As the variance in daily case counts tends to exceed the 
mean (i.e., overdispersion)39,40, we adopt a negative binomial model for the likelihood as shown in Eq. (5):

where φi(t) is the phase-dependent parameter that accounts for overdispersion in the i-th group, i.e., conditional 
on the ODE solution, we assume independence of the negative binomial across different days40.

(4)P(θ |y) ∝ P(y|θ)π(θ).

(5)�Ii(t)|L (fi(t)),L (CAR(t)),φi(t) ∼ NegBin(�Îi(t),φi(t)),

Table 2.   Definitions of model parameters in vaccination-stratified SEPAIQRD model.

Symbol Definition Reference

βk,ij
Transmission rate from contagious compartment k in i-th group to susceptible in j-th 
group

12

�(t) Oxford Stringency Index 29

fi(t) Phase-dependent asymptomatic infection rate of i-th vaccination group Calibrated from data

κE Transition rate from being exposed to being pre-symptomatically infected 33,34

κA Recovery rate from being asymptomatically infected 35

CAR​(t) Phase-dependent case ascertainment rate Calibrated from data

κP Transition rate from being pre-symptomatically infected to being infected with symptoms 33

κP→R′ Recovery rate directly from being pre-symptomatically infected 35

αi Death rate of i-th vaccination group 31

ǫ Proportion of compliance with isolation 36

κI→R Recovery rate from being symptomatically infected 37

κI→Q Isolation delay 12

Figure 2.   Schematic diagram of vaccination-stratified SEPAIQRD model in the i-th vaccination group. The 
arrows indicating flux in and flux out of the Si compartment will depend on vaccination status: there is no Vi−1 
for the unvaccinated group and no Vi for the vaccinated with booster group.
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To complete the Bayesian model, prior distributions need to be specified for the unknown phase-depend-
ent parameters L (fi(t)) , L (CAR(t)) , and the overdispersion parameter φi(t) . These are chosen to be weakly 
informative: we use them to encode some a priori beliefs and knowledge, while letting the data likelihood be 
the main contributor to the posterior. First, we believe a priori that vaccinated individuals are more likely to be 
asymptomatically infected, as it is commonly accepted that mild or severe COVID-19 symptoms are reduced by 
vaccinations and boosters41. Second, the immunity conferred by vaccination wanes over time, especially against 
Omicron19; with most booster doses in Ontario being administered in early 2022, their overall effect is expected 
to wane over the investigated period. These considerations are encoded by ordering the prior means for L (fi(t)) 
according to vaccination status and phase. Third, the daily case counts are highest in January and decrease over 
our investigated period, and the Ontario government may more readily document cases when daily infections 
are lower. Thus, the prior means for L (CAR(t)) are set to increase with reopening phase. Due to our uncertain-
ties about these unknown parameters, a relatively large standard deviation of the priors is chosen, so that the 
posterior distributions will be primarily informed by the data. The full list of priors is shown in Table S7 in the 
Supplementary Information for L (fi,j) , L (CARj) , and (φi,j)−1 , for vaccination status i ∈ {1, 2, 3, 4} and reopen-
ing phase j ∈ {1, 2, 3, 4, 5} . As seen in Fig. 6, the prior densities (blue) chosen are relatively flat, indicating they 
encode some knowledge without strongly contributing to the posterior.

Multiplying the likelihood and prior (Eq. 4) yields the posterior distribution of the unknown parameters 
CARj ,φi,j , fi,j in Eq. (6):

where CAR,φ, f , and �I  are the concatenated vector forms of CARj ,φi,j , fi,j , and �Ii(t) , with 
i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3, 4, 5}.

To obtain samples from the posterior distribution of the parameters, we use Stan 2.21.542 and R 4.1.1, running 
2000 MCMC iterations and four chains. Let �I be the concatenated vector form of the daily case counts �Ii(t) , 
and �̂Ipred the corresponding model estimates. The posterior distribution of �̂Ipred is then approximated using 
the MCMC samples via Eq. (7):

where θ = (L (CAR), (φ)−1,L (f )) and θ(1), . . . , θ(K) are the MCMC samples of θ . We treat the posterior mean 
as the model-fitted daily case counts. Further, credible intervals can be easily obtained in the Bayesian framework, 
e.g., we take the 0.025 and 0.975 quantiles of the posterior distribution for �̂Ipred (based on the MCMC samples) 
to form 95% credible intervals. We refer to this Bayesian approach as the MCMC model fit in the subsequent 
results.

We note that our investigated period is divided into several reopening phases. When the Ontario government 
moved from one reopening phase to another, the Oxford Stringency Index will immediately reflect the change, 
whereas the actual social behaviour in response to the change is likely to be more gradual. Jump discontinuities 
from the piece-wise function �(t) and the phase-dependent parameters ( CARj and fi,j ) would lead to correspond-
ing jumps in estimated case counts. Locally weighted linear regression (LOESS)43 is a nonparametric technique 
that is useful for estimating a smoothed curve, e.g., in volatile time series data. This technique has been used to 
smooth SIR model predictions on the total number of deaths, in the presence of a time-varying case ascertain-
ment rate44. Here, we also apply LOESS with automatic bandwidth and span selection to our fitted daily case 
counts (for both NLS and MCMC fits) and credible boundaries (for the MCMC fit). Another technique could be 
to use a smooth linear function to interpolate �(t) over a 1-week period after the start of a new phase40; however, 
it is less applicable here due to the presence of other phase-dependent parameters ( CARj , fi,j).

Initial conditions for the models.  The total population size is a key input to each of the compartmental 
models described. We set N = 14,051,980, according to the total population in Ontario as recorded in the Cana-
dian census45. The true initial conditions for the different compartments are generally unknown, so an estima-
tion procedure is needed. The number of active infections on a given day (e.g., corresponding to compartment 
I) is estimated by the number of hospitalized patients with COVID-19 divided by the 1.9% hospitalization rate 
of COVID-1946. As of January 5, 2022, the number of confirmed COVID-19 cases in Ontario was approximately 
840,00047. However, due to the high re-infection rate of the Omicron variant, previously infected individuals 
were still likely to be susceptible. Thus, for simplicity, we only used confirmed case counts in early January to 
set initial conditions for the remaining compartments. Specifically, with Omicron having an average recovery 
time of five days, we used the case count on January 1 to set the initial size of the recovered compartment. Since 
840,000 represents about only 6% of the Ontario population, this modeling choice will only have a small effect 
on the total number of remaining susceptible individuals, and thus compartmental model dynamics. Similar 
reasoning is used to obtain initial conditions for quarantined, exposed, and pre-symptomatic compartments 
(where applicable to the model), based on the infection counts recorded on January 5, January 11 and January 
8, respectively.

(6)
P(L (CAR), (φ)−1,L (f )|�I) ∝

150∏

t=1

4∏

i=1

5∏

j=1

P(�Ii(t)|L (CARj), (φi,j)
−1,L (fi,j))

· π((φi,j)
−1) · π(L (CARj)) · π(L (fi,j)),

(7)P(�̂Ipred |�I) =

∫
P(�̂Ipred |θ)P(θ |�I)dθ ≈

1

K

K∑

k=1

P(�̂Ipred|θ(k)),
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Results and discussion
This section presents the results of our comparative study, where the five compartmental models are fitted to 
the Ontario COVID-19 data over our investigated period. After calibrating the relevant parameters in each 
model to these data as described in the “Methods” section, the numerical solution of each model is computed 
from January 6 to June 4, 2022. These model trajectories are compared to the actual daily case counts to assess 
their goodness-of-fit to the data. For models that encode fewer vaccination statuses than the stratification rules 
for case counts used by the Ontario government, the proportion of sub-populations with different vaccination 
statuses will be used to allocate the estimated case counts. This is to ensure that all of the model fits can be fairly 
compared to the ground truth provided by the Ontario government. Furthermore, we emphasize that the quality 
of fit for a given model will depend not only on the choice of its structure and compartments, but also on the 
choice of which of its parameters to calibrate from data and how that calibration is done. For example, we adopted 
a number of predetermined parameter values from the original studies for the vaccination-stratified SIR and 
SV2(AIR)3 models. If their methods were modified to allow some or all of these predetermined parameter values 
to instead be calibrated from data, the empirical performance of those models might be improved; however, such 
an investigation is beyond the scope of the current study.

Assessing the model fits.  We first present graphical summaries of the model fits, by overlaying the actual 
confirmed daily case counts on the fitted model trajectories. To account for the effect of weekends (which are 
associated with reduced testing activity), a centered 7-day moving average of the case counts is also shown 
to help visualize the case trends over time. The fits are shown according to the six strata definitions used by 
the Ontario government for reporting cases in Table 1. The trajectories of the calibrated SIR and SEIRD mod-
els are plotted in Fig. 3, while the trajectories of the vaccination-stratified SIR model and Omicron-calibrated 
SV2(AIR)3 model are plotted in Fig. 4. Finally, the trajectories of the calibrated vaccination-stratified SEPAIQRD 
model fitted by NLS and MCMC are plotted in Fig. 5, with the green bands representing the credible region with 
95% probability under the Bayesian posterior.

A corresponding quantitative measure of model performance can be provided by the root mean squared 
error (RMSE) between the model-fitted daily confirmed case counts and the actual case counts. We first compute 
the RMSEs for each model based on the total daily case counts (regardless of vaccination status) over the entire 
investigated period, as shown in Table 3. Then, we compute the RMSEs of the fitted case counts according to 
Ontario’s stratification rules: Table 4 shows the results for January 6 to March 10, and Table 5 shows the results 
for March 11 to June 4.

The graphical and RMSE summaries indicate that none of the compartmental models can fully capture the 
trends in Ontario’s COVID-19 case counts during the investigated period. Of the five models considered, the 
proposed vaccination-stratified SEPAIQRD provides the closest fit to the data, both for total and stratified daily 
case counts (lowest RMSE in each column of Tables 3, 4, 5), with the Bayesian approach providing a slightly better 
fit than NLS. Visually, it is the only model with estimated trajectories that can partially capture the resurgence of 
cases in late March, and almost all actual counts lie within the 95% credible bands in Fig. 5.

The simple SIR and SEIRD models provide similar RMSEs, performing relatively well among the models 
considered. However, they cannot capture the resurgence of cases that occurs in late March. The limited number 
of model parameters only allow them to fit the general downward trend of case counts, and they lack the flex-
ibility to model more complex scenarios, e.g., multiple waves of the epidemic within the investigated period. 
The additional compartments ‘E’ and ‘D’ introduced in the SEIRD model do not provide the capacity to help in 
that regard. While these two models do not explicitly account for different vaccination statuses, simply allocat-
ing the estimated cases according to the proportion of the population in each strata provides reasonable results.

The vaccination-stratified SIR model does not perform well on this dataset, having the largest RMSEs overall 
of the models considered. This might be attributed to the stringent assumptions employed by its authors. First, 
they encoded assumptions on the efficacy of the vaccine, such that 80% of vaccinated individuals have perma-
nent immunity, while 20% of unvaccinated individuals are assumed to be immune. Second, values of the model 
parameters were obtained by authors from existing literature, without proposing a calibration process from real 
data. Simply reusing their parameter values does not provide an adequate fit over our investigated period. Thus, 
while stratifying by vaccination status could potentially provide more granularity for predictions, the perfor-
mance of the model is hindered by its fixed parameters.

The SV2(AIR)3 model incorporates the impact of vaccine efficacy, policy measures, and clinical characteristics 
of specific COVID-19 variants. We updated the model parameters according to the characteristics of the Omi-
cron variant, and used the actual values of the Oxford Stringency Index over the investigated period. However, 
we were unable to calibrate model trajectories that fit the data well: unvaccinated cases show an increasing rate 
of growth from mid-March to the end of our investigated period (Fig. 4), which is opposite to the trend in the 
actual data. Furthermore, while we adjusted the vaccine efficacy against the Omicron variant to be only 30% 
when fully vaccinated (compared to the authors’ original assumption of 75% for the hypothetical variant), the 
model still vastly underestimates the number of vaccinated cases. Only towards the end of the fifth reopening 
phase, with the loosest restrictions, do the model trajectories start to show an uptick in vaccinated cases. Thus, 
while the SV2(AIR)3 model should theoretically have the flexibility to capture complex transmission dynamics, a 
more sophisticated method of calibrating its parameters would likely be needed to adapt it to the present setting.

The proposed vaccination-stratified SEPAIQRD model extended an existing SEAPIR model, by incorporat-
ing four vaccination statuses and adding other relevant compartments. We used a mix of parameters from the 
existing literature, together with using daily case counts to calibrate a selective set of time-varying parameters 
pertaining to asymptomatic infection and case ascertainment rates. For the investigated period, this approach 
provided a good balance between modeling flexibility and fixed parameter assumptions, with good empirical 
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performance relative to the other models considered. We note that the overall empirical performance of the 
model did not depend strongly on the parameter calibration method used. Both the basic NLS method and the 
more sophisticated Bayesian approach with MCMC yielded reasonable fits to the data. While MCMC did perform 
slightly better, the NLS fit nonetheless lies within the 95% credible bands of the MCMC fit.

Examining the calibrated parameters.  Next, we discuss the values of the fixed and calibrated parameter 
values in each model. The parameters of the SIR, SEIRD and vaccination-stratified SIR model are presented in 
Table 6. First, we find that calibrating parameters for the SIR and SEIRD models on case counts alone cannot 
accurately describe the clinical characteristics of COVID-19. In obtaining the parameters that provide the best 
fit to the data for the investigated period, these two models tend to underestimate the transmission rate β and the 
basic reproduction number R0 . Interestingly, although the SEIRD model could not calibrate a reasonable value 
for ρ (as death counts were not used) and its estimated R0 differs significantly from the SIR model, both models 
effectively provided the same quality of fit to the data. This suggests that the calibrated parameter values of these 
models should be interpreted with caution, and do not necessarily correspond to the actual clinical characteris-
tics of the disease. The low R0 values are a clear artifact of reasonably fitting the overall downward trend in case 
counts during the investigated period. Overall, the simplicity of these models is both a strength and a weakness. 
In contrast, the vaccination-stratified SIR model used entirely fixed parameters24, as shown in the corresponding 
row of Table 6. While its fixed R0 value might more closely reflect the intrinsic spread of COVID-19, real-world 
factors during the investigated period violated that assumption.
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Figure 3.   Trajectories of the calibrated SIR (green lines) and SEIRD (orange lines) models over our investigated 
period. Black points plot the actual confirmed daily case counts, and the red dotted lines indicate their centered 
7-day moving average. The panels correspond to the six strata definitions used by the Ontario government in 
Table 1. The top panels (a–c) correspond to the period from January 6 to March 10, while the bottom panels 
(d–f) plot March 11 to June 4.
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The full list of model parameters in the SV2(AIR)3 model is presented in Tables S1 and S2 in the Supple-
mentary Information. The parameters we used for the emerging variant were calibrated to values that reflect 
our best knowledge of the Omicron variant. These include a higher asymptomatic proportion (60%, vs. 50% for 
previous variants), a higher baseline transmission rate (4.5 times that of Delta in the unvaccinated population), 
a shorter recovery time (8 days), and setting the actual start date for its spread in Ontario to be November 22, 
2021. We also greatly increased Omicron’s transmission rates in the fully vaccinated population to reflect lower 
vaccine efficacy: 70% of the baseline unvaccinated rate (compared to the authors’ 12% for Delta). Despite these 
calibrations, the model could not adequately describe the data during the investigated period, especially for 
the vaccinated population. This indicates that other assumptions used throughout the model may also require 
adjustment, such as the parameters related to waning immunity from vaccination.

In the vaccination-stratified SEPAIQRD model, we used both NLS and Bayesian inference with MCMC to 
obtain the calibrated parameters (i.e., fi,j and CARj ). For the NLS fit, the summary of the calibrated parameters 
is provided in Table 7. For the MCMC fit, all four MCMC chains are observed to have converged (Fig. S2 in the 
Supplementary Information). A comparison between the prior and posterior probability densities of fi,j and 
CARj for the five phases is plotted in Fig. 6. A corresponding summary table of the posterior mean, 0.025 lower 
quantile, and 0.975 upper quantile of the 95% credible bounds for fi,j and CARj is presented in Table S8 of the 
Supplementary Information.

In general, both the NLS and MCMC fits provide similar findings regarding the asymptomatic infection 
proportion ( fi,j ). The MCMC posterior means and NLS calibrated values consistently indicate that the asymp-
tomatic infection proportion is small among all four vaccination statuses. We might conclude it is highly likely 
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Figure 4.   Trajectories of the vaccination-stratified SIR model (orange lines) and Omicron-calibrated 
SV

2(AIR)3 model (green lines) over our investigated period. Black points plot the actual confirmed daily case 
counts, and the red dotted lines indicate their centered 7-day moving average. The panels correspond to the six 
strata definitions used by the Ontario government in Table 1. The top panels (a–c) correspond to the period 
from January 6 to March 10, while the bottom panels (d–f) plot March 11 to June 4.
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that exposed populations become infected with at least mild symptoms, i.e., asymptomatic infection is a low-
probability event according to the model. However, this cannot be fully tested against reality and could be an 
artifact of the model setup. While the NLS and MCMC fits align on this general finding, their calibrated f2,j 
values (i.e., for the partially vaccinated group) do noticeably differ. This may explain the relatively poorer NLS 
fit seen in Fig. 5b.
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Figure 5.   Trajectories of the proposed vaccination-stratified SEPAIQRD model over our investigated time 
period, as fitted via NLS (orange lines) and via MCMC (green lines). For the MCMC method, the green-shaded 
regions represent 95% credible bands of the trajectories. Black points plot the actual confirmed daily case counts, 
and the red dotted lines indicate their centered 7-day moving average. The panels correspond to the six strata 
definitions used by the Ontario government in Table 1. The top panels (a–c) correspond to the period from 
January 6 to March 10, while the bottom panels (d–f) plot March 11 to June 4.

Table 3.   RMSEs of the five models for estimating the total daily case counts in Ontario from January 6 to June 
4.

Model RMSE

SIR model 1610.25

Vaccination-stratified SIR model 272840.60

SEIRD model 1613.71

SV
2(AIR)3 model 3557.78

Vaccination-stratified SEPAIQRD model (MCMC fit) 837.37

Vaccination-stratified SEPAIQRD model (NLS fit) 853.35
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The credible intervals of the fi,j ’s broadly overlap for the MCMC fit, indicating that there is no observable 
difference in their posterior distributions across different vaccination statuses. While the corresponding NLS fit 
does not directly yield confidence intervals, its calibrated values of the fi,j ’s likewise do not exhibit clear trends 
in relation to vaccination status. Together, this suggests the asymptomatic infection proportion is not directly 
associated with vaccination status and the change of reopening phase, even when prior beliefs (blue densities in 
Fig. 6) are encoded in the model. Other confounding factors might also significantly influence the asymptomatic 
infection proportion. For example, patients with higher-risk medical histories, such as hypertension and chronic 

Table 4.   RMSEs of the five models for estimating the stratified daily case counts in Ontario from January 6 to 
March 10.

Model

RMSE in strata

Unvaccinated Partially vaccinated Fully vaccinated

SIR model 218.76 108.62 1437.58

Vaccination-stratified SIR model 84109.78 22078.12 311505.7

SEIRD model 218.20 108.99 1430.15

SV
2(AIR)3 model 340.76 193.26 4363.23

Vaccination-stratified SEPAIQRD model (MCMC fit) 110.37 45.41 795.85

Vaccination-stratified SEPAIQRD model (NLS fit) 125.52 145.51 801.11

Table 5.   RMSEs of the five models for estimating the stratified daily case counts in Ontario from March 11 to 
June 4.

Model

RMSE in strata

Not fully vaccinated Completely vaccinated Fully vaccinated with booster dose

SIR model 189.20 323.36 1116.02

Vaccination-stratified SIR model 283.56 567.14 1458.50

SEIRD model 190.80 327.00 1122.39

SV
2(AIR)3 model 369.98 567.08 1458.37

Vaccination-stratified SEPAIQRD model (MCMC fit) 85.82 197.60 509.38

Vaccination-stratified SEPAIQRD model (NLS fit) 105.65 212.27 509.36

Table 6.   Summary of parameters in the SIR, SEIRD, and vaccination-stratified SIR models. a R0 is the basic 
reproduction number, which governs the rate of disease spread b Mixing parameter between vaccinated groups 
and unvaccinated groups c Proportion of population vaccinated d Vaccine effectiveness, i.e., proportion of 
vaccinated population that is immune e R0 in SIR model is calculated by β

γ
 f R0 in SEIRD model is calculated by 

β
ρ+µ

·
S0
N

Model

Parameter

β γ ρ µ R0
a ηb Pc VEd

SIR 0.0510 0.0736 – – 0.6933e – – –

SEIRD 0.4426 0.0321 0.9995 0.9995 0.2117f – – –

Vaccination-stratified SIR 437 73 – – 6 0.5 0.8 0.8

Table 7.   Summary of parameters in the SEPAIQRD model calibrated via NLS.

Phase (j)

Parameter

f1,j f2,j f3,j f4,j CARj

1 0.0062 0.0143 0.1228 0.0002 0.1563

2 0.0225 0.0189 0.2826 0.0884 0.1161

3 0.1383 0.0465 0.2983 0.2099 0.1302

4 0.1819 0.1977 0.4289 0.3729 0.1816

5 0.3830 0.4157 0.5004 0.0042 0.3180
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obstructive pulmonary disease, were given priority for booster doses. Even with a booster dose, this group is 
increasingly likely to be infected with symptoms48. Furthermore, as the Ontario government continued to relax 
social restrictions, the overall increase in social interactions could have a more adverse effect on highly suscep-
tible populations. Finally, case ascertainment rates may not be uniform across different vaccination statuses.

The calibrated values of CARj generally increase when the Ontario government shifts from one phase to 
another, which suggests the Ontario government is more efficient at documenting the infections, or a larger 
proportion of infected people get tested when daily infections become fewer. This trend in CARj is seen in both 
the MCMC and NLS fits, indicating good agreement overall with our prior beliefs, i.e., these parameters are 
associated with the changes in reopening phases. Since Ontario’s testing policies did not change during our 
investigated period, a possible reason is that with the very high daily infections in phase one, it might have been 
difficult for the Ontario government to handle the testing volume and people were less likely to get tested. At the 
same time, the magnitudes of CARj tend to differ between the NLS and MCMC fits, with NLS yielding smaller 
calibrated values. The MCMC fit exploits the information encoded in the priors, which may have led to more 
realistic CARj values and a slightly better fit to the data.

The need for parameter values to change over time, so that the dynamics of COVID-19 resurgences can be 
captured (particularly in the spring of 2022), is an important consideration from this analysis. The vaccination-
stratified SEPAIQRD model accommodates such changes through piece-wise constant parameters ( fi,j and CARj ), 
and is the key feature that contributes to its good empirical performance over the investigated period. Time-
varying parameters introduce additional complexity to a modeling framework; however, SIR or SIR-like models 
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Figure 6.   Comparison of prior and posterior probability densities for the fraction of asymptomatic infection 
and case ascertainment rate. Rows correspond to the five reopening phases, and the first four columns 
correspond to the four vaccination statuses in the vaccination-stratified SEPAIQRD model: unvaccinated, 
partially vaccinated, completely vaccinated, and vaccinated with additional booster.
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will typically require such adjustments to their parameters over time to capture resurgences and fit data over 
multiple epidemic waves. Therefore, judiciously incorporating time-varying parameters in the other four models 
might likewise enhance their ability to fit the dataset considered in this paper.

Conclusion
It is necessary to collect, analyze and monitor pandemic data to assess strategies of intervention, management, 
and control49. This paper aimed to provide insight into the data analysis step, by presenting a comparative study 
of five compartmental models and their ability to fit COVID-19 case data in Ontario, Canada from January 2022 
to June 2022. In addition to four existing compartmental models, we presented an extension of the SEAPIR model 
to help provide a more comprehensive description of the recent COVID-19 dynamics in Ontario. Each model 
was found to have its strengths and weaknesses when applied to the investigated period. The SIR and SEIRD 
models had relatively few compartments and simple assumptions, which allowed them to fit the overall downward 
trend in cases—but not to reflect more complex situations involving multiple epidemic waves, nor necessarily 
have calibrated parameter values that reflect actual clinical characteristics of COVID-19. The trajectories of the 
vaccination-stratified SIR model and the SV2(AIR)3 model appeared to be implausible compared to the actual 
case counts, despite them being more sophisticated models. Their implausibility and underperformance might 
be due to having some fixed parameters borrowed from existing literature that were no longer appropriate. 
Due to the real-world complexities underlying the current Ontario data, more data-driven parameters would 
be needed to account for situations such as time-varying case ascertainment rates and vaccine efficacy. These 
results practically illustrate the potential tradeoffs between applying simple models versus more complex ones. 
For the proposed SEPAIQRD model, the results also illustrate some practical differences between parameter 
calibration methods: while the basic NLS fit provided a reasonable depiction of the dynamics, the Bayesian 
approach with MCMC was more favorable in terms of the fitted daily case counts and the interpretations of 
the calibrated parameter values. While more computationally intensive, the overall advantages of the Bayesian 
approach include its ability to account for both the observed data and prior beliefs, and to quantify uncertainty 
in both the parameters and fitted case counts.

Nonetheless, some factors that likely play a role in COVID-19 transmission dynamics and disease progres-
sion were largely excluded from the models considered, and we briefly discuss a few such factors. First, disease 
progression may vary by age group (e.g., the COVID-19 death rate tends to be higher for older groups), and these 
differences could be modeled by stratifying over age groups12. This may involve adding parallel compartments, 
with specific parameters governing each age group (or combination of age and vaccination status, for models that 
also stratify by vaccination status). The disease transmission matrix would also need to be expanded to account 
for interactions between all the strata under consideration. Second, waning immunity and the possibility of re-
infection were only handled in a simplified way (via assumed parameter values for the SV2(AIR)3 model, and 
via priors for our SEPAIQRD model) or not at all (for the SIR, vaccination-stratified SIR, and SEIRD models). In 
general, this could be modeled by adding flows for vaccinated or recovered individuals to return to the susceptible 
(S) state, as suggested in the SV2(AIR)3 model. Overall, the inclusion of these factors would introduce additional 
complexities to the models, along with parameters that may be difficult to calibrate plausibly from available data.

Several other limitations also exist in our work. On one hand, all model estimates are symptomatic infections. 
Although the assumption that Public Health Ontario only documents the number of symptomatic infections 
might be reasonable, asymptomatic infection is still worth consideration. At worst, the “infected” here is some 
combination of both symptomatic and asymptomatic infections, with the symptomatic very likely being the larger 
component. Had the infected been separated out in the data into symptomatic and asymptomatic components, 
this could have been incorporated into the model (though likely the asymptomatic would be under-represented 
in the data). Second, as with any statistical model, the predictive capacity has not (as yet) been tested on future 
case counts. It could very well perform poorly on future counts, especially should the dynamics of disease trans-
mission and health policy change. What is clear from this study, is that the demonstrable failures and inherent 
limitations of compartmental models suggest that they should not be relied on too heavily by decision-makers 
in forming public health policy on COVID-19. At the same time, we may recognize that this study, along with 
others that focus on compartmental models, can help provide insight into the mechanisms behind the spread of 
COVID-19. In particular, as models are designed to approximate reality, modeling is useful for identifying the 
most relevant aspects of the mechanisms that are necessary to explain the observed data. When our proposed 
model is compared to the others considered in this study, we find that time-varying parameters are crucial for 
fitting the data well, even though it is challenging to calibrate such parameters in real-time as the pandemic 
evolves; in contrast, stratification by vaccination status has only a limited impact on our ability to fit the data.

There are several extensions of our current work that can be considered for further studies. The literature 
on compartmental modeling for COVID-19 transmission dynamics is vast. Additional models, including time 
series models (e.g., ARIMA and SARIMA) might be considered and compared with those considered in this 
study. Data from other time periods or jurisdictions could also be investigated. Finally, while Bayesian parameter 
calibration via MCMC methods is effective for obtaining credible bounds for parameters and estimated case 
counts, it comes with a relatively large computational cost. Faster computational methods for Bayesian inference 
would be useful for larger studies involving compartmental models.

Data availability
The computer code produced in this study for the proposed vaccination-stratified SEPAIQRD model is available 
in https://​github.​com/​Yuxua​nZhao1/​Code-​for-​Vacci​nation-​strat​ified-​SEPAI​QRD-​model. The datasets analysed 
during the current study are available in the Public Health Ontario repository, https://​data.​ontar​io.​ca/​en/​datas​
et/​covid-​19-​vacci​ne-​data-​in-​ontar​io/.

https://github.com/YuxuanZhao1/Code-for-Vaccination-stratified-SEPAIQRD-model
https://data.ontario.ca/en/dataset/covid-19-vaccine-data-in-ontario/
https://data.ontario.ca/en/dataset/covid-19-vaccine-data-in-ontario/
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