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Large strain correction 
for tunnel analyses considering 
hydromechanical coupling 
and ground anisotropy
Matteo Natale , Alexandros N. Nordas  *, Seraina Kopp  & Georgios Anagnostou 

The deformations resulting from tunnel analyses for heavily squeezing ground may be very large, 
necessitating numerical formulations that consider geometric nonlinearity. Alternatively, for a certain 
class of problems, routine small strain analyses can be performed, and their results can be corrected 
to account for large strains by means of a simple hyperbolic expression proposed a few years ago. 
The present paper shows that this correction equation is sufficiently accurate for practical purposes 
even in the case of anisotropic material behaviour and for hydromechanically coupled, steady state 
or transient analyses of tunnels. The accuracy of the equation prediction varies amongst these cases 
but is satisfactory overall for the purpose of preliminary calculations, thus broadening its value and 
usefulness as a preliminary design tool.

List of symbols
Eo	� Young’s modulus normal to the anisotropy plane
Ep	� Young’s modulus parallel to the anisotropy plane
Gop	� Shear modulus on planes orthogonal to the anisotropy plane
Hw	� Depth of the tunnel underneath the water table
R	� Outer radius of the region affected by tunnel drainage
Ua,ss	� Normalised small-strain radial displacement of the tunnel boundary
Ua,ls	� Normalised large-strain radial displacement of the tunnel boundary
a	� Tunnel radius
b	� Radius of the far field boundary
c	� Cohesion
cb	� Cohesion in the anisotropy plane
fc	� Uniaxial compressive strength disregarding strength anisotropy
k	� Permeability
kh	� Permeability in the horizontal plane
kv	� Permeability in the vertical direction
p	� Pore pressure field
p0	� In-situ pore pressure at the elevation of the tunnel axis
pa	� Pore pressure at the tunnel boundary
qa	� Flux at the tunnel boundary
r	� Radial coordinate
t	� Time
ua	� Radial displacement of the tunnel boundary
ua,sss	� Small-strain radial displacement of the tunnel boundary
ua,ls	� Large-strain radial displacement of the tunnel boundary
θ	� Angular coordinate
φ	� Angle of internal friction
φb	� Angle of internal friction in the anisotropy plane
νop	� Poisson ratio expressing the effect of the normal stresses orthogonal to the anisotropy plane to the 

normal strains parallel to the anisotropy plane
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νpp	� Poisson ratio expressing effect of the normal stresses parallel to the anisotropy plane to the normal 
strains parallel to the anisotropy plane

σ0	� In-situ stress at the elevation of the tunnel axis
σa	� Radial support pressure at the tunnel boundary
ψ	� Dilatancy angle
ψb	� Dilatancy angle in the anisotropy plane

In the analysis of tunnelling through heavily squeezing rock, where deformations can be very large, the applica-
tion of small-strain theory, which evaluates stiffness and equilibrium in the undeformed initial configuration, 
can significantly overestimate tunnel convergences and lead even to nonsensical predictions. Such problems 
must be solved instead in the framework of the large-strain theory which considers geometric nonlinearity by 
evaluating stiffness and equilibrium in the deformed configuration.

Vrakas and Anagnostou1 showed that the differences between small- and large-strain analyses become con-
siderable when convergences exceed 20% of the tunnel radius, demonstrating the limitations of small-strain 
analyses on prominent examples of tunnelling under heavily squeezing conditions: In a critical 6 km stretch of 
the Gotthard base tunnel in Switzerland, which crosses low stiffness and strength kakiritic rocks at depths up 
to 900 m, small-strain analysis was shown to overestimate the over-excavation required to accommodate the 
designated profile clearance by more than 50%. In the Yacambú-Quibor tunnel in Venezuela, where complete 
closure of the cross-section (convergence > 80%) occurred in a 23.3 km stretch crossing weak graphitic phyl-
lites at depths up to 1270 m, a back-calculation based on small-strain analysis was shown to result in a fourfold 
overestimate of the ground cohesion. In a critical zone of the planned subaqueous Gibraltar Strait tunnel, which 
crosses breccia over 4 km at a depth of 200 m below the seabed, preliminary small-strain calculations of the 
undrained ground response were shown to yield physically unrealistic predictions (convergences > 100% vs. 
48% from large-strain analyses).

While the above examples underscore the significance and necessity of adopting a large-strain formulation 
in the analysis of severe squeezing conditions, geometrically nonlinear finite element (FE) analyses can be exces-
sively demanding in respect of computing time and resources. In view of this, Vrakas and Anagnostou1 proposed 
the following simple, accurate and theoretically well-founded hyperbolic equation for obtaining large-strain 
solutions from small-strain analyses:

where Ua,ss = ua,ss/a and Ua,ls = ua,ls/a, ua,ss and ua,ls are the displacements from small- and large-strain analyses, 
respectively, and a denotes the tunnel radius in the initial undeformed configuration. Equation (1) constitutes 
a valuable tool for preliminary design, since it entails performance only of routine small-strain analyses with 
a subsequent “self-correction” of the results. Although it has been derived considering the plane-strain and 
rotationally symmetric tunnel problem, it has been shown to be reasonably accurate also for other, general 2D 
problems (cylindrical and spherical openings, dilatant and hardening material behaviours, non-cylindrical tun-
nels and non-hydrostatic in-situ stress fields, undrained response of saturated low-permeability ground), as well 
as for 3D problems of an advancing tunnel heading.

Building upon the work of Vrakas and Anagnostou1, the present paper investigates the applicability of Eq. (1) 
(hereafter referred also as “correction equation”) to anisotropic problems (Section Anisotropic stress analyses), 
and to hydromechanically coupled, steady state or transient problems with isotropic (Section Coupled isotropic 
analyses) or anisotropic (Section Coupled anisotropic analyses) material, which have not been considered previ-
ously. Throughout the paper, either isotropic or transversely isotropic rocks with a vertical axis of symmetry and 
horizontal planes of anisotropy (foliation, stratification) are considered. The constitutive behaviour of the rock 
is assumed as in Vrakas and Anagnostou1, i.e. linear-elastic and perfectly plastic, following the Mohr–Coulomb 
yield criterion and a non-associated flow rule, which is the most commonly used model in rock and tunnel 
engineering practice.

Anisotropic stress analyses
Problem layout and computational assumptions
Consideration is given herein to the plane-strain problem of a deep, cylindrical tunnel of radius a, crossing 
homogeneous, transversally isotropic rock and subjected to a homogeneous and hydrostatic in-situ stress field 
(Fig. 1). The computational domain considers one quarter of the tunnel cross-section, on account of symmetry 
about the horizontal and vertical planes, and a far field boundary (where the radial in-situ stress σ0 prevailing 
at the elevation of the tunnel axis is applied) at a sufficiently large distance from the tunnel (b = 100 a; Fig. 1b). 
The ground response to tunnelling is simulated via an unloading of the tunnel boundary from the initial in-situ 
stress σ0 to zero, which provides the maximum convergence. The numerical computations have been performed 
in Abaqus®2, employing a structured FE mesh of 1′120 4-noded, linear, quadrilateral, plane strain elements.

A linear elastic and perfectly plastic constitutive model with a Mohr–Coulomb yield criterion and a non-
associated flow rule is adopted, which considers transversal isotropy and reduced strength for shearing along an 
anisotropy plane compared to shearing through the rock matrix. The model behaviour is defined by 11 constants3: 
two Young’s moduli Ep and Eo ≤ Ep parallel and orthogonal to the anisotropy plane, respectively; two Poisson’s 
ratios of the anisotropy plane νpp, νop for loading parallel and orthogonal to it, respectively; the cohesion c, angle 
of internal friction φ and angle of dilation ψ for shearing through the matrix; the three corresponding plasticity 
constants (cb, φb, ψb) for shearing along an anisotropy plane; and the shear modulus Gop on planes orthogonal to 

(1)Ua,ls = 1−
1
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the anisotropy plane. The latter is an independent material constant of the transversely isotropic material and is 
taken equal to 0.5 Eo/(1 + νop), as suggested by Wittke4.

Accuracy of the correction equation
Dimensional analysis makes it possible to express the normalised displacement of any point of the tunnel bound-
ary in the following form:

where fc is the uniaxial compressive strength disregarding strength anisotropy (fc = 2 c cosφ /(1—sinφ)), and 
θ denotes the angular position of a point on the tunnel boundary. The parameter sets considered are given in 
Table 1 and have been selected such that the normalised convergences from small-strain analyses (Ua,ss) range 
between 15 and 100%. The sets with cb/c = ∞ disregard strength anisotropy and are intended to consider the 
isolated effect of stiffness anisotropy.

Anisotropy results in general in a non-uniform deformation of the tunnel boundary. For the assumed hori-
zontal orientation of the anisotropy planes, stiffness anisotropy results in higher convergences at the crown 
(θ = 90°), where unloading takes place in the “softer” direction orthogonal to the planes, compared to the sidewall 
(θ = 0°), where unloading takes place in the “stiffer” direction parallel to the planes (see inset in Fig. 2). Strength 
anisotropy results in a local increase of convergences over a narrow region close to the crown, where the lower 
strength of shearing along the anisotropy planes prevails; however, this effect is in general small in comparison 
with the absolute magnitude of convergence considered. The crown and sidewall can thus be considered as ref-
erence points for evaluating the results, since their convergences are indicative of the maximum and minimum 
over the boundary, and their average value is also approximately equal to the average convergence over the 
entire boundary.

(2)Ua =
ua
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Figure 1.   (a) Problem layout and, (b), model (data in brackets: applies to the coupled analyses only).
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Figure 2 shows the numerically determined ratio Ua,ls/Ua,ss as a function of the predictions Ua,ss of small-strain 
analyses at the tunnel sidewall (triangular markers) and crown (square markers), along with the approximation 
of this relationship based on Eq. (1) (dashed line). One can readily verify that the correction equation approxi-
mates the numerical predictions with very high accuracy in the absence of strength anisotropy (red markers). 
In cases considering strength anisotropy (black markers), the correction equation is less accurate overall, mostly 
slightly underestimating the convergences at the crown and overestimating those at the sidewall; however, it still 
provides reasonably accurate prediction of the average convergence throughout the considered range, even for 
excessive convergences Ua,ss close to 100%.

Coupled isotropic analyses
Problem layout and computational assumptions
Consideration is given in the sequel to a tunnel deep under the water table (Hw = 100 a; Fig. 1a). The seepage 
flow field is approximated as rotationally symmetric, assuming that the pore pressure is equal to the in-situ 
hydrostatic pressure p0 prevailing at the elevation of the tunnel axis at a radius R = Hw (Fig. 1b); this simplifica-
tion has been shown to be sufficiently accurate5, 6. Identical computational specifications to those outlined in 
Section Anisotropic stress analyses are otherwise adopted, whilst also considering the linear interpolation of 
the pore pressure within each FE.

The rock is considered as a porous, fully saturated medium obeying Terzaghi’s principle of effective stresses 
and isotropic Darcy’s law. Two borderline cases are investigated for the permeability: a high permeability 
(k = 10–6 m/s) where drained conditions prevail continuously; and a low permeability (k = 10–13 m/s) where 
the conditions are undrained during tunnel excavation, and become drained after a sufficiently long transient 
consolidation period. The parameters adopted in the computations are given in Table 2.

The high-permeability case assumes that the hydraulic head field readily achieves steady state prior to exca-
vation, as in the case of perfect advance drainage7. This is achieved by initially prescribing atmospheric pore 
pressure over the fixed tunnel boundary (pa = 0, where pa denotes the pore pressure at the tunnel boundary). Sub-
sequently, the boundary is completely unloaded while maintaining the atmospheric pressure boundary condition.

The low-permeability case initially considers a complete unloading of the tunnel boundary assuming a no-
flow hydraulic boundary condition (qa = 0, where qa denotes the flux at the tunnel boundary), which provides 
the instantaneous undrained convergence. Subsequently, a transient consolidation analysis is performed until 
steady state is achieved, considering a mixed hydraulic boundary condition over the tunnel boundary. This 
ensures water seepage from the ground into the tunnel, but not vice versa (qa = 0 if ∂p/∂r < 0, pa = 0 if ∂p/∂r > 0);8, 

Table 1.   Parameter sets of the anisotropic stress analyses (parameters common to all sets: νpp = νop = 0.2, 
φ = 25°, ψ = ψb = 5°).

Set Ep/σo fc/σo Ep/Eo cb/c φb/φ
1 100.0 0.21 1.5 ∞ 1

2 100.0 0.21 3 ∞ 1

3 100.0 0.21 1.5 0.25 1

4 100.0 0.21 3 0.25 1

5 100.0 0.21 1.5 1 0.6

6 100.0 0.21 3 1 0.6

7 100.0 0.21 1.5 0.25 0.6

8 100.0 0.21 3 0.25 0.6

9 54.5 0.11 1.5 ∞ 1

10 54.5 0.11 3 ∞ 1

11 54.5 0.11 1.5 0.25 1

12 54.5 0.11 3 0.25 1

13 54.5 0.11 1.5 1 0.6

14 54.5 0.11 3 1 0.6

15 54.5 0.11 1.5 0.25 0.6

16 35.3 0.07 1.5 ∞ 1

17 35.3 0.07 3 ∞ 1

18 35.3 0.07 1.5 0.25 1

19 35.3 0.07 3 0.25 1

20 35.3 0.07 1.5 1 0.6
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if an atmospheric pressure condition (pa = 0) was specified instead, watering of the ground from the tunnel could 
occur in the early stages of consolidation, when negative pore pressures may develop. The effect of the adopted 
hydraulic boundary condition is illustrated qualitatively for two time-instances (t1, t2) in Fig. 3.

Accuracy of the correction equation
Dimensional analysis enables expression of the normalised convergence of the tunnel boundary in the follow-
ing form:

The parameters adopted in the computations are given in Table 2.
Figure 4 shows the numerically determined ratio Ua,ls/Ua,ss as a function of the predictions Ua,ss of small-strain 

analyses (round markers) for the high-permeability case, along with the approximation of this relationship based 
on Eq. (1) (dashed line). The correction equation achieves a very good agreement with the numerical predictions, 
becoming only slightly conservative towards the range of excessively large Ua,ss.

The results for the case of low permeability are shown in Fig. 5, where it is readily seen that the correction 
equation achieves a virtually perfect match with the numerical predictions. This is expected for the instantaneous 
convergences, since these lie in the range where geometric nonlinearity effects are limited (Ua,ss < 15%), but holds 
also for the steady-state convergences, even in the range of excessively large, nonsensical values (Ua,ss > 100%).
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Figure 2.   Anisotropic stress analyses: ratio of the large- to the small-strain displacements versus the small-
strain displacements (parameters: s. Table 1; labels besides the markers: data-set numbers after Table 1).

Table 2.   Parameter sets of the isotropic coupled analyses (parameters common to all sets: ν = 0.3, ψ = 0°, 
p0/σ0 = 0.4, b/a = R/a = 100).

Set E/σo fc/σo φ [°]

1 160 0.16 20

2 80 0.23 20

3 40 0.22 30

4 20 0.28 30

5 160 0.13 20

6 80 0.15 20

7 40 0.12 30

8 20 0.15 30

9 160 0.11 20

10 80 0.12 20

11 40 0.10 30

12 20 0.12 30
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Figure 3.   Typical radial pore pressure distributions.

Figure 4.   Isotropic coupled analyses for high-permeability ground: ratio of the large- to the small-strain 
displacements versus the small-strain displacements (parameters: s. Table 2).

Figure 5.   Isotropic coupled analyses for low-permeability ground: ratio of the large- to the small-strain 
displacements versus the small-strain displacements (parameters: s. Table 2).
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Table 3.   Parameter sets of the anisotropic coupled analyses for high-permeability ground (parameters 
common to all sets: νpp = νop = 0.2, φ = 25°, ψ = ψb = 5°, b/a = R/a = 100). a For this data-set the case of permeability 
anisotropy with kh/kv = 10 has been additionally considered.

Set Ep/σo fc/σo Ep/Eo cb/c φb/φ p0/σ0
1 100.0 0.21 1.5 ∞ 1 0.23

2 100.0 0.21 3 ∞ 1 0.23

3 100.0 0.21 1.5 0.25 1 0.23

4(a) 100.0 0.21 3 0.25 1 0.23

5 100.0 0.21 1.5 1 0.6 0.23

6 100.0 0.21 3 1 0.6 0.23

7 100.0 0.21 1.5 0.25 0.6 0.23

8 100.0 0.21 3 0.25 0.6 0.23

9 54.5 0.11 1.5 ∞ 1 0.13

10 54.5 0.11 3 ∞ 1 0.13

11 54.5 0.11 1.5 0.25 1 0.13

12(a) 54.5 0.11 3 0.25 1 0.13

13 54.5 0.11 1.5 1 0.6 0.13

14(a) 54.5 0.11 3 1 0.6 0.13

15 54.5 0.11 1.5 0.25 0.6 0.13

16 40.0 0.08 1.5 ∞ 1 0.09

17(a) 35.3 0.08 3 ∞ 1 0.09

18a 35.3 0.08 1.5 0.25 1 0.09

19 35.3 0.08 3 0.25 1 0.09

Table 4.   Parameter sets of the anisotropic coupled analyses for low-permeability ground (parameters 
common to all sets: νpp = νop = 0.2, φ = 25°, ψ = ψb = 5°, b/a = R/a = 100). a For this data-set the case of permeability 
anisotropy with kh/kv = 10 has been additionally considered.

Set Ep/σo fc/σo Ep/Eo cb/c φb/φ p0/σ0
1 100.0 0.21 1.5 ∞ 1 0.23

2 100.0 0.21 3 ∞ 1 0.23

3a 100.0 0.21 1.5 0.25 1 0.23

4a 100.0 0.21 3 0.25 1 0.23

5 100.0 0.21 1.5 1 0.6 0.23

6 100.0 0.21 3 1 0.6 0.23

7 100.0 0.21 1.5 0.25 0.6 0.23

8a 100.0 0.21 3 0.25 0.6 0.23

9 66.7 0.14 1.5 ∞ 1 0.16

10 66.7 0.14 3 ∞ 1 0.16

11a 66.7 0.14 1.5 0.25 1 0.16

12a 66.7 0.14 3 0.25 1 0.16

13 66.7 0.14 1.5 1 0.6 0.16

14 66.7 0.14 3 1 0.6 0.16

15a 66.7 0.14 1.5 0.25 0.6 0.16

16a 66.7 0.14 3 0.25 1 0.16

17 50.0 0.10 1.5 ∞ 1 0.12

18 50.0 0.10 3 ∞ 1 0.12

19 50.0 0.10 1.5 0.25 1 0.12

20 50.0 0.10 3 0.25 1 0.12

21 50.0 0.10 1.5 1 0.6 0.12

22a 50.0 0.10 1.5 0.25 0.6 0.12
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Coupled anisotropic analyses
The applicability of the correction equation to coupled anisotropic problems is examined considering the com-
putational model discussed in Section Coupled isotropic analyses, with the additional specification of an ani-
sotropic material behaviour analogously to Section Anisotropic stress analyses. The parameters adopted in the 
computations are given in Tables 3 and 4 for the high- and low-permeability cases, respectively. In addition to 
the strength and stiffness anisotropy, the case of a pronouncedly anisotropic seepage flow was considered in 
certain cases, assuming that the permeability parallel to the bedding or schistosity plane is 10 times higher than 
perpendicularly to it.

Figure 6a assumes isotropic permeability and shows the numerically determined ratio Ua,ls/Ua,ss as a function 
of the predictions Ua,ss of small-strain analyses, along with the approximation of this relationship based on Eq. (1) 
(dashed line) for the high-permeability case. The correction equation is very accurate in the absence of strength 
anisotropy (red markers) and reasonably accurate otherwise (black markers), slightly underestimating the dis-
placements at the crown and overestimating those at the sidewall in some cases; overall, the accuracy achieved 
is very good in terms of average convergences. This also applies in the case of anisotropic permeability (Fig. 6b).

Figure 7a shows the results for the low-permeability case, considering isotropic permeability. The instan-
taneous (undrained) convergences Ua,ss are anyway small (< 15%) and thus accurately predicted even by the 
infinitesimal-strain analysis. As for the steady-state convergences, the accuracy of the correction equation is 
high in the absence of strength anisotropy (red markers) but inferior otherwise (black markers), particularly for 
the crown, where the correction equation may underestimate displacement by up to 40% (data set 21). There are 
also some outliers (tunnel wall; data sets 15, 16 and 22) for which even the correction equation overestimates 
displacement. Notwithstanding the inaccuracies observed in the case of strength anisotropy, the correction equa-
tion provides a reasonable indication of the anticipated magnitude of convergences; therefore, it is still valuable 
for preliminary calculation purposes, particularly in cases where small-strain analyses provide unusable results, 
i.e. predicting excessive and nonsensical convergences (Ua,ss > 100%). The same conclusions can be drawn when 
considering permeability anisotropy (Fig. 7b).

Concluding remarks
By utilising parametric plane strain numerical simulations, the present paper demonstrated that the equation 
proposed by Vrakas and Anagnostou1 for obtaining large-strain solutions from small-strain analyses can be 
applied also to anisotropic and hydromechanically coupled, steady state or transient analyses. The accuracy of the 
equation has been shown to be: (i) sufficient for estimating average convergences in anisotropic ground (Fig. 2); 
(ii) very high for estimating instantaneous undrained convergences in low-permeability isotropic (Fig. 5) or 

Figure 6.   Anisotropic coupled analyses for high-permeability ground: ratio of the large- to the small-strain 
displacements versus the small-strain displacements assuming, (a) isotropic permeability or, (b) isotropic and 
anisotropic permeability (parameters: s. Table 3; labels besides the markers: data-set numbers after Table 3).
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anisotropic (Fig. 7) ground; (iii) very high for estimating steady state convergences in high-permeability (Fig. 4) 
and low-permeability (Fig. 5) isotropic ground; (iv) reasonable for estimating steady state convergences in high-
permeability (Fig. 6) and low-permeability (Fig. 7) anisotropic ground. Complementing the work of Vrakas and 
Anagnostou1, the present findings broaden even further the already wide applicability of the correction equation 
as a preliminary design tool.
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