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Modelling of compression 
ignition engine by soft 
computing techniques 
(ANFIS‑NSGA‑II and RSM) 
to enhance the performance 
characteristics for leachate blends 
with nano‑additives
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Integrating nanoparticles in waste oil-derived biodiesel can revolutionize its performance in internal 
combustion engines, making it a promising fuel for the future. Nanoparticles act as combustion 
catalysts, enhancing combustion efficiency, reducing emissions, and improving fuel economy. 
This study employed a comprehensive approach, incorporating both quantitative and qualitative 
analyses, to investigate the influence of selected input parameters on the performance and exhaust 
characteristics of biodiesel engines. The focus of this study is on the potential of using oils extracted 
from food waste that ended up in landfills. The study’s results are analysed and compared with models 
created using intelligent hybrid prediction approaches including adaptive neuro-fuzzy inference 
system, Response surface methodology-Genetic algorithm, and Non sorting genetic algorithm. The 
analysis takes into account engine load, blend percentage, nano-additive concentration, and injection 
pressure, and the desired responses are the thermal efficiency and specific energy consumption of 
the brakes, as well as the concentrations of carbon monoxide, unburned hydrocarbon, and oxides 
of nitrogen. Root-mean-square error and the coefficient of determination were used to assess the 
predictive power of the model. Comparatively to Artificial Intelligence and the Response Surface 
Methodology-Genetic Algorithm model, the results provided by NSGA-II are superior. This is because it 
achieved a pareto optimum front of 24.45 kW, 2.76, 159.54 ppm, 4.68 ppm, and 0.020243% for Brake 
Thermal Efficiency, Brake Specific Energy Consumption, Oxides of nitrogen, Unburnt Hydro Carbon, 
and Carbon monoxide. Combining the precision of ANFIS’s prediction with the efficiency of NSGA-
optimization II’s gives a reliable and thorough evaluation of the engine’s settings. The qualitative 
assessment considered practical aspects and engineering constraints, ensuring the feasibility of 
applying the parameters in real-world engine applications.
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Abbreviations
BSEC	� Brake specific energy consumption
B0	� 0% Blending (landfill waste biodiesel) with diesel
B5	� 5% Blending (landfill waste biodiesel) with diesel
UBHC	� Unburnt hydrocarbons
B10	� 10% Blending (landfill waste biodiesel) with diesel
B15	� 15% Blending (landfill waste biodiesel) with diesel
CO	� Carbon monoxide
B20	� 20% Blending (landfill waste biodiesel) with diesel
LFB	� Landfill waste biodiesel
RSM	� Response surface methodology
ANFIS	� Adaptive neuro-fuzzy inference system
ANN	� Artificial neural network
GA	� Genetic algorithm
NOx	� Oxides of nitrogen
NSGA	� Non-sorting genetic algorithm
ABD	� Aluminium oxide biodiesel
CBD	� Copper oxide biodiesel
BTE	� Brake thermal efficiency
FFA	� Free fatty acids

Conventional sources of energy, such as crude oil and coal, have been dwindling at an alarming rate in recent 
years. This trend is most likely attributable to the increase in population that has been seen around the world1,2. 
Because of this, the transportation industry is now operating in an atmosphere marked by unpredictability. 
Countries with a higher population are exploring for alternative fuels that have a cheap beginning cost and a 
comprehensive energy potential3. Researchers were encouraged to investigate a feasible, sustainable alternative 
to diesel that may either completely or partly replace them as a result of the crises that were described above. 
In earleier bioenergy has shown impecable potential replacement to petro-diesel; nevertheless, high starting 
prices, poor generation rates, deficiency of knowledge, incorrect physiochemical qualities, and high creation 
charges taken as a proven to be important challenges for biofuels to become generally embraced4. To this point, 
non-edible oils and waste resources have been identified as a candidate for the role of replacement for crude 
oil5. The production of oil that is not edible needs a huge amount of land, which is not feasible in countries 
with a high population density per square kilometre6,7. If the garbage that has been gathered for conversion in 
landfills is allowed to react with the rain water, a black liquid known as leachate oil is produced. This leachate 
oil, if left untreated, will seep under the surface and react with the ground water8,9. The majority of the leachate 
is made up of dissolved and suspended materials, both of which are amenable to being filtered out with the use 
of appropriate chemical processes10–12. Because of the complexities involved in the burning process, treating 
these oils is not a realistic option. On the other hand, if we take into account the fact that crude oil supplies are 
expected to run out in the not-too-distant future, it appears like there could be a chance that these oils might 
be transformed into an alternative motor fuel that is both cost-efficient and environmentally friendly. Although 
using biodiesel-diesel blends does provide appropriate and acceptable pollution levels, comparison of its per-
formance features with clean diesel fuel indicates levels of performance that are below par. In earlier research, 
waste oils were combined with nanoparticles in order to improve the biodiesel qualities that were being evalu-
ated. The findings of these evaluations suggested that the oil would have a decreased density and viscosity, in 
addition to a significant increase in its calorific value. This adds to the advantages it already has to become a 
possible alternative fuel in the future13,14. If these production and mixing nanoparticles parameters are carefully 
designed through proper modelling under optimum operating conditions, outcome of this will be a reduction 
in both the cost and time required for biofuel production, which in turn will facilitate its commercialization on 
a global scale and in industrial contexts15.

Recently, biodiesel-based fuels are blended with a variety of nanoparticles presumably to supress the dis-
advantages associated with using it in diesel engine. Initially distilled water and nanoparticle are amalgamated 
thoroughly to produce whitish fluid which is later on added in biodiesel. The prime reason of amalgamating 
nanoparticles is the formation of structured layers in the fuel where these particles might occupy different loca-
tions and form heat generating pockets. This facilitates faster combustion due to increase in thermal conductivity 
of oil. This further reduces the overall delay time providing a wholesome combustion with smoother operation. 
Also, applying nanoparticles in fuels furnish higher atomization, thereby providing proper mixing as molecules 
are broken down into little ones with particles embedded between layers.

The use of artificially intelligent (AI) models, which forecast the performance-emission features of petro-
diesel engine, is done so in order to get an understanding of the link between the many input parameters of a 
diesel engine and its many outputs. This effectively cuts down on the number of experimental runs, which in turn 
cuts down on both operating costs and the amount of time required for the assessment of performance (BTE 
and BSEC) and exhaust parameters (CO, UBHC and NOx). Through the use of AI in conjunction with various 
optimization strategies, the predictive models provide, in addition, the optimal combination of inputs that might 
possibly be generated. Various researchers have used the ANN approach in the course of earlier engine-related 
investigations in order to cut down on the number of operations and achieve noteworthy results16. In addition, 
a technique known as response surface methodology (RSM) is used in order to provide precise experimental 
data about the performance and emission characteristics of a petro-diesel engine17.
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Gopal et al.18 evaluated the brake thermal efficiency of alcohol mixed diesel fuels, in order to prepare compara-
tive results with conventional experimental model and ANFIS model. Singh et al.19 compared the performance 
and emission parameters predicted by employing soft computing techniques from blends of Kusum oil. Agh-
bashlo et al.20 employed the ANFIS model in order to forecast output values and develop an objective function 
on the basis of the process parameters. Odibi et al.21 employed the ANFIS model to estimate the exergy efficiency 
for developing biodiesel from waste cooking oil. Hosoz et al.22 estimated the performance parameters of a diesel 
engine by employing the ANFIS model on a single cylinder engine with input conditions as speed and load. The 
literature survey highlights the prevalent use of artificially intelligent (AI) models, particularly ANN and ANFIS, 
in forecasting performance-emission features of petro-diesel engines, leading to reduced experimental runs, 
operating costs, and assessment time. However, the research gap lies in the limited application of AI models to 
combine alternative fuels with nanoparticles, the lack of comprehensive comparative studies on optimization 
strategies, inadequate consideration of engine design parameters with the use of nanoparticles in fuel, limited 
generalization across different engine types and neglect of uncertainty analysis,. Addressing these gaps will 
enhance the applicability and reliability of AI models in optimizing diesel engine performance, emissions, and 
design. Henceforth the above literature has clearly established the ANFIS method as an accurate predicting model 
which integrates the advantages of feed forward calculation for an outcome, back propagation learning capacity 
of ANNs and human-like reasoning style of fuzzy logic.

In light of the aforementioned developments, the scholars have come up with the following viewpoints, which 
are outlined below:

•	 Biodiesel derived from landfills, when combined with nanoparticles and applied to diesel engines, has the 
potential to successfully improve performance parameters while simultaneously lowering emissions from 
diesel engines. This is because the application of biodiesel derived from landfills boosts up the performance 
parameters of a diesel engine.

•	 The use of waste oils as a potential solution is shown to be a workable and practicable alternative on account 
of their simple accessibility and their little impact on the surrounding natural environment.

•	 The investigation of engine outputs for a variety of nanoparticles and their concentrations while using soft 
computing approaches such as ANFIS, ANFIS-GA, and ANFIS-NSGA-II has never been discussed in any 
of the prior literature.

•	 Previous research, conducted in other subfields of thermal engineering, has shed light on the significance 
of integrating exceptional forecast representations with optimization systems to produce exact petro-diesel 
engine variables while simultaneously reducing the amount of effort, cost, labour, time, and energy required.

To the authors fullest knowledge very few research work was available online regarding AI based optimiza-
tion of diesel engine. Furthermore, application of meta-heuristic techniques in diesel engine still remains an 
unexplored domain while generating outputs for biodiesels. The authors keeping in mind the above trend were 
motivated to perform a performance and exhaust analysis of biodiesel while varying for prime input parameters 
with the aid of multiple hybrid metaheuristic techniques.

The current research applied the ANFIS model as output prediction and further integrated the objective func-
tions by optimizing the outcomes with the aid of genetic algorithms (GA) and its higher version (NSGA-II). As a 
result, the influence of a number of input factors, such as load, blend%, nanoparticle concentration (NPC), and 
injection pressure (IP), may be investigated using these models in a way that is efficient and inexpensive. When 
the expected answers of ANFIS were put up against the results gained through experimental assessments, it was 
discovered that ANFIS’s predictions were fairly accurate. The ANFIS-GA model developed is remarkably capable 
of replicating the conventional method for engine output evaluations with low error rate. Furthermore, another 
version of genetic algorithm called non-sorting genetic algorithm (NSGA-II) is employed to test its viability in 
diesel engine, thereby comparing output responses for all models.

This research is groundbreaking in its use of prognostic systems (ANFIS) and optimization practices (GA 
and NSGA-II) to enhance the performance of engines and decrease emissions by utilizing nanoparticles in 
landfill oils. Notably, no prior studies have investigated nanoparticle variation by prediction models in this area. 
The implementation of a novel model in the biofuel industry minimizes the number of engine runs required to 
achieve accurate predictions through rigorous data training, testing, and validation, underscoring the innovative 
and precise nature of this study. In the realm of diesel engines, the introduction of soft computing methods in 
conjunction with optimization approaches will provide results that are revolutionary.

The objectives of this research are as follows: Firstly, to conduct a performance and exhaust analysis of bio-
diesel by varying prime input parameters, namely load, blend %, nanoparticle concentration (NPC), and injection 
pressure (IP), using hybrid metaheuristic techniques. Next, to utilize the ANFIS model for output prediction and 
integrate objective functions for optimizing outcomes using Genetic Algorithms (GA) and its higher version 
(NSGA-II). Furthermore, to investigate the efficiency of the ANFIS-GA model in evaluating engine outputs by 
comparing its predictions against experimental assessments. Finally, to assess the viability of the non-sorting 
Genetic Algorithm (NSGA-II) in the context of diesel engine performance and exhaust analysis, while comparing 
its output responses with other models employed in the study. By achieving these objectives, the research aims 
to contribute to the advancement of AI-based optimization techniques for diesel engines and the understanding 
of biodiesel performance characteristics.
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Materials and methods
In order to get the best possible outcome, it is necessary to carry out preliminary functional operations such 
as specifying the input and output variables in advance. The experimental data set is created by varying four 
parameters: load (LD), blend percentage (BP), nanoparticle concentration (NPC), and injection pressure (IP). 
The proposed input will be measured against this standard to ensure it achieves the highest possible thermal 
efficiency in the brakes, the lowest possible specific fuel consumption, and the cleanest possible exhaust gas 
emissions (including CO, NOx, and UBHC). In this study, we provide several hybrid methods for comparing the 
experimental and anticipated data, which we do in four stages. The steps involved are as follows: (i) aggregating 
the acquired experimental data and grouping it based on training and testing; (ii) selecting the best performance 
model in the ANFIS & RSM data structure for assessing the performance and exhaust emission parameters; (iii) 
integrating the results of the ANFIS & RSM model with the GA and NSAGA-II optimisation technique; and (iv) 
finally, generalising the optimised results, including maximum BTE, minimum BSEC (CO, NOx and UHBC).

Data compilation.  The diesel engine test rig that was fueled with landfill food waste oils served as the 
source of the experimental dataset that was used in the development of the prediction ANFIS model. These 
oils were linked together with two nanoparticles at the same time, namely aluminium oxide (Al2O3) and cop-
per oxide (CuO). The RSM random modelling approach was used to construct the datasets for the purpose of 
producing outcome responses. This technique resulted in the generation of 60 distinct datasets for foolproof data 
interpretation. On a diesel engine, performance and emission characteristics were analysed for both mixes, and 
table of data was generated based on various nano-additive absorptions for varying blend percentages, engine 
loads, and injection pressures. The following parts include a comprehensive explanation of the procedures that 
were carried out during the creation of the data, the assessment, and the analysis. The specifications for measur-
ing the outcomes of the system is provided in Table 1.

Materials preparation and biodiesel production analysis.  This section in particular covers the 
process of acquiring leachate oil and nanoparticles (Al2O3 and CuO) and further details the procedure that is 
involved in the manufacture of different mixes. The primary source of the raw leachate oil used in this study 
was the local landfill facility at Timarpur, which can be found in New Delhi and is represented in Fig. 1. The 
collected leachate oil was carried into the laboratory, where it was heated to a temperature of 120 degrees Cel-
sius and filtered in order to remove any traces of moisture that may have been present. We purchased excess 

Table 1.   Specifications of measuring instruments.

Parameter Apparatus Measuring range Equipment model

Brake power Dynamometer 0–1000 kW DynoTech 2000

Torque Dynamometer 0–5000 Nm TorqMaster Pro 5000

Fuel consumption Fuel flow meter 0–1000 L/h FlowTech FLM-1000

Exhaust gas temp Thermocouple 0–1200 °C TempProbe TC-1200

NOx emissions NOx analyzer 0–1000 ppm AVL gas analyser

CO emissions CO analyzer 0–10% AVL gas analyser

UBHC emissions Hydrocarbon analyzer 0–1000 ppm AVL gas analyser

Cylinder pressure Pressure transducer 0–200 bar PressSureMaster PT-200

Injection pressure Pressure transducer 0–2000 bar InjexiTech IPX-2000

Figure 1.   Generation of landfill oils at a landfill site, landfill oil and landfill biodiesel sample.
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chemicals from the neighbourhood market, including methanol with a purity of 99%, potassium hydroxide with 
a concentration of 96%, and an indicator containing phenolphthalein. Powdered aluminium oxide and copper 
oxide were purchased from a local trader at the chemical market in Ghaziabad, Uttar Pradesh. The Free fatty 
acid (FFA) level was assessed to be much greater than 2%, which meant that the raw oil needed to go through a 
transesterification process that consisted of two stages in order to be converted into biodiesel. The experiment 
was carried out in a glass beaker, and it was carried out in such a manner that a solution of KOH and methanol 
were fully mixed with the assistance of an ultrasonic machine that comprises of an ultrasonic horn for effective 
mixing. In the combination containing methoxide, further amounts of landfill oil and hydrobromic, which is an 
acid catalyst, were combined, and the frequency of mixing was increased. The end result was a mixture of glyc-
erine and biodiesel, which could be seen as two distinct layers after it had been processed. While the quantities 
of acid and oil were held at a constant ratio of HBr/oil = 20/200 (w/w), the ratio of methanol to water was kept 
at a constant level of 200 grammes per 400 millilitres23. When nanoparticles are added to fuels, the end result 
is often an improvement in the qualities of the fuel, such as an increase in the amount of excess oxygen and an 
expansion of the contact surface area. Because nanoparticles are often insoluble in biofuels, successful amalga-
mation frequently necessitates the inclusion of an extra chemical reaction as well as a procedure that amplifies 
the amount of energy available. The transformation of particles made of metal into nanofluids, which are readily 
miscible with biodiesels, is the primary transformation that takes place. The process begins with the treatment of 
metal particles with distilled water, and it is followed by the transfer of the mixture into an ultrasonic reactor for 
a predetermined period of time. During the course of this investigation, aluminium oxide and copper oxide are 
weighed before being mixed with water that has been distilled, and then the mixture is subjected to an ultrasonic 
reactor operating at 90–100 kHz for twenty minutes24. Nanoparticles of Al2O3 and CuO that were employed 
in the study have a size of thirty nanometers (nm). Nanoparticles with proper surface modifications and well-
chosen surfactants can enhance stability by preventing agglomeration and sedimentation. Secondly, maintaining 
a controlled and uniform dispersion of nanoparticles in the fuel matrix is essential. This can be achieved through 
advanced mixing techniques and optimization of processing parameters. Thirdly, understanding the impact of 
nanofuel properties on engine performance is vital. Thorough testing and evaluation of the nanofuel’s combus-
tion characteristics, emissions, and engine durability are necessary to ensure compatibility and stability during 
engine operation. After that, the milky nanofluid is mixed with biodiesel using a magnetic stirrer at a speed of 
1800 revolutions per minute while Span 80, a surfactant, is also present in the mixture. The final composition of 
the test mix for the aluminium biodiesel (ABD) and the copper biodiesel (CBD) was 92% biodiesel, 5% nano-
fluid, and 3% surfactant on a volume basis25.

Setup of test engine.  In Fig. 2, the engine configuration that was utilised to calculate the performance 
and emission characteristics for biodiesel-based fuels is provided for the reader’s convenience. The CRDI diesel 
engine served as the testing ground for the first experiments. The eddy current dynamometer is used to measure 
and adjust the amount of load that is placed on the engine. The voltmeter and the current metre are both com-
ponents of the resistive type load panel. Controlling the engine torque in the range of 0 to 18 kg required the 
employment of a diesel engine and an eddy-current dynamometer in conjunction with each other. A thermo-
couple of the K type was used in order to get an accurate reading of the exhaust gas’s temperature. The exhausts 
from the engine predominantly consist of UBHC, CO, and NOx emissions, all of which were shown on the 
screens of the gas analysers labelled "AVL Di Gas 444". The many technical particulars of the engine configura-
tion are outlined in Table 2, which can be found below.

Figure 2.   Experimental setup of PETTER-AV engine.
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Physio‑chemical analysis of produced test blends.  In order to further examine the practicability 
of using the produced fuel in a CI engine, varied combinations of petro-diesel and nano-particles were added 
to the mixture. As can be shown in Table 3, the physio-chemical parameters of leachate oil are quite similar to 
those of regular diesel, which suggests that it would be suitable for use in an engine. The advantage of the fuel 
in the injection process was further increased by other advantages, such as a reduction in viscosity. A capillary 
viscometer was used in order to determine the thickness of the fuel mixtures. A bomb calorimeter equipment 
was used to measure the calorific value of the fuel while a hydrometer was used to estimate the density of the fuel. 
As can be seen in Table 3, the final test blends of aluminium oxide biodiesel (abbreviated as ABD) and copper 
oxide biodiesel (abbreviated as CBD) were determined to be in compliance with the ASTM criteria, as shown by 
the physiochemical parameters of the blend.

Application of response surface methodology technique.  An early attempt to tackling the problem 
of connecting the input parameters with the output parameters is offered by the RSM method. In order to calcu-
late the outputs and decide which equation best matches them, a specialised CCRD design was used, and sixty 
test runs were performed. In addition to this, the built architecture provides newly calculated extreme values 
(both low and high) for each variable26–28. Data gathered from previous research is used to create the input vari-
ables, and the outcomes of experiments are used to validate whether or not such variables are feasible. The ranges 
that were created for the input parameters had a significant impact on the output responses up to a certain point, 
beyond which the effects were much less significant29. The amount of load that was provided to the engine was 
adjusted between 20 and 100%, and the fuel was blended up to 20%. The engine was subjected to a maximum 
injection pressure of 220 bars, and the concentration of nanoparticles was varied between 0 and 20%. When 
the load was less than 20%, the results were trivial and not helpful to the study at all30. The calorific value of the 
gasoline decreased when it was blended at a higher percentage than 20%, which rendered the running of the 
engine impossible. The concentration of nanoparticles was capped at 20% due to the fact that any higher would 
have caused the fuel to become very viscous. Injection pressures higher than 220 bar needed a modification to 
the design of the engine in order to achieve efficient functioning, which is not an option that can be pursued. 
The experiment was carried out using two distinct nanoparticles, namely Al2O3 and CuO, in order to determine 
which of the two is superior in terms of the output responses. Two measurements were obtained at the same 
time for a certain set of input variables in order to get values that were foolproof and included the least amount 
of uncertainty possible. In the end, their average value was the answer that was taken into consideration for the 
next stage of the research. After deriving the fits equation for each output function, it was then input into the 
optimization models (GA and NSGA) as described in Table 4. This was done while the system was operating 
using petro-diesel as its fuel.

The analysis makes use of a number of different control variables, numerical and coded data, and a CCRD 
array that was built specifically for it. In all, there were sixty different runs. A summary of the findings obtained 
from sixty separate test runs conducted using a variety of engine input parameters.

The analysis contains four variables, each of which is shown in Table 4 along with their respective ranges. The 
numerical values that were used in the array that was specifically developed for your application and consisted of 
a total of 60 runs Table 5 presents a summary of the findings obtained from sixty separate test runs conducted.

Table 2.   Mechanical particulars of the petro-diesel engine.

S. no. Module Description

1 Main engine model KIRLOSKAR

2 Engine design 4-stroke, petro-diesel engine

3 Bore of engine cylinder 90 mm

4 Length of cylinder 130 mm

5 Power production 17 BHP at 4000 rpm

6 Compress ability 18:1

Table 3.   Comparison for physiochemical properties of the test fuels.

Properties ABD CBD LFB test fuel Diesel ASTM limit

Density at 15 °C (kg/m3) 888 893 975 841 860–900

Kinematic viscosity (cSt) 3.64 3.52 3.99 4.56 2.52–7.5

Calorific value (MJ/kg) 47.5 45.5 39.12 44.85 Min. 33

Flash point (°C) 69.83 65.71 70.45 51 Min. 130

FFA (%) – – 0.77 0.0014 Max. 2

Fire point (°C) 59 57 47 58 Min. 53
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Modelling and optimization.  The primary model employed in this study was the Takagi–Sugeno artificial 
neuro-fuzzy interface system of the first order approach that was used for the research (ANFIS). In order to assess 
the performance and exhaust characteristics, the experiment was designed on the basis of the model described 
above and shown in Fig. 3. These results are being taken into consideration as the primary goal functions for 
this study. Previous research have already created models that are conceptually comparable to this one. How-
ever, when applied to thermal engineering applications, these models were complicated, time-consuming, and 
erroneous owing to the restricted, nonlinear, and uncertain dataset31,32. Recently, ANFIS models have acquired 
a large amount of popularity as a result of their capacity to develop effective fuzzy rules, which enables them to 
facilitate efficient surface plots between a variety of input and output responses. Practically speaking, there is an 
urgent demand to adopt such artificially intelligent procedures in engine performance assessments since this 
methodology may create speedier and more accurate outputs, therefore becoming an ideal alternative way to the 
current experimental techniques. These approaches are able to provide results that are more reliable and accurate 
than their predecessors. The general model of ANFIS is made up of six primary layers, starting with the initial 
layer of input parameters, then moving on to the fuzzification layer, rule consequent layer, rule strength normali-
sation layer, rule consequent layer, and lastly the rule inference layer33. The existence of both the Fuzzy Theory 
and membership frameworks may be inferred from the successful construction of a workable ANFIS structure. 
The collection of data was made possible by the creation of five distinct FIS models for objective functions, which 
were denoted by the acronyms BTE, BSEC, CO, and NOx respectively. A total of approximately sixty sets of input 
variables and data patterns were generated as a result of the experiments. These were then divided at random 
into two subsets, namely, forty-five (representing approximately seventy-five percent) and fifteen (representing 
approximately twenty-five percent) sets of data, which were used for training and testing the ANFIS models, 
respectively. Table 6 provides an explanation of the model’s foundation, which may be found in the single ANFIS.

In order to develop a variety of reactions via modelling, the following ANFIS equations were implemented.

Layer 1: fuzzification layer. 

Layer 2: product layer. 

Layer 3: normalized layer. 

Layer 4: defuzzied layer. 

Layer 5: total output layer. 

(1)Q1,i = µAi (x), for i = 1, 2 or;

(2)Q1,j = µBj (y), for j = 1, 2;

(3)
µAi (x) =

1

1+

[

(

x−ci
ai

)2
]bi

(4)Q2,i = wi = µAi (x)µBi (y), for i = 1, 2;

(5)Q3,i = wi =
wi

w1 + w2

, for i = 1, 2

(6)Q4,i = wifi = wi(pix + qiy + ri), for i = 1, 2;

(7)Q5,i = overall output =
∑

i
wifi =

∑

iwifi
∑

iwi

Table 4.   Level of experimental parameters.

S. no. Input parameters Unit Level 1 Level 2 Level 3 Level 4 Level 5

1 Load (L) (%) % 20 40 60 80 100

2 Blend (B) (%) % 0 5 10 15 20

3 Injection pressure (IP) (bar) Bar 180 190 200 210 220

4 Nano particles concentration (NPC) (%) % 0 5 10 15 20
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Input conditions ABD CBD

Trial Appl Mix % IP NA BTE BSEC UBHC CO NOx BTE BSEC CO NOx

1 20 15 180 5 16.17 3.7149 7.9099 0.0143 170.3 15.561 4.32 0.018 197

2 40 5 190 0 13.93 3.5014 8.7676 0.0123 172.5 13.406 4.1 0.016 200

3 60 10 200 20 20.89 2.7328 6.0992 0.0185 145.3 20.11 3.2 0.024 168

4 80 0 210 15 18.65 2.5193 7.4334 0.0165 147.6 17.955 2.95 0.021 171

5 100 20 220 10 22.38 3.3306 5.9086 0.0198 204.3 21.546 3.9 0.025 237

6 20 5 180 5 14.18 3.3733 8.6723 0.0125 152.1 13.646 3.95 0.016 176

7 40 15 190 10 18.4 3.416 7.0522 0.0163 168 17.716 4 0.021 195

8 60 10 200 0 15.92 3.5868 8.0052 0.0141 190.7 15.322 4.2 0.018 221

9 80 0 210 15 18.65 2.5193 7.7193 0.0165 147.6 17.955 2.95 0.021 171

10 100 20 220 20 24.87 2.9036 4.9556 0.022 181.6 23.94 3.4 0.028 210

11 20 0 180 0 11.94 3.416 9.53 0.0106 154.4 11.491 4 0.013 179

12 40 5 190 5 15.17 3.2879 8.2911 0.0134 161.2 14.603 3.85 0.017 187

13 60 10 200 10 18.4 3.1598 7.0522 0.0163 168 17.716 3.7 0.021 195

14 80 15 210 20 22.88 2.8182 5.8133 0.0202 163.4 22.025 3.3 0.026 189

15 100 20 220 15 23.63 3.1171 8.1005 0.0209 193 22.743 3.65 0.027 224

16 20 0 180 0 11.94 3.416 9.53 0.0106 154.4 11.491 4 0.013 179

17 40 10 190 5 16.17 3.4587 7.9099 0.0143 170.3 15.561 4.05 0.018 197

18 60 5 210 10 17.66 3.0317 7.5287 0.0156 161.2 16.997 3.55 0.02 187

19 80 15 220 15 21.89 3.0744 6.3851 0.0194 177.1 21.067 3.6 0.025 205

20 100 20 200 20 24.37 2.8182 4.765 0.0216 177.1 23.461 3.3 0.027 205

21 20 0 190 0 12.19 3.4587 9.4347 0.0108 156.6 11.731 4.05 0.014 181

22 40 5 200 5 15.42 3.3306 8.1958 0.0136 163.4 14.843 3.9 0.017 189

23 60 10 180 10 17.91 3.0744 7.2428 0.0158 163.4 17.237 3.6 0.02 189

24 80 15 210 15 21.64 3.0317 6.2898 0.0191 174.8 20.828 3.55 0.024 203

25 100 20 220 20 24.87 2.9036 4.9556 0.022 181.6 23.94 3.4 0.028 210

26 20 0 180 0 11.94 3.416 9.1488 0.0106 154.4 11.491 4 0.013 179

27 40 15 200 5 17.41 3.6722 7.4334 0.0154 181.6 16.758 4.3 0.02 210

28 60 10 190 10 18.16 3.1171 7.1475 0.0161 165.7 17.476 3.65 0.02 192

29 80 20 210 15 22.63 3.2025 5.9086 0.02 183.9 21.785 3.75 0.025 213

30 20 5 220 20 18.9 2.9036 7.2428 0.0167 127.1 18.194 3.4 0.021 147

31 100 0 190 0 15.17 2.9463 8.2911 0.0134 183.9 14.603 3.45 0.017 213

32 40 5 180 5 14.92 3.2452 7.624 0.0132 158.9 14.364 3.8 0.017 184

33 60 10 200 10 18.4 3.1598 7.0522 0.0163 168 17.716 3.7 0.021 195

34 80 15 210 15 21.64 3.0317 6.2898 0.0191 174.8 20.828 3.55 0.024 203

35 100 20 220 20 24.87 2.9036 6.0992 0.022 181.6 23.94 3.4 0.028 210

36 20 0 180 20 16.91 2.562 7.624 0.015 109 16.279 3 0.019 126

37 40 5 190 5 15.17 3.2879 8.2911 0.0134 161.2 14.603 3.85 0.017 187

38 100 10 220 5 21.64 3.2025 7.1475 0.0191 197.5 20.828 3.75 0.024 229

39 80 15 210 10 20.39 3.2452 6.7663 0.018 186.1 19.631 3.8 0.023 216

40 60 20 200 0 17.91 3.9284 7.2428 0.0158 208.8 17.237 4.6 0.02 242

41 20 0 200 0 12.44 3.5014 9.3394 0.011 158.9 11.97 4.1 0.014 184

42 40 5 190 5 15.17 3.2879 8.2911 0.0134 161.2 14.603 3.85 0.017 187

43 100 10 180 10 19.4 2.8182 6.671 0.0172 177.1 18.673 3.3 0.022 205

44 60 15 210 15 20.89 3.1598 6.2898 0.0185 168 20.11 3.7 0.024 195

45 80 20 220 20 24.12 3.0317 7.4334 0.0213 174.8 23.222 3.55 0.027 203

46 20 0 180 0 11.94 3.416 9.53 0.0106 154.4 11.491 4 0.013 179

47 40 5 200 5 15.42 3.3306 7.2428 0.0136 163.4 14.843 3.9 0.017 189

48 60 10 190 15 19.4 2.9036 6.671 0.0172 154.4 18.673 3.4 0.022 179

49 80 15 210 10 20.39 3.2452 6.7663 0.018 186.1 19.631 3.8 0.023 216

50 100 20 220 20 24.87 2.9036 4.9556 0.022 181.6 23.94 3.4 0.028 210

51 20 0 190 0 12.19 3.4587 9.4347 0.0108 156.6 11.731 4.05 0.014 181

52 40 5 180 5 14.92 3.2452 8.3864 0.0132 158.9 14.364 3.8 0.017 184

53 80 10 200 10 19.15 3.0317 7.0522 0.0169 174.8 18.434 3.55 0.022 203

54 60 15 220 15 21.14 3.2025 6.3851 0.0187 170.3 20.349 3.75 0.024 197

55 100 20 210 20 24.62 2.8609 4.8603 0.0218 179.3 23.701 3.35 0.028 208

Continued
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(8)f =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

(9)f = w1(p1x + q1y + r1)+ w2(p2x + q2y + r2)

Input conditions ABD CBD

Trial Appl Mix % IP NA BTE BSEC UBHC CO NOx BTE BSEC CO NOx

56 20 5 180 0 12.93 3.5868 9.1488 0.0114 163.4 12.449 4.2 0.015 189

57 40 0 190 5 14.18 3.1171 8.6723 0.0125 152.1 13.646 3.65 0.016 176

58 60 10 200 10 18.4 3.1598 7.0522 0.0163 168 17.716 3.7 0.021 195

59 80 15 210 20 22.88 2.8182 5.8133 0.0202 163.4 22.025 3.3 0.026 189

60 100 20 220 15 23.63 3.1171 5.4321 0.0209 193 22.743 3.65 0.027 224

Table 5.   Experimental outcomes from diesel engine.

Figure 3.   Framework of ANFIS model.

Table 6.   ANFIS framework for training the diesel engine-based model.

Over-all quantity of nodes 203

Quantity of linear limitations 104

Amount of non-linear strictures 27

Sum of training information pairs 51

Amount of rules that are fuzzy 99

Relationship role Triangular
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In most cases, the process of modelling and optimising an engine based on its features starts with the creation 
of a precise fitness function that is appropriate for the level of difficulty of the problem statement. The traditional 
approaches that are used to construct objective function for a number of input and output parameters need a 
significant amount of time and effort to complete. However, since it is able to produce the data without the need 
for any prior model history, the ANFIS methodology is able to provide an adequate objective function. This is 
the primary reason why this method is recommended. Utilizing a genetic algorithm in the processing of output 
replies allows for further refining of estimations and predictions that have been derived using the ANFIS method, 
which results in improvements in both accuracy and efficiency.

When it comes to multi-objective optimization, it is often seen that the outputs of the ANFIS approach are 
trapped inside the local optima, which indicates that the technique may not be 100% correct34. In addition to this, 
the model construction is made more difficult by the contradictory results. Hybrid approaches, such as the genetic 
algorithm and its many extensions, are used in order to optimise the problem in a way that is both prompt and 
effective. This is done in order to circumvent the challenges presented by the issue’s The implementation of a GA 
algorithm that randomly searches for solutions makes for replies that are both economic and competent. The GA 
is a kind of adapt-capable combinatory exploration procedure that operates based on the fundamental concept 
of biotic development. This means that the variations are generated depending on the mixture of the parent and 
kid. The dataset is used by the model to construct the optimal combination of inputs that will result in the best 
results, and the framework for these outputs can be found in Tables 6 and 7. Previous studies have shown that 
GA is more effective than other multivariate techniques, which take a longer amount of time to produce results 
even when using comprehensive nonparametric strategies35,36. These studies compared GA to other multivariate 
techniques and found that GA produced more accurate results in a shorter amount of time. In light of this, mak-
ing use of a GA weighted sorting approach in RSM produced predictions results in a reduction in the amount 
of uncertainty. The RSM-GA algorithm’s flowchart may be seen in Fig. 4, which is given below for convenience.

To enhance its performance in meeting the general norms for petro-diesel machines, the model undergoes 
further optimization using the NSGA-II algorithm. This algorithm, known for its elitist structure, has demon-
strated success in engineering applications for multi-function optimization, top to quicker meeting and priority-
based categorization37,38.

In the optimization process, the input variables are evaluated for Pareto optimality and then fed into the 
Fuzzy Interface System (FIS) framework39. Within the FIS, membership functions are defined for each input 
value. The NSGA-II algorithm is then applied to this framework to achieve multi-objective optimization for all 
outcomes listed in Table 8.

Primary aim of developing an optimization model is to maximize the BTE and minimize BSEC, NOx, 
UBHC and CO simultaneously A detailed flowchart is presented below Fig. 5 highlighting the steps involved 
in ANFIS-NSGA-II approach in generating a multi-objective output for performance and exhaust emission of 
landfill waste biodiesel.

A combined flow chart representing the various processes accompanied in this research is shown in Fig. 6.
The NSGA-II algorithm was utilized to optimize the interdependency matrix and generate optimal responses. 

The following steps were undertaken in the application of NSGA-II algorithm:

•	 Step one: Random primary population is created of size N.
•	 Step two: The population formed in step one sorted by means of fast non-dominated sorting until the entire 

population is classified into numerous fronts.
•	 Step three: Crowding distance task is performed for every evaluation and crowded tournament assortment 

is allocated. This picks a combination at a improved rank if the combinations belong to various fronts or a 
answer with a higher crowding distance if they belong to the identical front.

•	 Step four: Crossover and mutation is applied to the parent population obtained above to yield child popu-
lation. To generate new offspring’s, simulated binary crossover (SBX) operator and polynomial mutation 
operators are used.

•	 Step five: The parent and child population are joint together to yield a population of size 2N.
•	 Step six: Stopping criteria is checked. If the Pareto optimal front is accomplished, then algorithms is stopped 

else repeat and move to step two.

(10)f = (w1p1x + w1q1y + w1r1)+ (w2p2x + w2q2y + w2r2)

Table 7.   GA algorithm framework.

Category of assortment technique Roulette wheel

Populace gauge 85

Repetitions 3400

Switch-over (%) 0.85

Alteration proportion (%) 0.85

Equal of alteration 0.9

Assortment weight 12
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All major data applied and generated in the ANFIS models. Statistical tools such as the coefficient of deter-
mination (R2) could be used to elucidate the discrepancies in the developed model and mean-squared error 
(RMSE) provided in Eqs. (11) and (12) respectively. 

where, Em =

∑N
i=1 Pi
N

RMSE = Root Mean Square Error, R2 = Fraction of Variance, Pi = Forecast value obtained from modelling, 
Ei = Experimental value generated, Em = Mean of the predicted values generated from models, N = Available Data, 
i = Trial run value need to be calculated.

(11)RMSE =

√

√

√

√

1

N

N
∑

i=1

(Pi − Ei)
2

(12)R2
= 1−

∑N
i=1 (Pi − Ei)

∑N
i=1 (Pi − Em)

Figure 4.   Algorithm of RSM-GA (left) and ANFIS-NSGA-II algorithm (right).

Table 8.   NSGA-II optimization process requirements and parameters.

Parameter Value

Objectives Max BTE, Min BSEC, Min NOx, Min CO and Min UBHC

Variables X1 = load, X2 = blend percentage, X3 = ignition pressure, X4 = nanoparticle concentration

Bounds 20 ≤ X1 ≤ 100, 0 ≤ X2 ≤ 20, 180 ≤ X3 ≤ 220, 0 ≤ X4 ≤ 20

Populace type Double vector

Populace size 300

Collection function Tournament

Cusp portion 0.8

Transformation portion 0.1

Ending norms Generations: 1000/stall generations: 100
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Output responses and their measurement.  In this research, output responses were measured by 
employing measuring apparatuses, chemical formulas and empirical relations depending upon the type 
of response. In the present study six output parameters were considered and their measurement method is 
described as follows:

Brake thermal efficiency (BTE).  This maybe defined as the ratio of the applied brake power (BP) attained at the 
crankshaft to total energy (E) available to diesel engine for combustion process as shown in Eq. (13).

where, η is the brake thermal efficiency (in %); BP is the Brake power (in kW) and E is the fuel energy (in kW).

Brake specific energy consumption (BSEC).  This quantity is a hypothetical tool which indicates the total energy 
required from the fuel to produce unit power. Over the years it has become a powerful tool and somewhat 
replaced the BSFC value. Fuels are compared for fuel efficiency with this tool only. BSEC is the calorific value 
(CV) times brake specific fuel consumption (BSFC) and used to prepare a comparison among various fuels. The 
specific energy consumption is a more accurate estimate in comparison to specific fuel consumption. It is given 
by Eq. (14)

where, CV is the calorific value (in kJ/kg) and BSFC is the brake specific fuel consumption (in kg/kWh).

CO, NOx, UBHC.  Absence of the necessary quantity of oxygen, hastens improper combustion process, which 
moreover results in identified effluent gases such as unburned hydrocarbons (UBHC), carbon oxide (CO) and 
oxides of nitrogen (NOx). The AVL DIGAS 444 exhaust gas analyzer was employed to measure the volumes of 
CO emissions in terms of percentage (%) and UBHC and NOx emissions as ppm.

(13)η =
BP

E

(14)BSEC = CV × BSFC

Establishing

and 

Estimating 

ANFIS

START
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Clustering
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Filtering improper model 
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Figure 5.   Flowchart for the applied prediction model of ANFIS.
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Uncertainty analysis.  The occurrence of ambiguity during experimentation is probably attributable to a 
wide variety of causes, some of which may be categorised as instrument error, measurement error, surrounding 
circumstances, measurement methods, and the kind of instrument. Therefore, in order to determine and provide 
a feeling of clarity in the measured output answers, each attribute is counted twice for each inquiry run. The 
error analysis was carried out with the submission of squares for each and every discrete piece of equipment that 
was measured during the investigation40. The incorrect values are detailed in Table 9, which may be found here.

The complete proportion of error was valued during the investigation using Eq. (15).

Figure 6.   Combined flow chart for various processes accompanied in this research.

Table 9.   Errors and uncertainties associated with all instruments.

Measurements Instrument Range Accuracy

Engine load Strain gauge type load cell 0–25 kg  ± 0.1 kg

Speed Speed sensor 0–10,000 rpm  ± 20 rpm

Calculated results Uncertainty

Engine power – 0–50 kW  ± 1.0%

Fuel consumption Level sensor –  ± 1.0%

Air consumption Turbine flow type –  ± 1.0%

BTE – –  ± 1.0%

BSEC – –  ± 1.5%

UBHC Gas analyzer Ppm  ± 0.1%

CO Gas analyzer g/kWh  ± 0.2%

NOx Gas analyzer Ppm  ± 0.1%
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The general percentage of uncertainty (U) = square root of [(Error level in BTE value)2 + (Error level in BSEC 
value)2 + (Error level in UBHC value)2 + (Error level in CO value)2 + (Error level in NOX value)2]1/2.

The overall percentage uncertainty = Square root of [ (1.0)2 + (1.0)2 + (1.0)2 + (1.5)2 + (0.1)2 + (1.0)2 + (0.2)2 + 
(0.1)2]1/2.

The general fraction of uncertainty =  ± 2.38%.
The entire uncertainty level throughout experimentation is projected to be ± 2.38%, thus lying-in acceptable 

range.

Results and discussion
Prediction of engine performance and emissions parameters by ANFIS.  The research employs 
the ANFIS model which is capable of establishing a feasible relationship between considered inputs and engine 
performance such as BTE and BSEC and emissions parameters such as UBHC, NOx and CO for both the nano-
particles. Blends of landfill food waste oil was prepared and amalgamated with various nanoparticles in different 
concentrations. The following input variables combinations might lead to a substantially large data set which 
consequently furnishes generation of enormous experimental responses eventually consuming time, labour and 
energy and fuel. The research suggests implementation of a fusion strategy (ANFIS) which facilitates efficient 
and effective output prediction even for a smaller dataset with negligible errors. The input dataset developed 
through RSM were trained and validated according to the Sugeno-type fuzzy inference system which primar-
ily works on a complex algorithm employing least square model and the back- propagation gradient descent 
procedure37. To enhance the functionality of the experimental engine characteristics framework, an array-based 
hybridization was implemented. Previous literature has demonstrated the successful application of the ANFIS 
framework, which consists of 4 input operators and 5 sheets, in composite manufacturing complications40. The 
fuzzy interface system (FIS) construction for every production parameter was separately intended for the 4 input 
operators in the ANFIS model, as illustrated in Fig. 7. Within the system, approximately 81 rules were self-devel-
oped, a topology that is considered suitable for associating operative parameters and anticipated constraints. 
Figure 8 provides an example of rules applicable in the AI model for production strictures such as NOx. These 
proclamations expressed regarding the instructions in AI are inter-related to the Sugeno model, generating its 
values from predefined datasets obtained from the input responses, as shown in Fig. 9.

To simplify the bend tracing amongst constraints and outcomes for both nano-additives (ABD and CBD), 
3-D graphs are established to indicate the inter-relationship amongst any 2 constraints out of four and a one 
specific outcome, as displayed in various figures. Figure 10 shows plot for BTE versus various input parameters. 
Figure 11 shows plot for BSEC versus various input parameters. The blend percentage of biodiesel-diesel and 
the concentration of nanoparticles affect the combustion characteristics and energy release, influencing BSEC. 
Additionally, the injection pressure plays a crucial role in fuel atomization and distribution, which can alter BSEC. 
The load percentage directly affects the engine’s power requirements and overall efficiency, thus impacting BSEC. 
Figure 12 shows plot for CO versus various input parameters. The injection pressure plays a critical role in fuel 

(15)U =

(

[
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]2

+

[
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]2

+ . . . . . . .+
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]2
)1/2

Figure 7.   Developed FIS framework with 81 rules for various engine outcomes.
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atomization, which can impact the combustion efficiency and subsequently affect CO emissions. Additionally, 
the load percentage directly influences the engine’s power demand and combustion conditions, further affect-
ing CO emissions. Figure 13 shows plot for NOx versus various input parameters nanoparticle concentration 
affect the combustion process, altering the combustion temperature and oxygen availability, which can lead to 
variations in NOx formation. Moreover, the load percentage directly influences the engine’s power demand and 
combustion conditions, further affecting NOx emissions. While Fig. 14 is for UBHC as the blend percentage 
of biodiesel-diesel and nanoparticle concentration affect the fuel–air mixing, which can impact the wholesome 
combustion process and lead to variations in UBHC emissions. Additionally, the load percentage directly affects 
the engine’s power demand and combustion conditions. Application of ANFIS technique has prognostic effi-
cient outputs identical to those previous experimental generated values employed for training and testing the 
system for all output responses. The forecasted values for all outcomes, estimated by ANFIS model are graphed 
in comparison to conventional experimented data in Figs. 15, 16, 17, 18, and 19 respectively to justify systems 
reliability and correctness.

Prediction of engine performance and emissions parameters by RSM‑GA.  Implementing a 
genetic algorithm in the output answers of the RSM approach allows for additional fine-tuning, which results in 
better accuracy and efficiency. Estimations and predictions produced using the RSM technique may be used in 
this way. The use of RSM-GA eradicates the inaccuracies that are caused by the steep descent approach, which 
causes the results to get trapped inside the local optimum. Utilization of a GA algorithm that randomly searches 
for solutions enables replies that are both cost-effective and efficient. The genetic algorithm is a kind of adaptive 
combinatorial search algorithm that is based on the fundamental idea behind biological evolution. This means 
that the permutations are generated based on the combination of a parent and a kid. The model optimises the 
fitness functions that are created by the RSM, and as a result, it is able to acquire the most optimal combina-
tion of inputs that will result in the best results. In the past, researchers in the field of thermal engineering have 
confirmed the use of GA by comparing it to other multivariate approaches that take longer to provide results31,32. 

Figure 8.   Primary ANFIS data development for a random model (NOx).

Figure 9.   Separate system for each outcome constraints is separately premeditated for set of constarints.
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Therefore, using a GA weighted sorting approach in RSM derived predictions reduces the uncertainty in mem-
bership functions, which makes improvisation easier.

A fitness function value was generated and defined in the workspace of the software. The development of 
the fitness equation involved considering the mean statistical error values for all datasets between the predicted 
and experimental responses. The fitness function was recalled when inputting values into the GA toolbox. The 
combination of soft computing techniques with an optimization model (GA) provides a faster and more efficient 
architecture procedure, resulting in the best of both systems. Comparative results are displayed in Figs. 15, 16, 17, 
18, and 19. To validate the fitting function, R2 values were estimated to be between 0.85 and 1 for all outcomes, 
suggesting accurate fitting of data in the RSM-GA model. Henceforth, RSM-GA algorithm is stipulated to be a 
powerful tool for modelling the engine performance and emission characteristics.

Prediction of engine performance and emissions parameters by ANFIS‑NSGA‑II.  Initially input 
data conditions are uploaded in the FIS model, which generates separate outcomes individually for each model. 
In particular, current setup is again reoptimized with the help of using capable NSGA-II procedure which will 
establish the outcomes of the study in a much more clear way. The constraints of the study conform to global 
ethics for petro-diesel engine operation. The advanced system of NSGA-II system can be excellently functional 
in multiple domains for variable-functional convergence procedures, pertaining to nearer approximations40,41. 
Moreover, adjusted populace is organized more on source of in dominated pattern, eventually leading to devel-
opment of frontages. The primary front was entirely non-dominant set in the existing population whereas the 
secondary front was dominated by the entities in the primary front only and so on. Soft computing techniques 
like genetic algorithms and its hybrid versions are often utilized for multi-objective optimization in diesel 
engines. These optimization processes involve complex non-linear equations with contrasting objectives. The 
Pareto optimal front set is often utilized to obtain the best operating conditions for the desired engine outputs. 

Figure 10.   Surface plots for BTE vs Input conditions for ABD (aa–af) and CBD (ba–bf).
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In this regard, the elitist NSGA-II structure has been successfully applied in several fields to facilitate nearer 
conjunction with suitable categorization built on precedence.

The ANFIS-NSGA-II model is a hybrid model that combines the advantages of both soft computing tech-
niques and optimization models. It was successful in forecasting exact outcomes within advanced oversimpli-
fication ability for performance-emission parameters for petro-diesel machines. This model provides a Pareto 
optimal front set that represents the finest counter and validation among the considered objective functions 
predefined within the system. The improved outcomes extracted with the aid of above procedure can be explained 

Figure 11.   Graphs for BSEC vs constraints ABD (ca–cf) and CBD (da–df).
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through values presented Table 10, where ideal load application for engine can be 100%, ideal mix ratio can be 
in following ratio which is 20%, ideal nano-additive requirement in the blend is close to 20 ppm, while ideal 
pressure inserted within the cylinder can be 200 bar. These conditions yield BTE to be 24.45 kW, BSEC to be 
2.761784 NOx to be 159.5488 ppm, UBHC to be 4.687807 ppm, and CO to be 0.020243%. A favourite prioriti-
zation is established in case of the attained outputs of the study where BTE is assigned with zenith while others 
are assumed with utmost similarly.

Figure 12.   Graphs for CO vs constraints for ABD (ea–ef) and CBD (fa–ff).
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Moreover, the developed fitness equation was processed by taking into consideration mean numerical fault 
standards for above datasets amongst the investigational and prognostic outputs. While alimentation data’s are 
fed into the GA, the appropriateness function was recalled. This hybrid model provides the finest of mutually 
organizations, permitting a sooner and well-organized planning procedure. Additionally, the ANFIS-NSGA-II 
model was compared with other models such as ANFIS and RSM-GA, and it aligned itself closest to the gener-
ated experimental values, furnishing superiority to the other models for data prediction. Thus, the overhead 

Figure 13.   Graphs for NOx vs constraints for ABD (ga–gf) and CBD (ha–hf).
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declaration rationalizes and confirms the appropriateness of the perto-diesel machine characteristics analysed 
by commissioning the ANFIS-NSGA system to investigate and augment variables.

Comparative study of the predicted values of the developed models.  The outcomes predicted 
by hybrid models (ANFIS, RSM-GA and ANFIS-NSGA-II) were evaluated on the basis of regression formulas 
such as root mean square error (RMSE) and fraction of variance R2. Often these statistical tools are employed 
to estimate the deviation between the experimental and predicted responses. Fraction of variance (R2) works on 
the concept of linear regression taking in account all the over and under estimations within the system. RMSE is 
employed to estimate how close the residuals (experimental data and forecasted data) are to the best fit line. To 
validate and cross verify the engine outcomes such as BTE, BSEC, UBHC, CO and NOx, these were tested for 
different uncertainties using statistical tools. Different types of regression analysis were performed to evaluate 
the feasibility of these soft computed hybrid models developed for engine testing. The accuracy of the predic-
tive model was validated by considering the regression formulas like RMSE, and R2. Tables 11, 12, 13, 14 and 
15 presents a comparative analysis of the regression errors evaluated for the predicted outcomes such as BTE, 
BSEC, UBHC, CO and NOX respectively. Also, the graphs Figs. 20, 21, 22, 23 and 24 show comparative variations 
and deviations among different models. Previous prediction models were deemed accurate if RMSE evaluated 
was close to zero. Conversely, the fraction of variance of the forecasted data should be close to 1 for accurate fit-
ting model. In the present research, all implemented models complied with the above statistical error standards 
facilitating a reliable and consistent forecast. The ANFIS-NSGA-II model displayed significantly improved accu-
racy in predicting output responses when compared to ANFIS and RSM-GA models. The error values generated 

Figure 14.   Graphs for UBHC vs Constraints for ABD (ia–if) and CBD (ja–jf).
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by the ANFIS-NSGA-II model were very close to the experimental responses. In addition, the R2 training values 
for ANFIS-NSGA-II model (ABD blend) for BTE, BSEC, UBHC, CO and NOx (0.9985, 0.9464, 0.9838, 0.9389 
and 0.9011) were superior to RSM-GA (0.9856, 0.9318, 0.9739, 0.9372 and 0.8901) and ANFIS (0.9075, 0.9294, 
0.9513, 0.9281 and 0.8641) models. This indicates that the ANFIS-NSGA-II framework is more reliable and 
accurate in developing fuzzy relationships as compared to its counterparts. The plotted graphs confirm that the 
soft computing techniques have accurately predicted the values which are close to the experimental values. The 
integration of ANFIS-NSGA-II model yielded better results in comparison to ANFIS and RSM-GA models.

Discussion.  Four input parameters were chosen: Blend percentage (B), nano-particle concentration (NPC), 
engine load (LD), and ignition pressure (IP). The feasibility of these parameters was confirmed through experi-
mental results from previous research. The researchers considered the feasible range of each parameter that 
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strongly influenced the output responses. For Blend percentage, the range was set between 5 and 20%, as beyond 
20% would result in high viscosity and low density, requiring modifications to the original engine design and 
making the process infeasible and expensive. Similarly, NPC was limited to 20 ppm, as exceeding this concentra-
tion would lead to excessive deposition and increased aggregation of nano-additives, causing segregation among 
fuel blends. Regarding Load, levels below 20% were not considered as they presented small negligible variations 
in engine performance and exhaust analysis, and thus were not deemed influential enough to be included in the 
study. Finally, IP was restricted to the range of 180–220 bars, as values above 220 bars would lead to abnormal 
engine temperatures, potentially resulting in engine seizure or malfunction.

In the quantitative analysis, the researchers utilized statistical and mathematical methods to analyze the 
relationship between the selected input parameters and the output responses. They conducted numerous 
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Table 10.   Pareto optimal front set.

Trial run Load Blend % IP NPC BTE BSEC NOx UBHC CO

26 100 20 220 20 24.86 2.74 163.63 4.87 0.020

49 60 10 190 15 13.35 2.11 138.93 6.57 0.015

37 20 0 180 20 16.89 2.51 98.18 7.50 0.014

21 100 20 200 20 24.43 2.76 159.54 4.68 0.020

47 20 0 180 0 11.11 3.36 138.93 9.38 0.010

Table 11.   Comparative study of various BTE models.

ANFIS RSM-GA ANFIS-NSGA

Training Testing Training Testing Training Testing

ABD
RMSE 0.30287 0.438 0.2838 0.3915 0.2105 0.3793

R2 0.9075 0.8872 0.9856 0.9037 0.9985 0.9273

CBD
RMSE 0.325 0.511 0.320 0.491 0.313 0.473

R2 0.941 0.893 0.955 0.915 0.967 0.921

Table 12.   Comparative study of various BSEC models.

ANFIS RSM-GA ANFIS-NSGA

Training Testing Training Testing Training Testing

ABD
RMSE 0.3349 0.541 0.2951 0.5121 0.2721 0.4971

R2 0.9294 0.8815 0.9318 0.9151 0.9464 0.9584

CBD
RMSE 0.3411 0.4544 0.339 0.4293 0.3252 0.3999

R2 0.8834 0.8756 0.9067 0.8921 0.9481 0.9061
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experimental runs by varying the levels of blend percentage (B), nano-particle concentration (NPC), engine load 
(LD), and ignition pressure (IP) as per the chosen discrete levels within their feasible ranges. The performance-
emission characteristics of the biodiesel engine were recorded for each experimental run, generating a compre-
hensive dataset. Statistical techniques such as regression analysis, analysis of variance (ANOVA), and correlation 
analysis were employed to identify the significant effects of individual parameters and their interactions on the 
engine outputs. This quantitative analysis provided valuable insights into the quantitative contributions of each 
input parameter to the performance and emission characteristics of the biodiesel engine, allowing for a deeper 
understanding of their influence and potential optimization strategies.

In the qualitative analysis, the researchers focused on understanding the practical implications of the selected 
input parameters in real-world engine applications. They considered the physical limitations and engineering 

Table 13.   Comparative study of various UBHC models.

ANFIS RSM-GA ANFIS-NSGA

Training Testing Training Testing Training Testing

ABD
RMSE 0.4715 0.315 0.4578 0.2848 0.4153 0.2726

R2 0.9513 0.9437 0.9739 0.9569 0.9838 0.9851

CBD
RMSE 0.4309 0.3534 0.4080 0.3133 0.3981 0.2954

R2 0.921 0.890 0.929 0.911 0.9415 0.925

Table 14.   Comparative study of various CO models.

ANFIS RSM-GA ANFIS-NSGA

Training Testing Training Testing Training Testing

ABD
RMSE 0.5825 0.2411 0.5342 0.2251 0.4703 0.2204

R2 0.9281 0.9171 0.9372 0.9283 0.9389 0.9303

CBD
RMSE 0.5706 0.3621 0.5666 0.3397 0.5606 0.3320

R2 0.9201 0.910 0.9510 0.919 0.9555 0.935

Table 15.   Comparative study of various NOx models.

ANFIS RSM-GA ANFIS-NSGA

Training Testing Training Testing Training Testing

ABD
RMSE 0.7531 0.7877 0.7328 0.7515 0.6981 0.7407

R2 0.8641 0.8301 0.8901 0.8751 0.9011 0.9001

CBD
RMSE 0.7309 0.801 0.7245 0.7696 0.7099 0.7511

R2 0.8525 0.8441 0.8695 0.8691 0.8909 0.8899

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

TRAINING TESTING TRAINING TESTING TRAINING TESTING

ANFIS RSM-GA ANFIS-NSGA

Es�ma�on of devia�on in BTE models

RMSE ABD

RMSE CBD

R2 ABD

R2 CBD

Figure 20.   Comparative study of various BTE models.
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constraints associated with the chosen input parameter ranges. For instance, the decision to limit the biodiesel 
blend percentage (B) to 20% was based on the consideration that higher concentrations would lead to unfavorable 
engine properties, making it impractical for conventional engine designs. Similarly, the restriction on nano-
particle concentration (NPC) to 20 ppm was due to potential complications in the engine’s valve timing diagram 
and particle deposition issues. By qualitatively analyzing the effects of each parameter, the researchers ensured 
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Figure 21.   Comparative study of various BSEC models.
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Figure 22.   Comparative study of various UBHC models.
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Figure 23.   Comparative study of various CO models.
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that the experimental conditions were not only scientifically relevant but also practically achievable in diesel 
engine applications. This qualitative assessment provided valuable insights into the feasibility of implementing 
the findings in real-world scenarios and helped avoid potential engineering challenges or performance issues.

Validation of proposed model with previous literature
In the part before this one, the intelligent model ANFIS-NSGA showed a lower error rate (RSME) in contrast to 
the single ANFIS model and the RSM-GA model. In addition to this, a zenith R2 value that was close to 1 was 
accomplished while using the exact same integrated model. Previous models were recollected and compared 
with the current hybrid model, which is provided in Table 16. This was done in order to validate and justify the 
selection of the ANFIS-GA model. On the basis of the results of a statistical survey, a comparison of the data for 
the various engine-based outcomes was developed. The ANFIS-NSGA-II model has exhibited a similar trend of 
improved precision, characterized by reduced RSME and increased R2, as seen in previous studies. This outcome 
substantiates the effectiveness of the proposed fuzzy-optimization integrated framework and aligns with previous 
findings that have also demonstrated a similar pattern of higher accuracy.

Conclusion, limitations and future scope
Conclusions.  In conclusion, the study employed a comprehensive approach, utilizing both quantitative 
and qualitative analyses, to investigate the influence of selected input parameters on the performance and 
exhaust characteristics of biodiesel engines. Through quantitative analysis, the researchers analyzed a rich data-
set obtained from experimental runs, employing statistical techniques such as regression analysis, ANOVA, 
and correlation analysis. This enabled the identification of significant effects and interactions among the input 
parameters, providing valuable quantitative insights into their contributions to engine outputs. The results of 
the quantitative analysis shed light on the optimization potential of input parameters allowing for informed 
decision-making in engine design and operation.

Simultaneously, the qualitative analysis considered practical aspects and engineering constraints related to 
the selected input parameter ranges. By evaluating the feasibility of applying the chosen parameters in real-
world engine applications, the researchers ensured that their findings were not only scientifically sound but also 
practically viable. Limiting the biodiesel blend percentage (B) to 20% due to viscosity and density concerns, 
capping the nano-particle concentration (NPC) at 20 ppm to avoid valve timing and particle deposition issues, 
and restricting the engine load (LD) below 20% to account for negligible variations in engine performance 
exemplify the qualitative assessment’s importance. The qualitative analysis provided valuable insights into the 
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Figure 24.   Comparative study of various NOx models.

Table 16.   Comparison of prediction capability of various models and developed ANFIS-NSGA-II.

References Model Fuel RMSE R2

Seraj et al.24 ANFIS-GA Eucalyptus 3.470 0.38

Khan42 ANFIS Eichhornia Crassipes 6.426 0.24

Aghbashlo et al.43 ANFIS-ALFIMO Waste cooking oil 0.423 0.92

BTE (current study) (ABD) ANFIS-NSGA-II Waste food oil 0.210 0.99

BSEC (current study) (ABD) ANFIS-NSGA-II Waste food oil 0.272 0.93

NOx (current study) (ABD) ANFIS-NSGA-II Waste food oil 0.698 0.90

CO (current study) (ABD) ANFIS-NSGA-II Waste food oil 0.470 0.93

UBHC (current study) (ABD) ANFIS-NSGA-II Waste food oil 0.415 0.94
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practicability of implementing the study’s findings in practical diesel engine setups, helping prevent potential 
engineering challenges and performance limitations.

The contemporary research explored the potential of landfill food waste oils for various input conditions 
such as blend percentage (BP), load (LD), ignition pressure (IP) and nanoparticle concentration (NPC). Also, 
two types of nanoparticles namely aluminium oxide and copper oxide were employed so as to predict the best 
engine characteristics obtained among them. The engine experimental responses such as BTE, BSEC, UBHC, 
CO and NOx were generated and compared with those obtained by hybrid soft computing techniques. In addi-
tion, the optimization techniques provided the optimal combination of engine inputs, which resulted in the best 
possible conditions for the utilization of landfill waste biodiesel fuel in a diesel engine. Here are some of the most 
important results of the study:

•	 The Landfill waste (leachate) oils have been established as a novel feedstock after qualitative research.
•	 Intelligent computational system is developed by integrating the attributes of ANFIS prediction and GA 

optimization (GA and NSGA-II) to prepare a comparative analysis between generated outcomes and experi-
mental values for diesel engine characteristics.

•	 Statistical tools such as RSME and R2 were employed to estimate the error rate.
•	 ANFIS-NSGA-II hybrid model forecasted outcomes with better efficiency since MSE and RSME values were 

lower in comparison to conventional ANFIS model.
•	 Qualitative research has been prepared to develop hybrid models which can predict engine characteristics 

with minimum experimentation dataset, quickly and efficiently.
•	 Outcomes generated by ANFIS-NSGA-II were more precise and efficient in comparison to other models.
•	 Optimum results were achieved after employing multi-objective function optimisation (ANFIS-NSGA-II) 

for BTE, BSEC, NOx, UBHC and CO which were 24.45 kW, 2.76, 159.54 ppm, 4.68 ppm, and 0.021%.

Limitations.  All researches are bound to have some constraints or flaws in the methodology research design, 
technique, materials, etc., and these factors may impact the findings of your study. It is necessary to acknowledge 
any limitations in the research paper in order to aware the readers of the potential shortcomings which might 
affect the conclusions drawn from the research. Like other studies, following are the limitations of the present 
study:

•	 Biofuel amalgamation was only explored for metallic nanoparticles which somewhat restricts the compari-
sons.

•	 Fewer number of operating conditions (four) were considered for conducting experimental investigation 
which might not be sufficient for a variety of engines such as aeroplane and ship engines.

•	 Combustion analysis could draw out more comparisons between the two nanofluids.
•	 Limited number of outcomes were explored.

Scope for future work.  The boundaries or restrictions of the research explores more domains directing 
forthcoming studies and guide to future examiners to strategize and accomplish experimental work in diesel 
engine. Subsequent points explain possible prospects for future investigators to go through:

•	 A comparative analysis between several nanoparticles (of both nature metallic and non-metallic) needs to be 
carried out and ranked from best to worst with the aid of multi-criteria decision methods for diesel engine 
performance and emission.

•	 A broader experimental dataset might be prepared in future having higher number of input parameters.
•	 More output responses including other combustion parameters might be measured and included for better 

comparison in future.

Data availability
The data supporting the findings of this study are available from the corresponding author upon reasonable 
request.
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