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Dynamics analysis of a nonlocal
diffusion dengue model

Kangkang Chang'*, Zhenyu Zhang? & Guizhen Liang?

Due to the unrestricted movement of humans over a wide area, it is important to understand how
individuals move between non-adjacent locations in space. In this research, we introduce a nonlocal
diffusion introduce for dengue, which is driven by integral operators. First, we use the semigroup
theory and continuously Fréchet differentiable to demonstrate the existence, uniqueness, positivity
and boundedness of the solution. Next, the global stability and uniform persistence of the system
are proved by analyzing the eigenvalue problem of the nonlocal diffusion term. To achieve this, the
Lyapunov function is derived and the comparison principle is applied. Finally, numerical simulations
are carried out to validate the results of the theorem, and it is revealed that controlling the disease’s
spread can be achieved by implementing measures to reduce the transmission of the virus through
infected humans and mosquitoes.

Dengue fever is severe vector-borne infectious disease transmitted by mosquitoes carrying the dengue virus.
Outbreaks arise in various countries annually, posing a significant challenge to global public health. Mathemati-
cal models have become invaluable tools for grasping the transmission dynamics and behavior of diseases'™'.
For instance, Li et al.! explored a reaction-diffusion dengue model that incorporated both wild and Wolbachia-
infected mosquito populations, assessing their dynamics and control measures. Xu and Zhao® devised a model
for dengue transmission, examining the stability of both disease-free and endemic states. Zhu et al.” introduced
a dengue model with a free boundary and derived conditions under which the disease either disappears or
spreads. Similarly, Fang et al.” took into account a time-space periodic environment, determining the correla-
tion between the speeds of almost pulsating waves and disease spread. Chang et al.? crafted a diffusion model
for dengue influenced by lévy noise, outlining the conditions for near-optimal controls. Zhu et al.!! evaluated
a dengue model with nonlocal incidence and free boundaries, ascertaining conditions for the disease’s disap-
pearance or proliferation.

A critical observation from the above literature is their reliance on reaction-diffusion models, where the
Laplace operator essentially governs the localized random diffusion behavior at nearby spatial locations. How-
ever, human movement is not always limited to adjacent areas, indicating that the Laplacian operator based
reaction-diffusion model might fall short in depicting long range disease transmission effects'. For a more
accurate representation of movement between distant locations, our study introduces nonlocal diffusion, where
the diffusion process is characterized using integral operators (fQ J(x — y)e()dy — ¢(x))'?, where J (-) is an
even function with probability density one, 7 (x — y) represents the probability of jumping from position y to
position x and J (x — y)¢(y)dy denotes the rate at which individuals reach the position x from other positions.
For more on nonlocal diffusion, readers can refer to existing literature!*-?. The main objectives of this study are:
(1) constructing a nonlocal diffusion dengue model. Using the Fréchet differentiability and semigroups theory,
we validate the solution’s existence, uniqueness, and boundedness. (2) Using the eigenvalue problem of the non-
local diffusion term and constructing a Lyapunov function, we prove the model’s global stability and uniform
persistence. (3) Through numerical simulations, we discuss the global stability and consistent persistence of the
disease are. When the disease persists, we analyze the diffusion impact on infected humans and mosquitoes.

This study unfolds as follows: In “Model and preliminaries” section, we present the model and subsequently
prove the existence, uniqueness, positiveity, and boundedness of solutions. Using the next-generation operator,
we define the basic reproduction number. “Global stability and uniform persistence” section focuses on prov-
ing the global asymptotic stability and uniform persistence of the system, achieved through the construction of
Lyapunov functions and the application of the comparison principle. “Numerical simulations” section provides
numerical simulations. Finally, “Conclusions” section concludes the article.
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Model and preliminaries
To assess the impact of nonlocal diffusion on the dengue model, we begin by introducing the SIR-SI model
detailed in?!, the parameters are defined in Table 1.

Z?LS = Mfl;ﬁHS— nSt — Nt Sulv,

dTRtH =_NH+,,, uly — (1 + vi)ln,

E::H_IHS—/L_RH’;W o (1)
dly _ ﬁvbvsvl NtV

I = Nprmovia —vly,

It's worth noting that mosquitoes generally have a limited, activity range, typically flying only tens to hun-
dreds of meters. The furthest recorded flight distance is one to two kilometers. Given this, the nonlocal spread
of mosquitoes was disregarded. Also, since the third equation doesn’t feature in the other equations of system
(1), we focus on the subsequent dengue model:

B (x)b(x)

S ,DIv(x,t),
Ny £ m H (X, )y (x, t)

B _ g, /Q T = 9)Su( Oy — diSa (6 0) + (N — (S (1) —

B (x)b(x)

Nt +m SH(x, DIy (x, 1) — () + ya () IH (x, 1),

= dz/ Jx = Iy, t)dy — dalp (x, ) +
Q

B = A@) — v(x)Sy (x, 1) — EXED 5 (x, )1y (x, 1),

Ay — BrObC) 6 (x 1)y (x, £) — v(x)Iy (x, 1),

ot Npy+m
Su(x,0) = Sg0(x), 5 (x,0) = Iy ,0(x), Sy (x,0) = Sy 0(x)Iy (x,0) = Iy o(x),
xeQ, t>0,
(2)
with Neumann boundary condition (the derivative is zero when x is at the boundary)
aS al aS oI
PH _ZH _ TV _ TV o xedQ, t>0, (3)

v dv A ov

and initial condition
SH(x,0) = SH (%), Ig(x,0) = Ig0(x), Sy (x,0) = Sy (x),Iv(x,0) = Iy o(x),x € Q. 4)

where Eq. (4) represents the value in the individual at the initial time (namely, t=0). d; and d; represent the dif-
fusion coefficients, and d > 0,d> > 0. puj(x), 1(x), B (x), b(x), yu (x), By (x) and v(x) are positive continuous
functions on Q. The dispersal kernel function 7 is continuous and satisfies the following properties

J0) >0, /j(x)dx: 1, J(x) >00nQ, J(x)=J(—x)>0onR. (5)
R

Let us consider the following function spaces and positive cones.
X:=C(Q), Xy :=C4(Q), Y:=C(Q) x C(Q) x C(Q) x C(NQ), Y; :=C1 (V) x C4(Q) x CL(Q) x C4(Q).

Xand Y are defined as follows, respectively. || x [|x := sup,.g |x ()], x € X,

Parameters | Description

h The birth rate of human

Nu The population of human

w Natural death rate of human

Bu The transmission rate of dengue to the human from the mosquito
b The mosquitoes biting rate

YH The recovery rate of human

A The recruitment rate of mosquitoes

v The nature death rate of mosquitoes

Bv The transmission rate of dengue to the mosquito from human
m The densities of alternative hosts

Table 1. Definitions of all parameters.
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181, 82,83, 84) Iy == sup \/\gl @) + 12201 + 1g5(x))I* + 1ga(0))

xeR
(a1,az,a3,a4) € Y.

Next, we define the linear operators on X.
Axi(x) :=di / T =y (ydy — dixa(x) — pn(x) 1 (x)s
Q

Aoxa(x) = da /Q T =) xa(dy — daxa(x) — (n(x) + yu (%)) x2 (%), (6)

A3 x3(x) 1= —v(x) x3(x),
Agxa(x) = —v(x) x4 (x).
From the above, we know that A; (i = 1,2, 3, 4) are bounded linear operators, by virtue of?2, Theorem 1.2, we

obtain that A;(#),>¢ are uniformly continuous semigroups on X. Furthermore, according to*, Sect. 2.1.1, the
semigroups A;(t),>¢ are positive.

Well-posedness of the solution. In this section, we will prove the existence and uniqueness of the solu-
tion for system (2).

Theorem 2.1 Assuming (SH0,Im0,Svolvo) €Y, system (2) exists the unique solution
S 1), In1), Sy DIy (1))  for all t €[0,t) , and either ty = +oc or
limsupt_”o_0 ISa 1), Ig (5 1), Sv (5 1), Iv (- B)|| = +oo.

Proof

pn(x)Ny — Bl g, 9,

F(%1, 02, 03, 04) (x) =

By @btx)
A= Tem 0203

By (0b()
Nrtm V203

Let F'[¢1, {2, &3, £4] be a linear operator on Y defined as follow:

-y, - O o,

ﬂiﬂrﬁf&” $4 + ﬂ;;jgfr(nx) 6104

F'[£1, 82, 83, 84l (D1, 92, 93, Da) (x) =

b b
—ﬁVNSl,i,x) {30 — ﬁVNSl,(nx) 503

B a2 + BT 0ot

By calculating, we have

F(91, 92,93, 94)(x) = F (L1, 82,83, L) (%) + F[£1, 82, 83, Gal (01 — £1, 2 — £2, 03 — £3, 04 — £a) (%)

—%(01 — &) (D4 — &4)

%ﬁfﬁ‘)(ﬁl — 1) (P4 — L)

— BeLIbed (9, — £2) (03 — £3)

%(92 —$)(03 — &)

due to the coefficients are positive and bounded, we have that the last term in the right-hand of this equation is
o{ (D1, 02, 93, 94)T — (¢1, 82, 83, £4) T ). It means that F is Fréchet differentiable for (¢1, &2, €3, 24)T on' Y. Moreover,
we have
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”]F/[;l) 2,83, ;4] - ]F/[El) 22) Z3> 24] ”

= sup (€15 62, 63 &a] — F'[81, 82, 83, Cal} (01, 92, 93, D) Iy
[(91,02,893,94) T [y <1

- H(m,az,;:gﬂuvsl ”{_%@4 0 - %@1 — )Py,
%“‘* — v+ %ﬁ’(nf)(cl - 51)94,—%@3 — )%,
- %@2 — ), %(g — 5392 + %@2 ~ )93}
= ZNfme 1@ =808 — 82,63 — Gnta — &) v

where (¢1, 22,83, 84) T € Y, this implies that IF is continuously Fréchet differentiable*!, Lemma 3.1 on Y.
Due to A;(t);>( are uniformly continuous semigroups, the solution (Sg (x, t), Iy (x, t), Sy (x, t)Iv (x, t)) of
system (2) can be written as follows:

t
1) = eAOp(, 1) (x) + / EACIF(w(, 1)) (x)ds, t > 0, x € Q,
0

where
S 1) Ai(t) “h(xﬂZH( i 1o DIy ()
_ | Intn _ | A _ Bt SH (6 DI (%, 1)
PED =\ s 0eh | AD= A | Fe@em =1 gV(x)b(x)Sv(x,t)IH(xJ)
Iy (x,t) Aq(t) P e

Ni+m Sv(x, t)Ig(x,t)

Due to A be the infinitesimal generator of e/~ and F is continuously Fréchet differentiable on Y. From®,
Proposition 4.16, the result holds. O

Lemma2.1 If(Su (-, 1), In (-, 1), Sy (- t)Iy (-, 1)) € Y be the solution of system (2) with (Su,0, Ir,0> Sv,0lv,0) € Y.
Then (Su (-, 1), Iz (- 1), Sy () Iy (-, 1)) € Y forallt € [0, ty).

Proof By calculation, we have

/(d1+ (x)+ﬂH(ir()

Iy (x,u))du

t
SH(. 1) = So()e + / (dl /Q Tx— )’)SH(J/:T)d}’+Mh(X)NH)
JO B

! B (x)b(x)
e_/r (d1 + pn(x) + mlv(x, u))dudt)

Br (x)b(x)

t
If (x, 1) = Iz o(x)e” @@yt 4 / (dz / T (x — Iy, t)dy +
0 Q Ny +m

s e~ OGN (=) g7

Sy (x, T)Iy (x, ‘C))

(7)
and
x)b(x t x)b(x,
Sy (6, 1) = Syo(x)e” N (v(x)+41\%11.1(x u))du +A/ o f;(v(x)+%m(x,u))dudt)
0
(8)

Sv (6, T (x, T)e V@D gr
Nir 1 m v (%, D) (x, T)

Iy(x, 1) = Iyp(x)e "™ +
0
For all t € [0, ty) and x € . Due to (Sy.0, [0, Sv.olve) € Y4 and J(x) > 0 on R, it means Sy (x, £) > 0,
Ig(x,t) > 0,Sy(x,t) > 0,and Iy (x,t) > 0, further, Sy(-,t) > 0, Ig(-,t) > 0, Sy (-, t) > 0, and Iy (-, t) > O for
t € [0, tp). O

Lemma2.2 Forany initial data (S0, It ,0, Sv,0, Iv,0) andt € [0, ty), the solution (Sy (x, 1), I (x, 1), Sy (x, 1), Iv (x, 1))
of system (2) satisfy that

lim sup / [Sg(x,t) + Ig(x,t) + Sy (x, t) + Iy (x, t)]dx < oo 9)

t—>00 JQ

Proof By (2) and (5), we have
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% / [Sa(6 ) + In(x 1) + Sy (x, t) + Iy (x, 1) ]dx
Q

=d1/ / J(x—y)SH(y,t)dydx—dlfSH(x,t)dx+/ Mh(x)Nde—/ w(x)Sy (x,t)dx
QJe Q Q Q

[ Ba()bX)

Sy (x, )y (x, t)dx + d; / / Jx = NI(y, t)dydx — da / Iy (x, t)dx
@ Nu+m eJa Q
n " Bu(x)b(x)

o Ny+m

St (6, Oy (x, Hdx — / (1) + v (i (. D / AGodx — / V@S (x,
Q Q Q
By (x)b(x) By (x)b(x)
_ A 7NH e Sy (x, t)Ip (x, t)dx + . 7NH T m Sy (x, )Ig(x, t)dx — /Q v()Iy (x, £)dx

=d / / T (x = y)Su(y, t)dydx — dy / Su (x, t)dx + / wy(x)Ngdx — / () Sk (x, t)dx
s /Q /Q T =0, dydx = dy /Q T G D = /Q(M(x) + yu (X)) (x, t)dx
+ / A(x)dx — / v(x)Sy (x, £)dx — / v() Iy (x, £)dx.
Q Q Q
Furthermore, we have

% / [SH( ) + In(x t) + Sy (x, 1) + Iy (x, 1) ]dx
Q

= dl/ / J & = dySu(y, Ddx — dy / Su(x, t)dx +/ Un(x)Npdx —/ W) SH (x, t)dx
e e o o o
+d; /Q /Q J(x — y)dyly (y, t)dx — dy /Q I (x, t)dx — /Q(M(x) + v i (x, H)dx
+ / A(x)dx —/ v(x)Sy (x, t)dx — / v Iy (x, )dx
/R Q Ja

< (inNg + A)|Q| — / min{p, VIS (%, 1) + I (%, 1) + Sv (x, 1) + Iy (x, 1))dx,
Q

where|€2| denotes the volume of Q. By virtue of the variation of constants formula and take limit ast — oo, we
can obtain that

inNy + A)|Q
lim sup /[SH(xJ)"‘IH(x,t)-I-Sv(x,t)+Iv(x,t)]dxS (ExNa + 412
t—o00 JQ

min{u, v}

(]
Basic reproduction number.

For a more abstract representation of the basic reproduction number, we
utilize the next-generation matrix method®® and evaluate the linearized equations surrounding the disease-free
equilibrium E® = (8% (x), 0, 8}, (x), 0):

: b
i =ds /Q J(x = )Iu(y, HHdy — I (x, 1) + Pr)be)

89 (O)Iy (%, 1) — (W) + Vi ()1 (x, 1),
H+m
B = B0l 8% ()1 (x, 1) — () Iy (x, 1),
xeQ, t>0.

System (10) be equivalent to

(10)
an
§=B’7—D77+Gﬂ» x € Q,t>0,
where
_(In B b [o Tx—ydy 0
"=\, ) "= 0 0)
and

0
Ny+m SV 0
By virtue of?’, Chapter 11, we obtain that the following linear equation

Bub 0
_(yvutu+d 0 _ [0 Nyt SH
D_( 0 v G= Bvb S :
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8t =(B—-D)n, xeQ,t>0. (11)

Let T(#) be the solution semigroup with respect to the linear Eq. (11). Define
o0
K@) (x) :== / GIT®)(D)1(x)dt.
0
In terms of the next infection operator, the spectral radius of K can be defined as the basic reproduction number
Ry := r(K).
We consider the following eigenvalue problem with respect to system (10).
I0(x) = dy o T(x = ) @@)dy — dy®(x) + ZLED 0 ()W (x) — ((x) + y1 () D (),

W (x) = BLPR G () (x) — v(x) W (x).

(12)

Meanwhile, by virtue of?%, for system (12), there exists a principal eigenvalue /o with respect to a pair positive
continuous eigenfunction (g (x), W (x)) satisfy that the following lemma.

Lemma 2.3 sign(Ry — 1) = signiy.
Proof The proof procedure can be referred to reference', Theorem 2.10. O

Global stability and uniform persistence

Global stability of the disease-free equilibrium. Global stability of the disease-free equilibrium is to
be demonstrated. Before proving its global asymptotic stability, certain lemmas are presented. Additionally, we
investigate an eigenvalue problem previously examined Garcia-Melian and Rossi'>.

{ Jav T(x =) (e(y) — o(x))dy = —le0(x), in Q,

o(x) =0, on RN\Q, (13)

Lemma 3.1 For system (13), there exists a unique principal eigenvalue 1, correspond to eigenfunction o(x). Fur-
thermore,0 < A1 < land

, . Jo 02 @)dx — [ [o T (x — y)Q(y)Q(x)dydx
Al = inf
0€L?(2).0740 Jo@*()

Now, we have the following global stability result.

Theorem 3.1 IfRy < 1, the solution (Sg (x, t), Iy (x, ), Sv (x, t) Iy (x, t)) of system (2) converge to the disease-free
equilibrium (S%, (x),0, S(\’, (x),0)onxast — +o0.

Proof We first prove that Sg (x, t) — S?, (x)onxast — +00,let hi(x,t) = Sy (x,t) — S% (x). Furthermore, we
have

ohi(x,t
la(x ) =d / J(x =y (y, t)dy — dihy (x, t) — p(x)hy(x, t) — Problx )SH(X, Hlv(x, 1), x € Q.
t JQ Ny +m
(14)
Let H(t) = [, h?(x, t)dx, we can obtain
dH (t)
dt
T Il (x, 1)
_2/Q hy(x,t) 2 dx
Bu(x)b(x)
=2 | h(,t)qdr | Tx—phi(y,)dy —dihi1(x,t) — u(oh(x, t) — NisH(x, Oy (x, 1)
Q Q H+
= Z{dl / / J(x =y (y, t)h (x, t)dydx—/ h%(x, t)dx}
JaJa Q
—2/ {u(x)hl(x,t)—l— ﬂH(X)b(x)SH(x,t)Iv(x,t)}hl(x,t)dx
Q Np +
< —Zdlﬂ,lH(l’).
(15)

By calculation yields that
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H() < coe_z‘i”11 £,
Hence, there exists constant g, we have
—dy At

1G> DIz < coe

By virtue of Eq. (14), we can obtain

t
hi(x,t) = ho(x)e—(d1+ﬂ(x))t + e—(dl-HL(x))t/ ed]: (dl / T(x— }/)hl(}’» S)dy _ MSH(X, Iy (x, t)> ds.
0 Q Ny +m
(16)
Applying the holder inequality to the following equation, there exists some positive constant satisfy that
|16 =y = Clln 9l (7)

Combine (16) and (17), there exists some positive constants ¢;(i = 1, 2) we have
[hy (x, t)| < Cle*(lerM(X))f + Cze*(dlﬂl-(x))/llt'

Hence, ast — o0, h(x,t) — 0 uniformly on x € Q. Furthermore, we obtain that Sg (x, t) — S?{ (x).
Next, we prove I (x, t) — 0,let V1 (t) := [, I (x, t)dx, we obtain that

dvi(t) d
T /Q 20y (x, t)EIH(x’ t)dx
" x)b(x
= / 21y (x, t){dz / J & —NIgQy, dy — daIu(x,t) + MSH(X, Iy (x,t)
Q Q Ny +m
— () + yr () IH(x, t)}dx
B ‘ ) B (0b(x)
=2d, T = WIa@y, O (x, H)dydx — [ Ig(x, t)dx » +2 ———— Sy (x, Iy (x, 1)
QJe Q @l Ng+m
— (1) + ya () (x, )}E (x, H)dx
(18)
Dueto By, b,u € C (5_2), by virtue of the above argument, there exists some positive constant ¢y > 0 satisfy that
x)b(x
PO S, Dl 5,) = )+ D) < o
Ny +m
Hence, equation (18) be equivalent to
dvy(t L1
dl( ) < =2d, 1 V1(t) + 2c0|52|%e“”V12 ®).
By calculation yields that
1 1 2 ,
(Vl2 0) + Co|Q|§t) eizdzl'lt, if 2o+ dad1 =0,
N = 2} | o)} ’
Coldd|2 ot 2 Col3é|2 —dy it P
e [ V2(0) + —— e P i Jg +daA 0.
(}uo—f—dz/q ( 1() )~0+d1A1> ) f 0 2 7
Hence, for some positive constants k; (i = 1,2, 3, 4), we have
(ki + kat)e ™M if Jo + dydy = 0,
a2 @) < " it e .
k3e™" + kge” MY lf/uo-i—dz/ul # 0.
By virtue of system (2), we can obtain
ot
T (x,t) = T o(x)e™ ! + e~ / e (d, / I (x = ) (y,)dy
0 Q (19)
Br (x)b(x)
+ Sy, Iy (x,t) — ((x) + yu () (x, 1))ds.
Ng+m

Applying the holder inequality to the following equation, there exists some positive constant satisfy that
[ Ty = Ul 9l (20)

Combine (19) and (20), there exists some positive constants I~c,-(i =1,2,3,4) we have
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LG )] < ket 4 (ky + kst)e At 4 kg™t if Ao + dady =0,
HX, = ~ ~ ~
kseidzt + kéemt + k7eidﬂlt, If /l() + dz;\.l 7+— 0.

Since Ry < 1, we know that A9 < 0, hence, ast — o0, Iy (x,t) — 0 uniformly on x € Q.
Moreover, we prove that Sy (x, ) — S(‘), (x)onxast — +00,let hy(x,t) = Sy (x,t) — S(‘)/ (x), then, we have

M) gy B D)

Sy (x, I (x, 1), Q.
ot N+ m v HIg(x.t), x € (21)

Due to Iy (x,t) — 0ast — oc, by virtue of the above argument, we know that s, (x, t) — Oast — 0. using
the the constant variation method with respect to the last equation of (2), we can obtain that Iy (x,t) — 0 as
t — oo. O

Uniform persistence. In this section, we consider the uniform persistence of system (2). To get these goals,
we first consider the following problem.

Theorem 3.2 For Ry > 1, then there exists a function I" (x), such that
tl_l)n;o infSp (x, 1) > I‘(x),tl_l)n;o inflg (x,t) > I'(x),
o - o -
tlggo infSy (x,t) > F(x),tlggo infly (x,t) > I'(x),
hence, the disease uniform persistence.
Proof Due to Ry > 1, then, there exists a k > 0 such that A(Sj; — «, S}, — k) > 0 (where (8§}, If;, S, I}7) rep-

resents that the endemic equilibrium ). It means that there exists a Hh >0 satisfy that Sy (x, ) > Sy,0 — x and
Sy(x,t) > Sy — «fort > fandx € Q.Forx € Q, t > f;, according to the comparison principle, we can obtain

Bub
N (SH0 — )y (x,t) — (kN + o+ y)Ia(x, t),
H+m

Uy > g, /Q T (x = Ik, )dy — daolg (x, 1) +

B> Prle(Svio — )66 O (6, t) = vl (x,1).

Define (TH (x, t),TV (x,1),) = (Meztél (x), MeZtﬁz (%)), (YH (x, t)jv (x, t),) satisfy that the following equation
Bub

(S0 — )Ly (x,1) — (kNp + pt + yr) I (x, £),
Ny +m

Uy = g, / T (x = Ia(y, dy — daly (x, 1) +
Q

UL = P Svo — )66 DIn () = vIv (6, b),

where (01 (x), 02(x)) is the eigenfunction with respect to 7 <0. According to the comparison principle, we know

In(et) > T (e ), Iy (x, ) > Ty (e, £) for x € Q,¢ > h. Therefore, Iy (x, t) > M1 (x), Iy (x, £) > Me*' G5 (x)
such that

L - M L gy
tl_1>rgo inflg (x,t) = Mo1(x), tl_1)rrolo infly (x,t) = Mo, (x).
On the basis of the Lemma (2.2), we know that there exists a constants K > 0 and #, such that

Iy(x,t) <K, Iy(x,t) <K, t >, x € Q.

Then, Sy and Sy satisfy that the following equation

é bK ~
B = dy / J(x = y)Su(y, )dy — diSu(x,t) + unNu — (,ukNH + 1£1H+ m)SH(x, 1, xeQt>h,
Ja
%ZA_<V+1€;$1)SV(XJ), x€Qt>bh.
Hence
L BubK
tlggo infSy (x,t) > (diK + upNp)/ (dl + pukNy + Nt )
bK
Jlim infSy (x,1) = A/ (u + I\i;VJr m)
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Parameter Value Parameter | Value

b 0.76*30.4 (Month ™) Ny +m 100"

w 0.001574>° A 2.5

v 30.4/14.49 (Month ™) UnNg 6.5

VH 1.4 (Month™")!® d 0.015 (km>Month~1)1011
d> 0.015 (km>Month =1y | By 0.75 (1 — 0.65sinx)

Table 2. The parameter values.

kernel function J(x)
© © o o o o o o
N w £ [6)] [« ~ [e<] ©
T . T T T T . T
1 1 1 1 1 1 1 1

o
-
T
L

Figure 1. The evolution path of kernel function J(x).

Let I'(x) := min{(d K + 115 Ni)/(dy + 11kNu + £2255), A/ (v + L2, MG) (x), MEy(x)). The disease

uniform persistence is obtained. d

Numerical simulations
This section presents the theoretical results supported by numerical simulations are presented in this section.
The parameter values and initial value are chosen as follows:

initial value:

X TX X x
(SH0(x), Im0(x), Sy,0(x), Iy,0(x)) = <5 + COS?’ 1.01 + sin7,2 + c057,0.95 + sin£>.

Moreover, the nonlocal kernel function?? is selected as follows:

1
T = Bexp(m), —-l<x<l1,

0, otherwise.

1
Here, B = 2.6423,x € [—1,1] C R and/ J(x)dx = / J (x)dx ~ 1.See Fig. 1 for the evolution path of kernel
function J(x). R -1

Global dynamics of system (2). In this section, we choose to change B to illustrate the result of the theo-
rem. Let By = 0.015(1 — 0.65cosx) and see Table 2 for other parameters, then Ry = 0.949319338848686 < 1.
Figure 2 illustrates the long-term dynamic behavior of the system (2). As time t approaches infinity, the density
of infected humans and mosquitoes both converge to 0, indicating the extinction of the disease. If the human
transmission rate By increases to 108y, we can obtain Ry = 3.002011337607015 > 1. At this point, Fig. 3 shows
that the solution of system (2) eventually stabilizes, implying disease persistence.
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Figure 2. The evolution path of Sy, Iy, Sy, I'v for system (2) with Ry = 0.949319338848686 < 1.

The impacts of diffusion rate for infected humans and infected mosquitoes. After the disease
has gone extinct, the spread of humans and mosquitoes no longer affects its transmission. Thus, in this section
we focus solely on the impact of diffusion on disease persistence, specifically on infected humans and mosqui-
toes. Figures 4, 5, and 6 reveal that increasing the diffusion coefficient reduces the infected area, but accentuates
the spatial difference between infected humans and mosquitoes. This enhances disease persistence and disease
control. Therefore, in the event of an outbreak, we recommend implementing appropriate measures to reduce
the spread of humans and mosquitoes for more effective disease management.
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Figure 3. The evolution path of Sy, Iy, Sy, Iv for system (2) with Ry = 3.002011337607015 > 1.

Conclusions

We conducted research on the threshold dynamics of a nonlocal diffusion dengue model with spatial heterogene-
ity. To establish the existence, uniqueness, positivity, and boundedness of the solution, we utilized the semigroup
theory and the variation of constants formula. The expression of the basic reproduction number was abstractly
determined using the next-generation matrix method. By constructing a Lyapunov function and applying the
comparison principle, we proved the system’s global stability and uniform persistence. Numerical simulations
were performed to verify the theorem. This study explored the evolution of disease extinction and persistence by
adjusting the human transmission rate Sy. We also considered the impact of diffusion on infected humans and
mosquitoes. The simulation results indicate that an increase in the diffusion coefficient leads to greater persis-
tence of the disease in both humans and mosquitoes. This finding highlights the importance of controlling the
spread of humans and mosquitoes during disease outbreaks. To achieve better disease control, we recommend
implementing appropriate measures to reduce their transmission.
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Figure 4. Numerical simulation of Iy, Iy for system (2) with d; = d, = 0.015 (where
Ry = 3.002011337607015 > 1). Left: The evolution path of Iy, I'v. Right: The distribution of Iy, I'v in time and

space.

Additionally, we only researched on the threshold dynamics of a nonlocal diffusion dengue model. How-
ever, the transmission of dengue fever virus can also be affected by random factors, such as Lévy noise, Markov
switching, etc. Therefore, it is interesting to introduce random noise into the nonlocal diffusion dengue fever
model, at the same time, we will combine the stochastic nonstandard finite difference technique®*** to make
numerical calculations. Moreover, we note that the fractional derivative has been widely used in epidemiological
studies®~** due to its physical significance as a memory index. But in fact, for the model of nonlocal diffusion,
since the nonlocal diffusion term is difficult to deal with, so we have not seen relevant research work. Next, we
try to study the fractional order nonlocal diffusion dengue model.
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Figure 5. Numerical simulation of If, Iy for system (2) with d; = d, = 0.030 (where
Ry = 2.986675318735982 > 1). Left: The evolution path of Iy, Iv. Right: The distribution of Iy, Iv in time and
space.
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Figure 6. Numerical simulation of If, Iy for system (2) with d; = d, = 0.060 (where

Ry

= 2.956695436468467 > 1). Left: The evolution path of Iy, Iy. Right: The distribution of Iy, Iy in time and

space.
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