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Dynamics analysis of a nonlocal 
diffusion dengue model
Kangkang Chang 1*, Zhenyu Zhang 2 & Guizhen Liang 1

Due to the unrestricted movement of humans over a wide area, it is important to understand how 
individuals move between non-adjacent locations in space. In this research, we introduce a nonlocal 
diffusion introduce for dengue, which is driven by integral operators. First, we use the semigroup 
theory and continuously Fréchet differentiable to demonstrate the existence, uniqueness, positivity 
and boundedness of the solution. Next, the global stability and uniform persistence of the system 
are proved by analyzing the eigenvalue problem of the nonlocal diffusion term. To achieve this, the 
Lyapunov function is derived and the comparison principle is applied. Finally, numerical simulations 
are carried out to validate the results of the theorem, and it is revealed that controlling the disease’s 
spread can be achieved by implementing measures to reduce the transmission of the virus through 
infected humans and mosquitoes.

Dengue fever is severe vector-borne infectious disease transmitted by mosquitoes carrying the dengue virus. 
Outbreaks arise in various countries annually, posing a significant challenge to global public health. Mathemati-
cal models have become invaluable tools for grasping the transmission dynamics and behavior of diseases1–11. 
For instance, Li et al.1 explored a reaction-diffusion dengue model that incorporated both wild and Wolbachia-
infected mosquito populations, assessing their dynamics and control measures. Xu and Zhao3 devised a model 
for dengue transmission, examining the stability of both disease-free and endemic states. Zhu et al.5 introduced 
a dengue model with a free boundary and derived conditions under which the disease either disappears or 
spreads. Similarly, Fang et al.7 took into account a time-space periodic environment, determining the correla-
tion between the speeds of almost pulsating waves and disease spread. Chang et al.9 crafted a diffusion model 
for dengue influenced by lévy noise, outlining the conditions for near-optimal controls. Zhu et al.11 evaluated 
a dengue model with nonlocal incidence and free boundaries, ascertaining conditions for the disease’s disap-
pearance or proliferation.

A critical observation from the above literature is their reliance on reaction-diffusion models, where the 
Laplace operator essentially governs the localized random diffusion behavior at nearby spatial locations. How-
ever, human movement is not always limited to adjacent areas, indicating that the Laplacian operator based 
reaction-diffusion model might fall short in depicting long range disease transmission effects12. For a more 
accurate representation of movement between distant locations, our study introduces nonlocal diffusion, where 
the diffusion process is characterized using integral operators ( 

∫
�
J (x − y)ϕ(y)dy − ϕ(x))13, where J (·) is an 

even function with probability density one, J (x − y) represents the probability of jumping from position y to 
position x and J (x − y)ϕ(y)dy denotes the rate at which individuals reach the position x from other positions. 
For more on nonlocal diffusion, readers can refer to existing literature14–20. The main objectives of this study are: 
(1) constructing a nonlocal diffusion dengue model. Using the Fréchet differentiability and semigroups theory, 
we validate the solution’s existence, uniqueness, and boundedness. (2) Using the eigenvalue problem of the non-
local diffusion term and constructing a Lyapunov function, we prove the model’s global stability and uniform 
persistence. (3) Through numerical simulations, we discuss the global stability and consistent persistence of the 
disease are. When the disease persists, we analyze the diffusion impact on infected humans and mosquitoes.

This study unfolds as follows: In “Model and preliminaries” section, we present the model and subsequently 
prove the existence, uniqueness, positiveity, and boundedness of solutions. Using the next-generation operator, 
we define the basic reproduction number. “Global stability and uniform persistence” section focuses on prov-
ing the global asymptotic stability and uniform persistence of the system, achieved through the construction of 
Lyapunov functions and the application of the comparison principle. “Numerical simulations” section provides 
numerical simulations. Finally, “Conclusions” section concludes the article.
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Model and preliminaries
To assess the impact of nonlocal diffusion on the dengue model, we begin by introducing the SIR-SI model 
detailed in21, the parameters are defined in Table 1.

It’s worth noting that mosquitoes generally have a limited, activity range, typically flying only tens to hun-
dreds of meters. The furthest recorded flight distance is one to two kilometers. Given this, the nonlocal spread 
of mosquitoes was disregarded. Also, since the third equation doesn’t feature in the other equations of system 
(1), we focus on the subsequent dengue model:

with Neumann boundary condition (the derivative is zero when x is at the boundary)

and initial condition

where Eq. (4) represents the value in the individual at the initial time (namely, t=0). d1 and d2 represent the dif-
fusion coefficients, and d1 > 0 , d2 > 0 . µh(x) , µ(x) , βH (x) , b(x), γH (x) , βv(x) and ν(x) are positive continuous 
functions on � . The dispersal kernel function J  is continuous and satisfies the following properties

Let us consider the following function spaces and positive cones.

X and Y are defined as follows, respectively. �χ�X := supx∈� |χ(x)|, χ ∈ X,

(1)





dSH
dt = µhNH − µSH − βHb

NH+mSHIV ,
dIH
dt = βHb

NH+mSHIV − (µ+ γH )IH ,
dRH
dt = γHIH − µRH ,
dSV
dt = A− νSV − βV b

NH+mSV IH ,
dIV
dt = βV b

NH+mSV IH − νIV ,

(2)





∂SH
∂t = d1

�

�

J (x − y)SH (y, t)dy − d1SH (x, t)+ µh(x)NH − µ(x)SH (x, t)−
βH (x)b(x)

NH +m
SH (x, t)IV (x, t),

∂IH
∂t = d2

�

�

J (x − y)IH (y, t)dy − d2IH (x, t)+
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)− (µ(x)+ γH (x))IH (x, t),

∂SV
∂t = A(x)− ν(x)SV (x, t)−

βV (x)b(x)
NH+m SV (x, t)IH (x, t),

∂IV
∂t = βV (x)b(x)

NH+m SV (x, t)IH (x, t)− ν(x)IV (x, t),

SH (x, 0) = SH ,0(x), IH (x, 0) = IH ,0(x), SV (x, 0) = SV ,0(x)IV (x, 0) = IV ,0(x),
x ∈ �, t > 0,

(3)
∂SH

∂ν
=

∂IH

∂ν
=

∂SV

∂ν
=

∂IV

∂ν
= 0, x ∈ ∂�, t > 0,

(4)SH (x, 0) = SH ,0(x), IH (x, 0) = IH ,0(x), SV (x, 0) = SV ,0(x), IV (x, 0) = IV ,0(x), x ∈ �.

(5)J (0) > 0,

∫

R
J (x)dx = 1, J (x) > 0 on�, J (x) = J (−x) ≥ 0 on R.

X := C(�), X+ := C+(�), Y := C(�)× C(�)× C(�)× C(�), Y+ := C+(�)× C+(�)× C+(�)× C+(�).

Table 1.   Definitions of all parameters.

Parameters Description

µh The birth rate of human

NH The population of human

µ Natural death rate of human

βH The transmission rate of dengue to the human from the mosquito

b The mosquitoes biting rate

γH The recovery rate of human

A The recruitment rate of mosquitoes

ν The nature death rate of mosquitoes

βV The transmission rate of dengue to the mosquito from human

m The densities of alternative hosts
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Next, we define the linear operators on X.

From the above, we know that Ai(i = 1, 2, 3, 4) are bounded linear operators, by virtue of22, Theorem 1.2, we 
obtain that Ai(t)t≥0 are uniformly continuous semigroups on X . Furthermore, according to23, Sect. 2.1.1, the 
semigroups Ai(t)t≥0 are positive.

Well‑posedness of the solution.  In this section, we will prove the existence and uniqueness of the solu-
tion for system (2).

Theorem  2.1   Assuming  (SH ,0, IH ,0, SV ,0IV ,0) ∈ Y  ,  sy s tem (2)  ex i s t s  the  unique  so lut ion 
(SH (·, t), IH (·, t), SV (·, t)IV (·, t))  f o r  a l l  t ∈ [0, t0)  ,  a n d  e i t h e r  t0 = +∞  o r 
lim supt→t0−0

�(SH (·, t), IH (·, t), SV (·, t), IV (·, t)� = +∞.

Proof 

Let F′[ζ1, ζ2, ζ3, ζ4] be a linear operator on Y defined as follow:

By calculating, we have

due to the coefficients are positive and bounded, we have that the last term in the right-hand of this equation is 
o{(ϑ1,ϑ2,ϑ3,ϑ4)

T − (ζ1, ζ2, ζ3, ζ4)
T } . It means that F is Fréchet differentiable for (ζ1, ζ2, ζ3, ζ4)T on Y . Moreover, 

we have

�(g1, g2, g3, g4)�Y := sup
x∈�

√
|g1(x)|2 + |g2(x)|2 + |g3(x))|2 + |g4(x))|2,

(a1, a2, a3, a4) ∈ Y.

(6)

A1χ1(x) := d1

∫

�

J (x − y)χ1(y)dy − d1χ1(x)− µ(x)χ1(x),

A2χ2(x) := d2

∫

�

J (x − y)χ2(y)dy − d2χ2(x)− (µ(x)+ γH (x))χ2(x),

A3χ3(x) := −ν(x)χ3(x),

A4χ4(x) := −ν(x)χ4(x).

F(ϑ1,ϑ2,ϑ3,ϑ4)(x) =




µh(x)NH − βH (x)b(x)
NH+m

ϑ1ϑ4

βH (x)b(x)
NH+m

ϑ1ϑ4

A− βV (x)b(x)
NH+m

ϑ2ϑ3

βV (x)b(x)
NH+m

ϑ2ϑ3




.

F
′[ζ1, ζ2, ζ3, ζ4](ϑ1,ϑ2,ϑ3,ϑ4)(x) =




− βH (x)b(x)
NH+m

ζ4ϑ1 −
βH (x)b(x)
NH+m

ζ1ϑ4

βH (x)b(x)
NH+m

ζ4ϑ1 +
βH (x)b(x)
NH+m

ζ1ϑ4

− βV (x)b(x)
NH+m

ζ3ϑ2 −
βV (x)b(x)
NH+m

ζ2ϑ3

βV (x)b(x)
NH+m

ζ3ϑ2 +
βV (x)b(x)
NH+m

ζ2ϑ3




.

F(ϑ1,ϑ2,ϑ3,ϑ4)(x) = F(ζ1, ζ2, ζ3, ζ4)(x)+ F
′[ζ1, ζ2, ζ3, ζ4](ϑ1 − ζ1,ϑ2 − ζ2,ϑ3 − ζ3,ϑ4 − ζ4)(x)

+




− βH (x)b(x)
NH+m

(ϑ1 − ζ1)(ϑ4 − ζ4)

βH (x)b(x)
NH+m

(ϑ1 − ζ1)(ϑ4 − ζ4)

− βV (x)b(x)
NH+m

(ϑ2 − ζ2)(ϑ3 − ζ3)

βV (x)b(x)
NH+m

(ϑ2 − ζ2)(ϑ3 − ζ3)




,
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where (ζ̃1, ζ̃2, ζ̃3, ζ̃4)T ∈ Y , this implies that F is continuously Fréchet differentiable24, Lemma 3.1 on Y.
Due to Ai(t)t≥0 are uniformly continuous semigroups, the solution (SH (x, t), IH (x, t), SV (x, t)IV (x, t)) of 

system (2) can be written as follows:

where

Due to A be the infinitesimal generator of etAt≥0 and F is continuously Fréchet differentiable on Y . From25, 
Proposition 4.16, the result holds. 	�  �

Lemma 2.1  If (SH (·, t), IH (·, t), SV (·, t)IV (·, t)) ∈ Y be the solution of system (2) with (SH ,0, IH ,0, SV ,0IV ,0) ∈ Y+ . 
Then (SH (·, t), IH (·, t), SV (·, t)IV (·, t)) ∈ Y+ for all t ∈ [0, t0).

Proof  By calculation, we have

and

For all t ∈ [0, t0) and x ∈ �̄ . Due to (SH ,0, IH ,0, SV ,0IV ,0) ∈ Y+ and J (x) ≥ 0 on R, it means SH (x, t) ≥ 0 , 
IH (x, t) ≥ 0 , SV (x, t) ≥ 0 , and IV (x, t) ≥ 0 , further, SH (·, t) > 0 , IH (·, t) > 0 , SV (·, t) > 0 , and IV (·, t) > 0 for 
t ∈ [0, t0) . 	�  �

Lemma 2.2  For any initial data (SH ,0, IH ,0, SV ,0, IV ,0) and t ∈ [0, t0) , the solution (SH (x, t), IH (x, t), SV (x, t), IV (x, t)) 
of system (2) satisfy that

Proof  By (2) and (5), we have

�F′[ζ1, ζ2, ζ3, ζ4] − F
′[ζ̃1, ζ̃2, ζ̃3, ζ̃4]�

= sup
�(ϑ1,ϑ2,ϑ3,ϑ4)T�Y≤1

�{F′[ζ1, ζ2, ζ3, ζ4] − F
′[ζ̃1, ζ̃2, ζ̃3, ζ̃4]}(ϑ1,ϑ2,ϑ3,ϑ4)�Y

= sup
�(ϑ1,ϑ2,ϑ3,ϑ4)T�Y≤1

�{−
βH (x)b(x)

NH +m
(ζ4 − ζ̃4)ϑ1 −

βH (x)b(x)

NH +m
(ζ1 − ζ̃1)ϑ4,

βH (x)b(x)

NH +m
(ζ4 − ζ̃4)ϑ1 +

βH (x)b(x)

NH +m
(ζ1 − ζ̃1)ϑ4,−

βV (x)b(x)

NH +m
(ζ3 − ζ̃3)ϑ2

−
βV (x)b(x)

NH +m
(ζ2 − ζ̃2)ϑ3,

βV (x)b(x)

NH +m
(ζ3 − ζ̃3)ϑ2 +

βV (x)b(x)

NH +m
(ζ2 − ζ̃2)ϑ3}�

≤ 2
β̄Hb̄

NH +m
�(ζ1 − ζ̃1, ζ2 − ζ̃2, ζ3 − ζ̃3, ζ4 − ζ̃4)

T�Y,

p(x, t) = eA(t)p(·, t)(x)+

∫ t

0
EA(t−s)

F(w(·, τ))(x)ds, t ≥ 0, x ∈ �̄,

p(x, t) =




SH (x, t)
IH (x, t)
SV (x, t)
IV (x, t)


, A(t) =




A1(t)
A2(t)
A3(t)
A4(t)


, F(p(x, t)) =




µh(x)NH − βH (x)b(x)
NH+m SH (x, t)IV (x, t)

βH (x)b(x)
NH+m SH (x, t)IV (x, t)

A− βV (x)b(x)
NH+m SV (x, t)IH (x, t)

βV (x)b(x)
NH+m SV (x, t)IH (x, t)


.

(7)

SH (x, t) = SH ,0(x)e
−

∫ t

0

(d1 + µ(x)+
βH (x)b(x)

NH +m
IV (x, u))du

+

∫ t

0

(
d1

∫

�

J (x − y)SH (y, τ)dy + µh(x)NH

)

× e
−

∫ t

τ

(d1 + µ(x)+
βH (x)b(x)

NH +m
IV (x, u))du

dτ ,

IH (x, t) = IH ,0(x)e
−(d2+µ(x)+γH (x))t +

∫ t

0

(
d2

∫

�

J (x − y)IH (y, τ)dy +
βH (x)b(x)

NH +m
SH (x, τ)IV (x, τ)

)

× e−(d1+µ(x)+γH (x))(t−τ)dτ ,

(8)
SV (x, t) = SV ,0(x)e

−
∫ t
0 (ν(x)+

βV (x)b(x)
NH+m IH (x,u))du + A

∫ t

0
e
−
∫ t
τ (ν(x)+

βV (x)b(x)
NH+m IH (x,u))dudτ ,

IV (x, t) = IV ,0(x)e
−ν(x)t +

∫ t

0

βV (x)b(x)

NH +m
SV (x, τ)IH (x, τ)e

−ν(x)(t−τ)dτ .

(9)lim sup
t→∞

∫

�

[SH (x, t)+ IH (x, t)+ SV (x, t)+ IV (x, t)]dx < ∞
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Furthermore, we have

where |�| denotes the volume of � . By virtue of the variation of constants formula and take limit as t → ∞ , we 
can obtain that

	�  �

Basic reproduction number.  For a more abstract representation of the basic reproduction number, we 
utilize the next-generation matrix method26 and evaluate the linearized equations surrounding the disease-free 
equilibrium E0 = (S0H (x), 0, S

0
V (x), 0):

System (10) be equivalent to

where

  and  

By virtue of27, Chapter 11, we obtain that the following linear equation

d

dt

∫

�

[SH (x, t)+ IH (x, t)+ SV (x, t)+ IV (x, t)]dx

= d1

∫

�

∫

�

J (x − y)SH (y, t)dydx − d1

∫

�

SH (x, t)dx +

∫

�

µh(x)NHdx −

∫

�

µ(x)SH (x, t)dx

−

∫

�

βH (x)b(x)

NH +m
SH (x, t)IV (x, t)dx + d2

∫

�

∫

�

J (x − y)IH (y, t)dydx − d2

∫

�

IH (x, t)dx

+

∫

�

βH (x)b(x)

NH +m
SH (x, t)IV (x, t)dx −

∫

�

(µ(x)+ γH (x))IH (x, t)dx

∫

�

A(x)dx −

∫

�

ν(x)SV (x, t)dx

−

∫

�

βV (x)b(x)

NH +m
SV (x, t)IH (x, t)dx +

∫

�

βV (x)b(x)

NH +m
SV (x, t)IH (x, t)dx −

∫

�

ν(x)IV (x, t)dx

= d1

∫

�

∫

�

J (x − y)SH (y, t)dydx − d1

∫

�

SH (x, t)dx +

∫

�

µh(x)NHdx −

∫

�

µ(x)SH (x, t)dx

+ d2

∫

�

∫

�

J (x − y)IH (y, t)dydx − d2

∫

�

IH (x, t)dx −

∫

�

(µ(x)+ γH (x))IH (x, t)dx

+

∫

�

A(x)dx −

∫

�

ν(x)SV (x, t)dx −

∫

�

ν(x)IV (x, t)dx.

d

dt

∫

�

[SH (x, t)+ IH (x, t)+ SV (x, t)+ IV (x, t)]dx

≤ d1

∫

�

∫

�

J (x − y)dySH (y, t)dx − d1

∫

�

SH (x, t)dx +

∫

�

µh(x)NHdx −

∫

�

µ(x)SH (x, t)dx

+ d2

∫

�

∫

�

J (x − y)dyIH (y, t)dx − d2

∫

�

IH(x, t)dx −

∫

�

(µ(x)+ γH (x))IH (x, t)dx

+

∫

�

A(x)dx −

∫

�

ν(x)SV (x, t)dx −

∫

�

ν(x)IV (x, t)dx

≤ (µ̄hNH + Ā)|�| −

∫

�

min{µ, ν}(SH (x, t)+ IH (x, t)+ SV (x, t)+ IV (x, t))dx,

lim sup
t→∞

∫

�

[SH (x, t)+ IH (x, t)+ SV (x, t)+ IV (x, t)]dx ≤
(µ̄hNH + Ā)|�|

min{µ, ν}
.

(10)





∂IH
∂t = d2

�

�

J (x − y)IH (y, t)dy − d2IH (x, t)+
βH (x)b(x)

NH +m
S0H (x)IV (x, t)− (µ(x)+ γH (x))IH (x, t),

∂IV
∂t = βV (x)b(x)

NH+m S0V (x)IH (x, t)− ν(x)IV (x, t),

x ∈ �̄, t > 0.

∂η

∂t
= Bη − Dη + Gη, x ∈ �, t > 0,

η =

(
IH
IV

)
, B =

(
d2

∫
�
J (x − y)dy 0

0 0

)
,

D =

(
γH + µ+ d2 0
0 ν

)
G =

(
0 βHb

NH+mS0H
βV b

NH+mS0V 0

)
.
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Let T(t) be the solution semigroup with respect to the linear Eq. (11). Define

In terms of the next infection operator, the spectral radius of K can be defined as the basic reproduction number

We consider the following eigenvalue problem with respect to system (10).

Meanwhile, by virtue of28, for system (12), there exists a principal eigenvalue �0 with respect to a pair positive 
continuous eigenfunction (�0(x),�0(x)) satisfy that the following lemma.

Lemma 2.3  sign(R0 − 1) = sign�0.

Proof  The proof procedure can be referred to reference14, Theorem 2.10. 	�  �

Global stability and uniform persistence
Global stability of the disease‑free equilibrium.  Global stability of the disease-free equilibrium is to 
be demonstrated. Before proving its global asymptotic stability, certain lemmas are presented. Additionally, we 
investigate an eigenvalue problem previously examined García-Meliá n and Rossi13.

Lemma 3.1  For system (13), there exists a unique principal eigenvalue �1 correspond to eigenfunction ̺(x) . Fur-
thermore, 0 < �1 < 1 and

Now, we have the following global stability result.

Theorem 3.1  If R0 < 1 , the solution (SH (x, t), IH (x, t), SV (x, t)IV (x, t)) of system (2) converge to the disease-free 
equilibrium (S0H (x), 0, S

0
V (x), 0) on x as t → +∞.

Proof  We first prove that SH (x, t) → S0H (x) on x as t → +∞ , let h1(x, t) = SH (x, t)− S0H (x) . Furthermore, we 
have

Let H(t) =
∫
�
h21(x, t)dx , we can obtain

By calculation yields that

(11)
∂η

∂t
= (B− D)η, x ∈ �, t > 0.

K(ϑ)(x) :=

∫ ∞

0
G[T(t)(ϑ)](x)dt.

R0 := r(K).

(12)





��(x) = d2
�
�
J (x − y)�(y)dy − d2�(x)+ βH (x)b(x)

NH+m S0H (x)�(x)− (µ(x)+ γH (x))�(x),

��(x) = βV (x)b(x)
NH+m S0V (x)�(x)− ν(x)�(x).

(13)
{ ∫

RN J (x − y)(̺(y)− ̺(x))dy = −�e̺(x), in �,

̺(x) = 0, on RN\�,

�1 = inf
̺∈L2(�),̺ �=0

∫
�
̺2(x)dx −

∫
�

∫
�
J (x − y)̺(y)̺(x)dydx∫

�
̺2(x)

.

(14)

∂h1(x, t)

∂t
= d1

∫

�

J (x − y)h1(y, t)dy − d1h1(x, t)− µ(x)h1(x, t)−
βH (x)b(x)

NH +m
SH (x, t)IV (x, t), x ∈ �.

(15)

dH(t)

dt

= 2

∫

�

h1(x, t)
∂h1(x, t)

∂t
dx

= 2

∫

�

h1(x, t)

{
d1

∫

�

J (x − y)h1(y, t)dy − d1h1(x, t)− µ(x)h1(x, t)−
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)

}
dx

= 2

{
d1

∫

�

∫

�

J (x − y)h1(y, t)h1(x, t)dydx −

∫

�

h21(x, t)dx

}

− 2

∫

�

{
µ(x)h1(x, t)+

βH (x)b(x)

NH +m
SH (x, t)IV (x, t)

}
h1(x, t)dx

≤ −2d1�1H(t).
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Hence, there exists constant c0 , we have

By virtue of Eq. (14), we can obtain

Applying the h ̈older inequality to the following equation, there exists some positive constant satisfy that

Combine (16) and (17), there exists some positive constants ci(i = 1, 2) we have

Hence, as t → ∞ , h1(x, t) → 0 uniformly on x ∈ � . Furthermore, we obtain that SH (x, t) → S0H (x).
Next, we prove IH (x, t) → 0 , let V1(t) :=

∫
�
I2H (x, t)dx , we obtain that

Due to βH , b,µ ∈ C(�̄) , by virtue of the above argument, there exists some positive constant c0 > 0 satisfy that

Hence, equation (18) be equivalent to

By calculation yields that

Hence, for some positive constants ki(i = 1, 2, 3, 4) , we have

By virtue of system (2), we can obtain

Applying the h ̈older inequality to the following equation, there exists some positive constant satisfy that

Combine (19) and (20), there exists some positive constants k̃i(i = 1, 2, 3, 4) we have

H(t) ≤ c0e
−2d1�1t .

�h1(·, t)�L2(�) ≤ c0e
−d1�1t .

(16)

h1(x, t) = h0(x)e
−(d1+µ(x))t + e−(d1+µ(x))t

∫ t

0
ed1s

(
d1

∫

�

J (x − y)h1(y, s)dy −
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)

)
ds.

(17)
∫

�

J(x − y)h1(y, s)dy ≤ C�h1(·, s)�L2(�).

|h1(x, t)| ≤ c1e
−(d1+µ(x))t + c2e

−(d1+µ(x))�1t .

(18)

dV1(t)

dt
=

∫

�

2IH (x, t)
∂

∂t
IH (x, t)dx

=

∫

�

2IH (x, t)

{
d2

∫

�

J (x − y)IH (y, t)dy − d2IH (x, t)+
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)

− (µ(x)+ γH (x))IH (x, t)}dx

= 2d2

{∫

�

∫

�

J (x − y)IH (y, t)IH (x, t)dydx −

∫

�

I2H (x, t)dx

}
+ 2

∫

�

{
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)

− (µ(x)+ γH (x))IH (x, t)}IH (x, t)dx

∣∣∣∣
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)− (µ(x)+ γH (x))IH (x, t)

∣∣∣∣ ≤ c0e
�0t .

dV1(t)

dt
≤ −2d2�1V1(t)+ 2c0|�|

1
2 e�0tV

1
2
1 (t).

V1(t) ≤





�
V

1
2
1 (0)+ c0|�|

1
2 t

�2

e−2d2�1t , if �0 + d2�1 = 0,

�
c0|�|

1
2

�0 + d2�1
e�0t +

�
V

1
2
1 (0)+

c0|�|
1
2

�0 + d1�1

�
e−d1�1t

�2

, if �0 + d2�1 �= 0.

�IH (·, t)�L2(�) ≤

{
(k1 + k2t)e

−d2�1t , if �0 + d2�1 = 0,

k3e
�0t + k4e

−d2�1t , if �0 + d2�1 �= 0.

(19)
IH (x, t) = IH ,0(x)e

−d2t + e−d2t

∫ t

0
ed2s(d2

∫

�

J (x − y)IH (y, s)dy

+
βH (x)b(x)

NH +m
SH (x, t)IV (x, t)− (µ(x)+ γH (x))IH (x, t))ds.

(20)
∫

�

J (x − y)IH (y, s)dy ≤ C�IH (·, s)�L2(�).
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Since R0 < 1 , we know that �0 < 0 , hence, as t → ∞ , IH (x, t) → 0 uniformly on x ∈ �.
Moreover, we prove that SV (x, t) → S0V (x) on x as t → +∞ , let h2(x, t) = SV (x, t)− S0V (x) , then, we have

Due to IH (x, t) → 0 as t → ∞ , by virtue of the above argument, we know that h2(x, t) → 0 as t → ∞ . using 
the the constant variation method with respect to the last equation of (2), we can obtain that IV (x, t) → 0 as 
t → ∞ . 	�  �

Uniform persistence.  In this section, we consider the uniform persistence of system (2). To get these goals, 
we first consider the following problem.

Theorem 3.2  For R0 > 1 , then there exists a function Ŵ(x) , such that

hence, the disease uniform persistence.

Proof  Due to R0 > 1 , then, there exists a κ > 0 such that �(S∗H − κ , S∗V − κ) > 0 (where (S∗H , I
∗
H , S

∗
V , I

∗
V ) rep-

resents that the endemic equilibrium ). It means that there exists a t̃1 > 0 satisfy that SH (x, t) > SH ,0 − κ and 
SV (x, t) > SV ,0 − κ for t ≥ t̃1 and x ∈ � . For x ∈ �, t > t̃1 , according to the comparison principle, we can obtain

Define (̃IH (x, t), ĨV (x, t), ) = (Me�̃t ˜̺1(x),Me�̃t ˜̺2(x)) , (̃IH (x, t), ĨV (x, t), ) satisfy that the following equation

where (˜̺1(x), ˜̺2(x)) is the eigenfunction with respect to �̃ < 0 . According to the comparison principle, we know 
IH (x, t) ≥ ĨH (x, t) , IV (x, t) ≥ ĨV (x, t) for x ∈ �, t > t̃1 . Therefore, IH (x, t) ≥ Me�̃t ˜̺1(x) , IV (x, t) ≥ Me�̃t ˜̺2(x) 
such that

On the basis of the Lemma (2.2), we know that there exists a constants K > 0 and t̃2 such that

Then, SH and SV satisfy that the following equation

Hence

|IH (x, t)| ≤

{
k̃1e

−d2t + (k̃2 + k̃3t)e
−d2�1t + k̃4e

�0t , if �0 + d2�1 = 0,

k̃5e
−d2t + k̃6e

�0t + k̃7e
−d2�1t , if �0 + d2�1 �= 0.

(21)
∂h2(x, t)

∂t
= −ν(x)h2(x, t)−

βV (x)b(x)

NH +m
SV (x, t)IH (x, t), x ∈ �.

lim
t→∞

infSH (x, t) ≥ Ŵ(x), lim
t→∞

infIH (x, t) ≥ Ŵ(x),

lim
t→∞

infSV (x, t) ≥ Ŵ(x), lim
t→∞

infIV (x, t) ≥ Ŵ(x),





∂IH
∂t ≥ d2

�

�

J (x − y)IH (y, t)dy − d2IH (x, t)+
βHb

NH +m
(SH ,0 − κ)IV (x, t)− (kNH + µ+ γH )IH (x, t),

∂IV
∂t ≥ βV b

NH+m (SV ,0 − κ)(x, t)IH (x, t)− νIV (x, t).





∂�IH
∂t = d2

�

�

J (x − y)�IH (y, t)dy − d2�IH (x, t)+
βHb

NH +m
(SH ,0 − κ)�IV (x, t)− (kNH + µ+ γH )�IH (x, t),

∂�IV
∂t = βV b

NH+m (SV ,0 − κ)(x, t)�IH (x, t)− ν�IV (x, t),

lim
t→∞

infIH (x, t) ≥ M˜̺1(x), lim
t→∞

infIV (x, t) ≥ M˜̺2(x).

IV (x, t) ≤ K , IH (x, t) ≤ K , t ≥ t̃2, x ∈ �.





∂SH
∂t ≥ d1

�

�

J (x − y)SH (y, t)dy − d1SH (x, t)+ µhNH −

�
µkNH +

βHbK

NH +m

�
SH (x, t), x ∈ �, t > �t2,

∂SV
∂t ≥ A−

�
ν + βV bK

NH+m

�
SV (x, t), x ∈ �, t > �t2.

lim
t→∞

infSH (x, t) ≥ (d1K + µhNH )/

(
d1 + µkNH +

βHbK

NH +m

)
,

lim
t→∞

infSV (x, t) ≥ A/

(
ν +

βVbK

NH +m

)
.
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Let Ŵ(x) := min{(d1K + µhNH )/(d1 + µkNH + βHbK
NH+m ), A/(ν + βV bK

NH+m ), M˜̺1(x), M˜̺2(x)} . The disease 
uniform persistence is obtained. 	�  �

Numerical simulations
This section presents the theoretical results supported by numerical simulations are presented in this section. 
The parameter values and initial value are chosen as follows:

initial value:

Moreover, the nonlocal kernel function23 is selected as follows:

Here, B = 2.6423 , x ∈ [−1, 1] ⊂ R and 
∫

R

J (x)dx =

∫ 1

−1

J (x)dx ≈ 1. See Fig. 1 for the evolution path of kernel 
function J(x).

Global dynamics of system (2).  In this section, we choose to change βH to illustrate the result of the theo-
rem. Let βH = 0.015(1− 0.65cosx) and see Table 2 for other parameters, then R0 = 0.949319338848686 < 1 . 
Figure 2 illustrates the long-term dynamic behavior of the system (2). As time t approaches infinity, the density 
of infected humans and mosquitoes both converge to 0, indicating the extinction of the disease. If the human 
transmission rate βH increases to 10βH , we can obtain R0 = 3.002011337607015 > 1 . At this point, Fig. 3 shows 
that the solution of system (2) eventually stabilizes, implying disease persistence.

(SH ,0(x), IH ,0(x), SV ,0(x), IV ,0(x)) =
(
5+ cos

πx

2
, 1.01+ sin

πx

2
, 2+ cos

πx

2
, 0.95+ sin

x

2

)
.

J (x) =





Bexp

�
1

x2 − 1

�
, − 1 < x < 1,

0, otherwise.

Table 2.   The parameter values.

Parameter Value Parameter Value

b 0.76*30.4 (Month
−1)8 NH +m 10011

µ 0.0015742,9 A 2.5

ν 30.4/14.49 (Month
−1)8 µhNH 6.5

γH 1.4 (Month
−1)10 d1 0.015 (km2

Month
−1)10,11

d2 0.015 (km2
Month

−1)10,11 βV 0.75 (1− 0.65sinx)
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Figure 1.   The evolution path of kernel function J(x).
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The impacts of diffusion rate for infected humans and infected mosquitoes.  After the disease 
has gone extinct, the spread of humans and mosquitoes no longer affects its transmission. Thus, in this section 
we focus solely on the impact of diffusion on disease persistence, specifically on infected humans and mosqui-
toes. Figures  4, 5, and 6 reveal that increasing the diffusion coefficient reduces the infected area, but accentuates 
the spatial difference between infected humans and mosquitoes. This enhances disease persistence and disease 
control. Therefore, in the event of an outbreak, we recommend implementing appropriate measures to reduce 
the spread of humans and mosquitoes for more effective disease management.

Figure 2.   The evolution path of SH , IH , SV , IV for system (2) with R0 = 0.949319338848686 < 1.
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Conclusions
We conducted research on the threshold dynamics of a nonlocal diffusion dengue model with spatial heterogene-
ity. To establish the existence, uniqueness, positivity, and boundedness of the solution, we utilized the semigroup 
theory and the variation of constants formula. The expression of the basic reproduction number was abstractly 
determined using the next-generation matrix method. By constructing a Lyapunov function and applying the 
comparison principle, we proved the system’s global stability and uniform persistence. Numerical simulations 
were performed to verify the theorem. This study explored the evolution of disease extinction and persistence by 
adjusting the human transmission rate βH . We also considered the impact of diffusion on infected humans and 
mosquitoes. The simulation results indicate that an increase in the diffusion coefficient leads to greater persis-
tence of the disease in both humans and mosquitoes. This finding highlights the importance of controlling the 
spread of humans and mosquitoes during disease outbreaks. To achieve better disease control, we recommend 
implementing appropriate measures to reduce their transmission.

Figure 3.   The evolution path of SH , IH , SV , IV for system (2) with R0 = 3.002011337607015 > 1.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15239  | https://doi.org/10.1038/s41598-023-42440-3

www.nature.com/scientificreports/

Additionally, we only researched on the threshold dynamics of a nonlocal diffusion dengue model. How-
ever, the transmission of dengue fever virus can also be affected by random factors, such as Lévy noise, Markov 
switching, etc. Therefore, it is interesting to introduce random noise into the nonlocal diffusion dengue fever 
model, at the same time, we will combine the stochastic nonstandard finite difference technique29,30 to make 
numerical calculations. Moreover, we note that the fractional derivative has been widely used in epidemiological 
studies31–34 due to its physical significance as a memory index. But in fact, for the model of nonlocal diffusion, 
since the nonlocal diffusion term is difficult to deal with, so we have not seen relevant research work. Next, we 
try to study the fractional order nonlocal diffusion dengue model.

Figure 4.   Numerical simulation of IH , IV for system (2) with d1 = d2 = 0.015 (where 
R0 = 3.002011337607015 > 1 ). Left: The evolution path of IH , IV . Right: The distribution of IH , IV in time and 
space.
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Figure 5.   Numerical simulation of IH , IV for system (2) with d1 = d2 = 0.030 (where 
R0 = 2.986675318735982 > 1 ). Left: The evolution path of IH , IV . Right: The distribution of IH , IV in time and 
space.
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