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Detecting causal relationship 
of non‑floodplain wetland 
hydrologic connectivity using 
convergent cross mapping
Sangchul Lee 1,5*, Byeongwon Lee 1,5, Junga Lee 2,5, Jihoon Song 3 & Gregory W. McCarty 4*

The hydrologic connectivity of non-floodplain wetlands (NFWs) with downstream water (DW) has 
gained increased importance, but connectivity via groundwater (GW) is largely unknown owing 
to the high complexity of hydrological processes and climatic seasonality. In this study, a causal 
inference method, convergent cross mapping (CCM), was applied to detect the hydrologic causality 
between upland NFW and DW through GW. CCM is a nonlinear inference method for detecting causal 
relationships among environmental variables with weak or moderate coupling in nonlinear dynamical 
systems. We assumed that causation would exist when the following conditions were observed: (1) 
the presence of two direct causal (NFW → GW and GW → DW) and one indirect causal (NFW → DW) 
relationship; (2) a nonexistent opposite causal relationship (DW → NFW); (3) the two direct causations 
with shorter lag times relative to indirect causation; and (4) similar patterns not observed with pseudo 
DW. The water levels monitored by a well and piezometer represented NFW and GW measurements, 
respectively, and the DW was indicated by the baseflow at the outlet of the drainage area, including 
NFW. To elucidate causality, the DW taken at the adjacent drainage area with similar climatic 
seasonality was also tested as pseudo DW. The CCM results showed that the water flow from NFW to 
GW and then DW was only present, and any opposite flows did not exist. In addition, direct causations 
had shorter lag time than indirect causation, and 3-day lag time was shown between NFW and DW. 
Interestingly, the results with pseudo DW did not show any lagged interactions, indicating non-
causation. These results provide the signals for the hydrologic connectivity of NFW and DW with GW. 
Therefore, this study would support the importance of NFW protection and management.

Non-floodplain wetlands (NFWs) enclosed by uplands without surface runoff outlets1 provide hydrologic, bio-
logical, chemical, and ecological benefits to landscapes2,3. Thus, understanding NFW hydrologic connectivity 
with adjacent or distant water bodies through surface runoff or subsurface flow including groundwater (GW) 
is important for demonstrating their key roles in landscapes4. Water mediating the transport of matter, energy, 
and organisms within or between elements of the hydrologic cycle refers to hydrologic connectivity5. The degree, 
type, and frequency of NFW connectivity (i.e., hydrologic connectivity between NFW and other components) 
differ by geomorphic characteristics6. For example, surface water connectivity is prevalent in the Prairie Pothole 
region owing to limited underground hydraulic conductivity6, whereas GW connectivity between NFWs and 
other landscape components prevails on the Coastal Plain of the Chesapeake Bay Watershed (CBW)7,8.

Hydrologic connectivity between NFWs and DWs is a function of surface runoff and GW, and the major diver 
varies depending on the landscape and climatic characteristics1,9. Surface runoff connectivity is often measured 
using in-situ observations on the Coastal Plain of the CBW10,11. However, demonstrating GW connectivity using 
observational data is extremely challenging because of the inherent uncertainty in GW connectivity, which is 
characterized as a combination of nonlinear behaviors driven by interactions among climatic inputs, hydrogeo-
logic characteristics, and human intervention3,12. Uncertainty regarding GW connectivity is further complicated 
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by climatic seasonality (e.g., evapotranspiration [ET] and precipitation [P]). Climatic seasonality often drives 
landscape hydrology, leading to similar temporal dynamics of landscape components7.

On the coastal plain of the CBW, the NFW water budget increases with P and GW inflow but decreases with 
ET and GW outflow. When the water table is higher or lower than the bottom of NFW during the wet and dry 
seasons, GW inflow to and outflow from NFWs occur, respectively13. Surface inflow and outflow also affect 
NFW dynamics; however, the impact of surface runoff is mostly observed during heavy rainfall events7. Thus, 
NFW connectivity via surface water has been determined in this region after rainfall events or wet seasons10,11. 
In addition, NFW connectivity with DW via GW has been reported in this region, owing to subsurface perme-
able conditions that lead to the strong interactions between NFW and GW14–17. However, GW connectivity is 
speculated based on regional characteristics and the modeling approach; strong evidence in this regard is still 
lacking in this region.

The major driving forces of the regional water budget on the CBW coastal plain are P and ET. When P is 
greater or lower than ET, the water budget of the landscape components, including NFWs increases or decreases, 
respectively. Landscape water storage is strongly dependent on wetlands in this region, which are characterized 
by low-gradient topography and poorly drained soils18. These conditions collectively lead to similar dynamics 
of NFW and DW, but their differences are observed after rainfall events for a short period7. To demonstrate 
GW connectivity between NFW and DW, the three components should exhibit a chain of causal relationships 
(represented as “cause” → “effect”) with different lag times (Fig. 1): NFW → GW with Laga, GW → DW with Lagb, 
and NFW → DW with Lagc. Any changes in NFWs will be reflected in GW and later in DWs along a hydrologic 
gradient due to lag times. A chain of causal relationships with NFW → GW and GW → DW have a direct causal 
relationship, while NFW indirectly affects DW. Thus, Lagc is equal to or greater than the summation of Laga 
and Lagb (i.e., Lagc ≥ Laga + Lagb). In contrast, the responses of NFW and DW to climatic seasonality might be 
simultaneous (i.e., no lag time) when the effects in both NFW and DW are linked to a shared cause (i.e., climatic 
seasonality). The causal relationships between NFW, GW, and DW with different lag times can be indicative of 
GW connectivity. Thus, identifying GW connectivity requires a metric that detects the causality between two 
variables with time-delayed interactions within nonlinear systems.

Convergent cross mapping (CCM) is a novel approach for detecting causality in nonlinear systems20,21. This 
causal inference method is unique because it can detect causal relationships between two variables with weak or 
moderate coupling. CCM has been successfully tested to demonstrate causal relationships between two time-
series datasets of environmental systems: temperature impacts on greenhouse gases22, invading species and 
soil nitrate23, between summer precipitation and aboveground biomass23, population dynamics of anchovies 
and sardines24, soil moisture impacts on precipitation25, hydrologic connectivity between two reservoirs26, and 
interactions between hydrologic and climatic variables27, and surface and groundwater relationship28. Extended 
CCM has also been used for distinguishing between uni- and bi-directional flow and detecting causal chains 
between entities with varying degrees of lagged behaviors21. Extended CCM can quantify whether two entities 
causally interact with each other (i.e., bi-directional) or whether only one entity affects the other entity (i.e., 
unidirectional)21.

In this study, we employed extended CCM to demonstrate the hydrologic connectivity of NFW with DW 
through GW and quantify the time delay in this causal relationships in the Greensboro watershed (GBW) within 
CBW in the USA7. We speculated that if NFW has any hydrologic connectivity with DW via GW, the follow-
ing would be observed from CCM analysis: (1) two direct causality (NFW → GW and GW → DW) and one 
indirect causality (NFW → DW) would be present; (2) the opposite direction of causality would not appear, and 
(3) direct causality would have shorter lag time than indirect causality. Because of the high uncertainty in the 
causation between GW and DW, we considered pseudo DW (DWadj) adjacent to the DW located at the outlet of 

Figure 1.   Schematic diagram showing interactions among NFWs, GW, DW, and climatic seasonality (left) 
and their causal chain (right). The figure is partially adopted from Pyzoha et al.19. “A”, “B”, and “C” indicate 
flow from NFW to GW, GW to DW, and NFW to DW, respectively. D is a causal variable shared by NFW 
and DW, resulting in similar patterns. In the causal chain, Laga, Lagb, and Lagc stand for the lag for flow from 
NFW to GW, from GW to DW, and from NFW to DW, respectively. The figure was generated by the MS Office 
PowerPoint.
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the watershed, including the NFW (DWorg). It was also assumed that causality would be observed between NFW 
and DWorg but not between NFW and DWadj.

Materials and methods
Study area and data
The NFW is located within the GBW, which is the drainage area of the U.S. Geological Survey (USGS) gauge 
station #01491000, on the coastal plain of the CBW (Fig. 2). The CBW is divided into 11 hydrogeomorphic 
regions (HGMRs) based on the rock type and physiographic province17. The study area is included in the coastal 
plain upland (CPU) with high precipitation infiltration into shallow aquifer due to well-drained soils and flat 
topography17. The CPU is also underlaid with unconsolidated sediments with high permeability, leading to large 
groundwater discharge to streams17.

The sizes of NFW and its drainage area are 1 ha and 3.1 ha, respectively; and the drainage area is dominated 
by forest7. The nearest streams indicated by the USGS high-resolution National Hydrography Dataset (NHD) 
is 0.1 km from NFW (Fig. 2). The “Wetland” component of the U.S. Department of Agriculture Conservation 
Effects Assessment Project (CEAP‐Wetlands) implemented a well and piezometer to explore the surface water 
level and groundwater level of NFW in this region, respectively29. A PVC pipe with a 2.54 cm diameter was 
utilized to construct a well and piezometer, with well screens being positioned over the whole length of the 
wells and the lower 30 cm of the piezometers. The well was utilized to directly measure the height of the water 
column, whereas the piezometer was employed to assess the pressure of the groundwater exerted by the water 
column. The well was equipped with pressure transducers (Campbell Scientific CS451, Campbell Scientific, 
Logan, Utah, United States), while the piezometer was physically linked to the data logger (Campbell Scientific 
CR1000). To see the interactions between the surface and groundwater, a well and piezometer were installed side 
by side (Fig. S1 of the Supplementary Material) since different soil conditions under the bottom of NFW might 
not correctly capture their interactions30.

The studied NFW was monitored from January 2016 to December 2019 (Table 1). The water levels were 
continuously collected by a well and piezometer at every 15-min, respectively (Fig. 2). The well and piezometer 
in the NFW was installed to 0.9 and 3.0 m below the wetland bottom, respectively, and they were spatially close 
each other30. Following similar previous studies7,30, this study assumed the water levels monitored by a well and 
piezometer indicated NFW and GW, respectively.

Baseflow from streamflow collected from the USGS gauge station was used to represent DWorg, and USGS 
gauge station #01491500 was also prepared for DWadj (Fig. 2). Both DWorg and DWadj were spatially adjacent, and 
thus they similarly responded to regional climatic seasonality. DWorg was hydrologically downstream of NFW 
based on the watershed boundary. Baseflow separation was calculated using the EcoHydRology package31 in 
the R programming environment. The digital filter separation described by Nathan and McMahon32 was used 
in this package, and the default settings were applied in our study.

15-min data were aggregated into daily values for the CCM analysis. The NFW measurements included 177 
missing samples (January 11th–July 6th, 2017), and data incompleteness could cause errors in the CCM analy-
sis. The missing samples were filled with simulations from the process-based model developed to predict the 
water level of NFW33. The process-based model was modified to simulate the hydrology of NFW, and the model 

Figure 2.   The spatial location of the studied wetland. CBW indicates the chesapeake bay watershed. GBW 
(Greensboro watershed) and TCW (Tuckahoe Creek watershed) are the drainage areas of the USGS gauge 
stations #01491000 and #01491500, respectively. NHD stands for the National Hydrography Dataset. The 
location of well and piezometer was further zoomed-in in Fig. S1 of the Supplementary Material and the 
data source used in this figure is listed in Table S1 of the Supplementary Material. The description of the 
hydrogeomorphic region (HGMR) is available in Table S2 of the Supplementary Material. The map was 
generated by ArcMap 10.7.
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successfully predicted the daily water level of the NFW studied with high accuracy with the R2 value of 0.84–0.88 
and further detailed results are provided in Junyu et al.33.

Convergent cross mapping
In this study, we introduced CCM, a method suggested by Sugihara et al.20 and extended by Ye et al.21, to detect 
causal relationships between variables of interest. CCM is a handy and robust numerical tool to determine causal 
influence when the time series of two variables are available. The theoretical basis of this approach comes from 
Takens’ theorem: when “x” (cause) influences “y” (effect) in dynamical systems, the value of “x” can be retrieved 
from the value of “y”. One critical process is to determine whether the accuracy of the reconstruction of “x” from 
“y” increases as the number of L (library vectors) of “y” increases. As the number of L means the number of dif-
ferent time points used for the reconstruction. In other words, it tests whether the inclusion of “y” values from 
longer periods reconstructs “x” better. The degree of how accurately “y” estimates “x”, called cross map skill (p), 
is determined based on Pearson’s correlation between observed and estimated “x”20. Most importantly, this test 
allows screening of spurious correlational relationships. If “x” and “y” have a spurious correlational relationship, 
an increase in L does not result in a more accurate reconstruction of “x”, because the correlation is only due to 
the short-time synchronization of the two variables. In CCM, this relationship between x and y is represented as 
“y xmap x” that means x is estimated from y. In this study, we stated “y (effect) xmap x (cause)” as “x → (affects) 
y” to better indicate the relationship between cause and effect. This study also tested the significance of CCM 
results (p-value < 0.01) to identify spurious causation using the method introduced in Bonotto et al.28 and Ye 
et al.34. The test included assessing whether the cross-map skill at full library size is significantly greater than the 
highest lagged cross-correlation and surrogate time series. The p-value was computed as below:

where k is the total number of surrogates and n is the number of replicates with greater cross-map skill than the 
actual value.

The extension and enhancement of CCM by Ye et al.34 solved one of the weaknesses of the original version: 
overwhelming influence from “x” on “y” may lead to successful CCM in both directions (meaning that “y” 
also affects “x”), although this is not the case. This weakness, called ‘generalized synchrony,’ occurs when “y” is 
almost only affected by “x”, and thus, “x” and “y” act as one system. To address this issue, Ye et al.34 considered 
different lag times. Causal relationships signify that there exists a chronological order between the two variables. 
Therefore, if the causal relationship between “x” and “y” is unidirectional (here only “x” affects “y”), the lag time 
found in CCM recreating “x” from “y” will be negative, while the time lag found in CCM recreating “y” from 
“x” will be positive. The optimal time lag is decided when the cross map skill is largest. The negative optimal lag 
time of “x (cause)” → “y (effect)” indicates the response of “y” to any changes in “x” will appear after the optimal 
lag time. The zero optimal lag time of “x → y” denotes “y” promptly responds to “x” without any lag time, and 
the positive optimal lag time of “x → y” means “x (cause)” responds to “y (effect)” with the lag time, indicating 
illogical causation.

We used the rEDM package developed by Ye et al.34 to implement CCM processes in R. The processes involved 
the reconstruction of individual system states using a time series to generate the joint state, for the estimation of 
one variable from another. Individual system states were reconstructed by the time-delay embedding approach, 
which represents the delay coordinates of each system state. The optimal embedding dimension (E) of each 
system state was calculated through the rEDM package in R34.

(1)p-value = (n+ 1)/(k + 1),

Table 1.   Descriptions of the studied NFW and its monitoring. The location indicates the specific points of 
wells and piezometers installed. Non-floodplain wetland (NFW) and groundwater (GW) are defined as water 
levels measured by wells and piezometers, respectively, in this study. DW indicates downstream water.

Attributes Descriptions

Location 39.053 (Latitude), − 75.748 
(Longitude)

Monitoring period January 1st, 2016 to December 
31st, 2019

Monitoring range
0.8 and 3 m below the wetland 
bottom (well and piezometer, 
respectively)

Surface level (m)
min max std Avg

 − 0.90 0.44 0.31 0.14

Groundwater level (m)
min max std Avg

 − 1.38 0.32 0.37  − 0.07

Distance to DW (km) 7.1

Monitoring samples (day) NFW: 1259, GW: 1461

Missing samples (day) NFW: 177, GW: 0

Area (ha) 1.0
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Results
Temporal dynamics of non‑floodplain wetland (NFW), groundwater (GW), and downstream 
water (DW)
The daily time series of NFW, GW, DWorg, and DWadj are shown in Fig. 3a,b. Overall, the temporal dynamics 
of NFW, GW, DWorg, and DWadj were highly similar in response to the seasonal trends of this area, with high 
and low water balance during the winter and summer seasons, respectively. NFW and GW ranged from − 0.9 to 
0.4 m and from − 1.4 to 0.3 m, respectively, while the variation ranges of DWorg and DWadj were 2–403 (m3/s) and 
15–195 (m3/s), respectively. DWorg and DWadj showed similar temporal dynamics (Fig. 3b). Monthly variations 
in ET were high during summer months (June, July, and August) and low during winter months (December, 
January, and February) and the monthly pattern of precipitation was overall uniform over the course of the year, 
indicating seasonality in this region (Fig. 3c,d).

NFW and GW dynamics did not comply with several peaks of DW owing to the vertical limits in the monitor-
ing range of NFW and GW (dotted vertical purple arrows in Fig. 3b). When the water storage of NFW was filled 
by heavy rainfall, the fill-spill dynamics of NFW frequently occurred10,11. Regarding the configuration of a well 
and piezometer (Fig. S2 of the Supplementary Material) the maximum upper water level of NFW and GW is the 
same as the depth of the NFW while the monitoring range of DW had no limit, leading to different dynamics 

Figure 3.   (a) Daily time series of non-floodplain wetlands (NFW) and groundwater (GW), (b) daily time series 
of two downstream waters (DWs), (c) monthly time series of evapotranspiration (ET), and (d) monthly time 
series of precipitation. The yellow-green line in (a) indicates the predicted NFW by the process-based model33. 
DWorg and DWadj are baseflow derived from streamflow measured at USGS gauge stations #01491000 and 
#01491500, respectively. The figure was generated by the R 3.6.1 program.
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between NFW/GW and DW. The monitoring lower limit also caused the flat level of NFW during the summer 
of 2019 (dotted vertical purple arrow in Fig. 3a). In addition, DW is the summation of intra-watershed processes 
and thus the behavior of DW might be different from NFW and GW that are the tiny landscape component.

Embedding dimension and nonlinearity
To apply the CCM method, the embedding dimension (E) should be determined. The embedding dimension (E) 
is the number of time steps used for the prediction. Following previous studies, the optimal E values for NFW, 
GW, and DW were computed using a simplex projection (Table 2)24,25. Nonlinearity was identified by observing 
the best prediction when different combinations of the degree of nonlinearity (θ) and embedding dimension 
(E) were tested. When the best prediction was shown with θ > 0, the time-series variable was nonlinear. The 
nonlinearity was assessed by S-map with the embedding dimension (E, 1, 2,…, 10) and the degree of nonlinear-
ity (θ, 0, 0.25, 0.5,…, 0).

Differentiation of causation from non‑causal relationships
In the CCM method, we attempted to differentiate causation from non-causal correlations between observed 
and estimated variables: NFW → GW, GW → DW, and NFW → DW, using cross map skill. Figure 4 shows the 
cross map skill (p) between the observed and estimated variables with different library lengths (L). Interestingly, 
overall relationships had high cross map skill (p) with a longer library length (L) with the significant results 
(p-value < 0.01). The causality was detected at NFW → GW, which was driven by the vertical water flow from 
surface to groundwater. The high cross map skill (p) of GW → NFW was likely due to the seasonal flow from 
upland to NFW via GW in this region7. The causality results between precipitation and hydrologic variables 
(e.g., NFW, GW, and DWorg) showed precipitation exhibited a causal relationship with three hydrologic variables 
(p-value < 0.01, Fig. S3 of the Supplementary Material). This finding suggested that the seasonal lateral movement 
of GW to NFW could be substantiated by the causative link between precipitation and these hydrologic variables.

However, the significant test showed that the cross map skill of GW → NFW at full library size was lower than 
the highest lagged cross-correlation, indicating non-causation (Fig. 4a). The cross map skill (p) of GW → DWorg 
and DWadj was high and remained unchanged regardless of the length of the library (L). DWorg and DWadj repre-
sents the combination results of hydrological landscape components. A tiny component (GW) could have mini-
mal impacts on DWorg and DWadj and thus the cross map skill (p) of GW → DWorg and DWadj did not consistently 
increase with an increase in the length of the library (L). In contrast, DWorg and DWadj complied with seasonal 
dynamics indicated by dominant driving forces (e.g., P and ET), leading to a relatively high value of the cross map 
skill (p) of DWorg and DWadj → NFW/GW7. Except for GW → NFW, all interactions were statistically significant.

Detecting causality in the hydrological connectivity between NFW, GW, and DW
First, we applied extended CCM method to further identify the true causality among NFW, GW, DWorg and 
DWadj. The true causations in Fig. 4 were further explored. Figure 5a shows that the optimal cross map lags of 
NFW → GW was not distinguishable from zero lag time. This was likely because the spatial configuration of the 
well and piezometer might lead to synchronization between NFW and GW. In addition, daily measurements 
might not capture lagged responses of GW to NFW.

The optimal lag time of GW → DWorg was observed at a negative one day (Fig. 5b), indicating that changes 
in GW would be reflected in DWorg one day later. Non-causation with the positive optimal lag time was found 
in the opposite direction (DWorg → GW). The optimal lag time of NFW → DWorg was negative 3 days, and the 
opposite direction was zero (Fig. 5c). The results of NFW → DWorg informed that after 3 days, any changes in 
NFW would affect DWorg. Regarding the lag time in the causal chain of NFW, GW, and DWorg, the CCM results 
represented changes in NFW caused changes in GW and then subsequently affected DWorg. The lag times of 
among NFW, GW, and DWorg agreed with our assumption as the sum of the lag times of two direct causal links 
(NFW → GW and GW → DWorg) was lower than the indirect causal link (the optimal lag of NFW → DWorg). 
Moreover, the two lagged interactions (GW → DWorg and NFW → DWorg) were found to be statistically signifi-
cant (p-value < 0.01). Regarding the optimal lag times, the significance of two causal links (GW at t → DWorg at 
t + 1 and NFW at t → DWorg at t + 3, where t represents the time) were assessed using the method proposed by 
Bonotto et al.28 and Ye et al.34. The results from extended CCM well demonstrated the causal chain from NFW 
to DWorg via GW with different lag times.

In the case of GW → DWadj, the optimal lag time was a positive one day, representing that DWadj responded 
to GW although any changes did not take place at GW (Fig. 5d). The optimal lag time of DWadj → GW with the 
positive optimal lag time also showed non-causation. Interestingly, a negative one day was the optimal lag time 
of NFW → DWadj, indicating the changes in NFW will be reflected in DWadj after one day. Regarding a transitive 
causal chain from NFW to DW through GW, the negative one-day optimal lag time of NFW → DWadj could 

Table 2.   The optimal embedding dimensions (E) and degree of nonlinearity (θ) of time-series observations.

Attributes E Nonlinearity

NFW 3 θ = 3.0, E = 4

GW 2 θ = 4.0, E = 3

DWorg 3 θ = 0.75, E = 3

DWadj 2 θ = 8, E = 10
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not support the GW hydrologic connectivity between NFW and DWadj because GW was not causal to DWadj 
(Fig. 5e). Therefore, the extended CCM analysis showed that the evidence of causal relationships in a transitive 
causal chain from NFW to DW through GW was only found at DWorg and not at DWadj based on the lagged 
responses among them.

Discussions and limitations
In this study, CCM was used to find causal relationships in nonlinear dynamical systems for observables with 
weak or moderate coupling. Previous studies explored various causal relationships between two entities in 
environmental systems using CCM22–28. Among them, different causal methods including CCM were compared 
for the hydrologic variable26–28. A study by Bonotto et al.28 tested the impacts of data seasonality, sampling 
frequency, and long-term trends on the performance of CCM. Following previous studies, this study could 
provide additional insight on the use of CCM on the causality between one small casual variable (i.e., NFW) 
and an aggregated affected-variable (i.e., DW). NFW is one of water storages that drains to DW known as the 
summation of intra-watershed processes, and thus NFW might have trivial impacts on DW. To partially address 
the uncertainty on the causal impacts of NFW on DW, this study introduced pseudo DW to demonstrate the 
reliability of CCM results. This method could offer the potential way of using CCM to see causality between a 
small causal variable and the aggregated-affected variable. However, the observed causal relationship between 
NFW and DW was uncertain although this study adopted pseudo DW to partially address this issue. Extensive 
observations along the hydraulic gradient from NFW to DW might offer reliable evidence of causation, but this is 

Figure 4.   Cross map skill (p) of observed and estimated values as a function of the length of the library (L): 
(a) NFW and GW, (b) GW and DWorg, (c) NFW and DWorg, (d) GW and DWadj, and (e) GW and DWadj. The 
dotted horizontal line is the highest lagged cross-correlation. x → y indicates x affects y. NFW and GW indicate 
non-floodplain wetland and groundwater, respectively. DWorg and DWadj are baseflow derived from streamflow 
measured at USGS gauge stations #01491000 and #01491500, respectively. The figure was generated by the R 
3.6.1 program.
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challenging. To achieve dependable causality, efforts to install multiple observations along a hydrologic gradient 
between NFW and DW would be critical.

This study used daily time series of NFW, GW and DW mainly due to missing data in NFW (see the green 
line in Fig. 3a). In-situ observational data from a well and piezometer inevitably includes missing data due to 
uncontrollable environment conditions. The CCM results with daily time series represented the synchronized 
behaviors between NFW and GW (Fig. 5a), but sub-daily time series might show the lagged interaction between 
NFW and GW. The CCM analysis could not be performed with missing data. Accordingly, 15-min monitoring 
data were converted into daily data to replace missing data by the simulations from a process-based model that 
demonstrated decent performance measures in this region33. The process-based model only simulated daily 
dynamics of NFW33. Sub-daily observations data are recommended to see lagged responses of GW to NFW since 
the CCM results were sensitive to the sampling frequency28.

To test the influence of sampling frequency on CCM results, this study applied a conversion process that 
transformed daily data into 3-day and 7-day intervals through the averaging of daily values (Fig. 6). Despite 
variations in sampling frequency, the overall trends remained consistent. The highest lagged cross-correlation, 
represented by the dotted horizontal line, tended to increase as the temporal frequency decreased from 1 to 
7 days. Notably, the causal link between NFW and GW exhibited significance with one-day data but did not 
show significance with 7-day data. This discrepancy was attributed to the lower cross-map skill at the full library 
size, which fell below the highest lagged cross-correlation (Fig. 6f). This observation suggests that the causal 
interaction between NFW and GW might not be effectively captured by CCM when utilizing 7-day data, as their 
interactions are subtle and low-frequency data fails to depict their causal behaviors. The conversion of data from 
higher to lower frequencies likely resulted in smoother data patterns, allowing for the generalization of subtle 
behaviors observed in individual NFWs.

Figure 5.   Cross map skill (p) with cross map lag between: (a) NFW and GW, (b) GW and DWorg, (c) NFW 
and DWorg, (d) GW and DWadj, and (e) GW and DWadj. x → y indicates x affects y. NFW and GW indicate 
non-floodplain wetland and groundwater, respectively. DWorg and DWadj are baseflow derived from streamflow 
measured at USGS gauge stations #01491000 and #01491500, respectively. The figure was generated by the R 
3.6.1 program.
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The spatial configuration of a well and piezometer also likely led to synchronization between NFW and GW 
(Fig. 5a). If a piezometer was distant to a well, the lagged response of GW to NFW might be observed. How-
ever, the subsurface soil characteristic greatly affected the vertical water transport from NFW to GW30. When 
groundwater flow direction was not clear, measurements from a piezometer might not be associated with those 
from a well away from a piezometer. Thus, implementing a piezometer at the spot distant to a well is challenging. 

Figure 6.   Cross map skill (p) of observed and estimated values as a function of the length of the library (L) with 
3-day (a–e) and 7-day (f–j) data. The figure was generated by the R 3.6.1 program.
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Although NFW and GW were monitored at the same spot with different vertical ranges, that practices might be 
the best option to see hydrologic interactions of NFW with sub-surface systems.

Using pseudo DW (represented as DWadj), this study showed a transitive causal chain from NFW to DW via 
GW in this region. The two direct causations (NFW → GW and GW → DWorg) had a shorter lag time than one 
indirect causation (NFW → DWorg), but the one direct causation (GW → DWorg) showed a lower correlation than 
indirect one (NFW → DWorg). Extended CCM method emphasized a direct causation with shorter lag times 
and stronger correlation than an indirection one21. However, our results were not consistent with the previous 
study21. It was speculated that: (1) a lower correlation in direction causation was likely due to the monitoring 
spot of GW spatially far away from DW; and (2) the two entities (NFW and DWorg) in indirect causality were 
directly exposure to driving forces and their behaviors might have great similarity while GW indirectly affected 
by driving forces could have less similarity.

In this region, the nutrient transport time via GW ranged from years to decades and this time varied by 
subsurface conditions35. Our results estimated a 3-day lag time from NFW to DW via GW, which is not in agree-
ment with a previous study35. This could be explained by “old” water in long-term groundwater storage36,37. The 
streamflow is mainly comprised of baseflow derived from long-term groundwater storage (“old” water), and the 
“new” precipitation has strong impacts on streamflow at storm events36. The water vertical transport from NFWs 
to GW is the pressure head of the groundwater storage, sequentially pushing the old water from upgradient to 
downstream and eventually releasing “old” water closer to streamflow. As groundwater storage is influenced by 
various landscape components, the analysis of a 3-day lag time using only the concept of “old” water may not be 
adequately comprehensive. The cumulative effects of multiple landscape elements on downstream water through 
groundwater could lead to an extended lag time for indirect causation, compared to the total of the lag times 
for two direct causations. More accurate estimation of lag time would be possible using tracers38 and extensive 
monitoring stations. This study is the first attempt to corroborate GW hydrologic connectivity between NFW 
and DW using CCM with available monitoring data and showed causal signals. This finding would provide 
insight on the role and NFW at a watershed. As emphasized by Bonotto et al.28, environmental monitoring data 
are often limited and thus the interpretation of CCM results should be performed with detailed observations.

Conclusions
Our study applied a causal inference method (CCM) to detect causality between NFW and DW through GW 
on the Coastal Plain of the CBW. The hydrologic connectivity of NFW with DW via surface runoff was often 
observed, but demonstrating the connectivity via GW is difficult because strong climatic seasonality causes 
all landscape components have similar behaviors. CCM could detect causality among variables in nonlinear 
dynamical systems using time-series observations. Using CCM, we examined the causal relationship between 
NFW and DW via GW using daily time series. The CCM results showed a transitive causal chain from NFW to 
DW through GW with shorter lag of direct causation (NFW → GW and GW → DW) relative to indirect causation 
(NFW → DW). However, this causal chain was not observed with pseudo DW. These results support the notion 
that NFW is hydrologically connected with DW through GW. These findings emphasize the important role and 
benefits of NFW in landscape hydrology.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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