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Detecting causal relationship
of non-floodplain wetland
hydrologic connectivity using
convergent cross mapping

Sangchul Lee**?, Byeongwon Lee'%, Junga Lee?*, Jihoon Song? & Gregory W. McCarty***

The hydrologic connectivity of non-floodplain wetlands (NFWs) with downstream water (DW) has
gained increased importance, but connectivity via groundwater (GW) is largely unknown owing

to the high complexity of hydrological processes and climatic seasonality. In this study, a causal
inference method, convergent cross mapping (CCM), was applied to detect the hydrologic causality
between upland NFW and DW through GW. CCM is a nonlinear inference method for detecting causal
relationships among environmental variables with weak or moderate coupling in nonlinear dynamical
systems. We assumed that causation would exist when the following conditions were observed: (1)
the presence of two direct causal (NFW — GW and GW — DW) and one indirect causal (NFW — DW)
relationship; (2) a nonexistent opposite causal relationship (DW — NFW); (3) the two direct causations
with shorter lag times relative to indirect causation; and (4) similar patterns not observed with pseudo
DW.The water levels monitored by a well and piezometer represented NFW and GW measurements,
respectively, and the DW was indicated by the baseflow at the outlet of the drainage area, including
NFW.To elucidate causality, the DW taken at the adjacent drainage area with similar climatic
seasonality was also tested as pseudo DW. The CCM results showed that the water flow from NFW to
GW and then DW was only present, and any opposite flows did not exist. In addition, direct causations
had shorter lag time than indirect causation, and 3-day lag time was shown between NFW and DW.
Interestingly, the results with pseudo DW did not show any lagged interactions, indicating non-
causation. These results provide the signals for the hydrologic connectivity of NFW and DW with GW.
Therefore, this study would support the importance of NFW protection and management.

Non-floodplain wetlands (NFWs) enclosed by uplands without surface runoff outlets! provide hydrologic, bio-
logical, chemical, and ecological benefits to landscapes®®. Thus, understanding NFW hydrologic connectivity
with adjacent or distant water bodies through surface runoff or subsurface flow including groundwater (GW)
is important for demonstrating their key roles in landscapes*. Water mediating the transport of matter, energy,
and organisms within or between elements of the hydrologic cycle refers to hydrologic connectivity®. The degree,
type, and frequency of NFW connectivity (i.e., hydrologic connectivity between NFW and other components)
differ by geomorphic characteristics®. For example, surface water connectivity is prevalent in the Prairie Pothole
region owing to limited underground hydraulic conductivity®, whereas GW connectivity between NFWs and
other landscape components prevails on the Coastal Plain of the Chesapeake Bay Watershed (CBW)”%.
Hydrologic connectivity between NFWs and DWs is a function of surface runoff and GW, and the major diver
varies depending on the landscape and climatic characteristics'®. Surface runoff connectivity is often measured
using in-situ observations on the Coastal Plain of the CBW!®!!. However, demonstrating GW connectivity using
observational data is extremely challenging because of the inherent uncertainty in GW connectivity, which is
characterized as a combination of nonlinear behaviors driven by interactions among climatic inputs, hydrogeo-
logic characteristics, and human intervention*'?. Uncertainty regarding GW connectivity is further complicated
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by climatic seasonality (e.g., evapotranspiration [ET] and precipitation [P]). Climatic seasonality often drives
landscape hydrology, leading to similar temporal dynamics of landscape components’.

On the coastal plain of the CBW, the NFW water budget increases with P and GW inflow but decreases with
ET and GW outflow. When the water table is higher or lower than the bottom of NFW during the wet and dry
seasons, GW inflow to and outflow from NFWs occur, respectively’®. Surface inflow and outflow also affect
NFW dynamics; however, the impact of surface runoff is mostly observed during heavy rainfall events’. Thus,
NFW connectivity via surface water has been determined in this region after rainfall events or wet seasons'®!!.
In addition, NFW connectivity with DW via GW has been reported in this region, owing to subsurface perme-
able conditions that lead to the strong interactions between NFW and GW'*"'7. However, GW connectivity is
speculated based on regional characteristics and the modeling approach; strong evidence in this regard is still
lacking in this region.

The major driving forces of the regional water budget on the CBW coastal plain are P and ET. When P is
greater or lower than ET, the water budget of the landscape components, including NFW5s increases or decreases,
respectively. Landscape water storage is strongly dependent on wetlands in this region, which are characterized
by low-gradient topography and poorly drained soils'®. These conditions collectively lead to similar dynamics
of NFW and DW, but their differences are observed after rainfall events for a short period’. To demonstrate
GW connectivity between NFW and DW, the three components should exhibit a chain of causal relationships
(represented as “cause” — “effect”) with different lag times (Fig. 1): NFW — GW with Lag,, GW — DW with Lag,
and NFW — DW with Lag.. Any changes in NFWs will be reflected in GW and later in DWs along a hydrologic
gradient due to lag times. A chain of causal relationships with NFW — GW and GW — DW have a direct causal
relationship, while NFW indirectly affects DW. Thus, Lag, is equal to or greater than the summation of Lag,
and Lag, (i.e., Lag.>Lag, + Lag). In contrast, the responses of NFW and DW to climatic seasonality might be
simultaneous (i.e., no lag time) when the effects in both NFW and DW are linked to a shared cause (i.e., climatic
seasonality). The causal relationships between NFW, GW, and DW with different lag times can be indicative of
GW connectivity. Thus, identifying GW connectivity requires a metric that detects the causality between two
variables with time-delayed interactions within nonlinear systems.

Convergent cross mapping (CCM) is a novel approach for detecting causality in nonlinear systems®*?!. This
causal inference method is unique because it can detect causal relationships between two variables with weak or
moderate coupling. CCM has been successfully tested to demonstrate causal relationships between two time-
series datasets of environmental systems: temperature impacts on greenhouse gases®?, invading species and
soil nitrate”, between summer precipitation and aboveground biomass?, population dynamics of anchovies
and sardines?, soil moisture impacts on precipitation?, hydrologic connectivity between two reservoirs®, and
interactions between hydrologic and climatic variables?’, and surface and groundwater relationship®®. Extended
CCM has also been used for distinguishing between uni- and bi-directional flow and detecting causal chains
between entities with varying degrees of lagged behaviors?'. Extended CCM can quantify whether two entities
causally interact with each other (i.e., bi-directional) or whether only one entity affects the other entity (i.e.,
unidirectional)?!.

In this study, we employed extended CCM to demonstrate the hydrologic connectivity of NFW with DW
through GW and quantify the time delay in this causal relationships in the Greensboro watershed (GBW) within
CBW in the USA”. We speculated that if NFW has any hydrologic connectivity with DW via GW, the follow-
ing would be observed from CCM analysis: (1) two direct causality (NFW — GW and GW — DW) and one
indirect causality (NFW — DW) would be present; (2) the opposite direction of causality would not appear, and
(3) direct causality would have shorter lag time than indirect causality. Because of the high uncertainty in the
causation between GW and DW, we considered pseudo DW (DW,4) adjacent to the DW located at the outlet of
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Figure 1. Schematic diagram showing interactions among NFWs, GW, DW, and climatic seasonality (left)
and their causal chain (right). The figure is partially adopted from Pyzoha et al.’®. “A”, “B”, and “C” indicate
flow from NFW to GW, GW to DW, and NFW to DW, respectively. D is a causal variable shared by NFW

and DW, resulting in similar patterns. In the causal chain, Lag,, Lag,, and Lag, stand for the lag for flow from
NFW to GW, from GW to DW, and from NFW to DW, respectively. The figure was generated by the MS Office
PowerPoint.
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the watershed, including the NFW (DW,,,,). It was also assumed that causality would be observed between NFW
and DW,,, but not between NFW and DW ;.

org

Materials and methods

Study area and data

The NFW is located within the GBW, which is the drainage area of the U.S. Geological Survey (USGS) gauge
station #01491000, on the coastal plain of the CBW (Fig. 2). The CBW is divided into 11 hydrogeomorphic
regions (HGMRs) based on the rock type and physiographic province!”. The study area is included in the coastal
plain upland (CPU) with high precipitation infiltration into shallow aquifer due to well-drained soils and flat
topography'”. The CPU is also underlaid with unconsolidated sediments with high permeability, leading to large
groundwater discharge to streams!’.

The sizes of NFW and its drainage area are 1 ha and 3.1 ha, respectively; and the drainage area is dominated
by forest’. The nearest streams indicated by the USGS high-resolution National Hydrography Dataset (NHD)
is 0.1 km from NFW (Fig. 2). The “Wetland” component of the U.S. Department of Agriculture Conservation
Effects Assessment Project (CEAP-Wetlands) implemented a well and piezometer to explore the surface water
level and groundwater level of NFW in this region, respectively”. A PVC pipe with a 2.54 cm diameter was
utilized to construct a well and piezometer, with well screens being positioned over the whole length of the
wells and the lower 30 cm of the piezometers. The well was utilized to directly measure the height of the water
column, whereas the piezometer was employed to assess the pressure of the groundwater exerted by the water
column. The well was equipped with pressure transducers (Campbell Scientific CS451, Campbell Scientific,
Logan, Utah, United States), while the piezometer was physically linked to the data logger (Campbell Scientific
CR1000). To see the interactions between the surface and groundwater, a well and piezometer were installed side
by side (Fig. S1 of the Supplementary Material) since different soil conditions under the bottom of NFW might
not correctly capture their interactions™.

The studied NFW was monitored from January 2016 to December 2019 (Table 1). The water levels were
continuously collected by a well and piezometer at every 15-min, respectively (Fig. 2). The well and piezometer
in the NFW was installed to 0.9 and 3.0 m below the wetland bottom, respectively, and they were spatially close
each other®. Following similar previous studies”, this study assumed the water levels monitored by a well and
piezometer indicated NFW and GW, respectively.

Baseflow from streamflow collected from the USGS gauge station was used to represent DW,,,,, and USGS
gauge station #01491500 was also prepared for DW,; (Fig. 2). Both DW,,, and DW,; were spatially adjacent, and
thus they similarly responded to regional climatic seasonality. DW,,, was hydrologically downstream of NFW
based on the watershed boundary. Baseflow separation was calculated using the EcoHydRology package® in
the R programming environment. The digital filter separation described by Nathan and McMahon?? was used
in this package, and the default settings were applied in our study.

15-min data were aggregated into daily values for the CCM analysis. The NFW measurements included 177
missing samples (January 11th-July 6th, 2017), and data incompleteness could cause errors in the CCM analy-
sis. The missing samples were filled with simulations from the process-based model developed to predict the
water level of NFW™. The process-based model was modified to simulate the hydrology of NFW, and the model
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Figure 2. The spatial location of the studied wetland. CBW indicates the chesapeake bay watershed. GBW
(Greensboro watershed) and TCW (Tuckahoe Creek watershed) are the drainage areas of the USGS gauge
stations #01491000 and #01491500, respectively. NHD stands for the National Hydrography Dataset. The
location of well and piezometer was further zoomed-in in Fig. S1 of the Supplementary Material and the
data source used in this figure is listed in Table S1 of the Supplementary Material. The description of the
hydrogeomorphic region (HGMR) is available in Table S2 of the Supplementary Material. The map was
generated by ArcMap 10.7.

Scientific Reports |

(2023) 13:17220 | https://doi.org/10.1038/s41598-023-44071-0 nature portfolio



www.nature.com/scientificreports/

Attributes Descriptions
Location 39.053 (Latitude), —75.748
(Longitude)

January Ist, 2016 to December
31st, 2019

0.8 and 3 m below the wetland

Monitoring period

Monitoring range bottom (well and piezometer,
respectively)
min max |std | Avg

Surface level (m)
-0.90 |0.44 |031 |0.14

min max |std | Avg
Groundwater level (m)

-1.38 032 |0.37 | -0.07
Distance to DW (km) 7.1
Monitoring samples (day) | NFW: 1259, GW: 1461
Missing samples (day) NFW: 177, GW: 0
Area (ha) 1.0

Table 1. Descriptions of the studied NFW and its monitoring. The location indicates the specific points of
wells and piezometers installed. Non-floodplain wetland (NFW) and groundwater (GW) are defined as water
levels measured by wells and piezometers, respectively, in this study. DW indicates downstream water.

successfully predicted the daily water level of the NFW studied with high accuracy with the R? value of 0.84-0.88
and further detailed results are provided in Junyu et al. .

Convergent cross mapping

In this study, we introduced CCM, a method suggested by Sugihara et al.” and extended by Ye et al.?, to detect
causal relationships between variables of interest. CCM is a handy and robust numerical tool to determine causal
influence when the time series of two variables are available. The theoretical basis of this approach comes from

Takens’ theorem: when “x” (cause) influences “y” (effect) in dynamical systems, the value of “x” can be retrieved
from the value of “y”. One critical process is to determine whether the accuracy of the reconstruction of “x” from

«_»

“y” increases as the number of L (library vectors) of “y” increases. As the number of L means the number of dif-

ferent time points used for the reconstruction. In other words, it tests whether the inclusion of “y” values from
longer periods reconstructs “x” better. The degree of how accurately “y” estimates “x”, called cross map skill (p),
is determined based on Pearson’s correlation between observed and estimated “x”2°. Most importantly, this test
allows screening of spurious correlational relationships. If “x” and “y” have a spurious correlational relationship,
an increase in L does not result in a more accurate reconstruction of “x, because the correlation is only due to
the short-time synchronization of the two variables. In CCM, this relationship between x and y is represented as
“y xmap x” that means x is estimated from y. In this study, we stated “y (effect) xmap x (cause)” as “x — (affects)
y” to better indicate the relationship between cause and effect. This study also tested the significance of CCM
results (p-value <0.01) to identify spurious causation using the method introduced in Bonotto et al.?® and Ye
et al.’®. The test included assessing whether the cross-map skill at full library size is significantly greater than the

highest lagged cross-correlation and surrogate time series. The p-value was computed as below:
p-value=(n+1)/(k + 1), (1)

where k is the total number of surrogates and 7 is the number of replicates with greater cross-map skill than the
actual value.
The extension and enhancement of CCM by Ye et al.’* solved one of the weaknesses of the original version:

«  » «_» «_ »

overwhelming influence from “x” on “y” may lead to successful CCM in both directions (meaning that “y
also affects “x”), although this is not the case. This weakness, called ‘generalized synchrony; occurs when “y” is
almost only affected by “x”, and thus, “x” and “y” act as one system. To address this issue, Ye et al.** considered
different lag times. Causal relationships signify that there exists a chronological order between the two variables.

Therefore, if the causal relationship between “x” and “y” “x”

1'34

y” is unidirectional (here only “x” affects “y”), the lag time
found in CCM recreating “x” from “y” will be negative, while the time lag found in CCM recreating “y” from
“x” will be positive. The optimal time lag is decided when the cross map skill is largest. The negative optimal lag
time of “x (cause)” — “y (effect)” indicates the response of “y” to any changes in “x” will appear after the optimal
lag time. The zero optimal lag time of “x—y” denotes “y” promptly responds to “x” without any lag time, and
the positive optimal lag time of “x— y” means “x (cause)” responds to “y (effect)” with the lag time, indicating
illogical causation.

We used the rEDM package developed by Ye et al.* to implement CCM processes in R. The processes involved
the reconstruction of individual system states using a time series to generate the joint state, for the estimation of
one variable from another. Individual system states were reconstructed by the time-delay embedding approach,
which represents the delay coordinates of each system state. The optimal embedding dimension (E) of each

system state was calculated through the rEDM package in R*.
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Results

Temporal dynamics of non-floodplain wetland (NFW), groundwater (GW), and downstream
water (DW)

The daily time series of NFW, GW, DW o and DW,g; are shown in Fig. 3a,b. Overall, the temporal dynamics
of NFW, GW, DW,,,, and DW,; were highly similar in response to the seasonal trends of this area, with high
and low water balance during the winter and summer seasons, respectively. NFW and GW ranged from - 0.9 to
0.4 m and from — 1.4 to 0.3 m, respectively, while the variation ranges of DW,,, and DW,4; were 2-403 (m*/s) and
15-195 (m*/s), respectively. DW,,, and DW,4 showed similar temporal dynamics (Fig. 3b). Monthly variations
in ET were high during summer months (June, July, and August) and low during winter months (December,
January, and February) and the monthly pattern of precipitation was overall uniform over the course of the year,
indicating seasonality in this region (Fig. 3c,d).

NFW and GW dynamics did not comply with several peaks of DW owing to the vertical limits in the monitor-
ing range of NFW and GW (dotted vertical purple arrows in Fig. 3b). When the water storage of NFW was filled
by heavy rainfall, the fill-spill dynamics of NFW frequently occurred'®!!. Regarding the configuration of a well
and piezometer (Fig. S2 of the Supplementary Material) the maximum upper water level of NFW and GW is the
same as the depth of the NFW while the monitoring range of DW had no limit, leading to different dynamics
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Figure 3. (a) Daily time series of non-floodplain wetlands (NFW) and groundwater (GW), (b) daily time series
of two downstream waters (DWs), (c) monthly time series of evapotranspiration (ET), and (d) monthly time
series of precipitation. The yellow-green line in (a) indicates the predicted NFW by the process-based model®.
DW,,, and DW,; are baseflow derived from streamflow measured at USGS gauge stations #01491000 and
#01491500, respectively. The figure was generated by the R 3.6.1 program.
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between NFW/GW and DW. The monitoring lower limit also caused the flat level of NFW during the summer
0f 2019 (dotted vertical purple arrow in Fig. 3a). In addition, DW is the summation of intra-watershed processes
and thus the behavior of DW might be different from NFW and GW that are the tiny landscape component.

Embedding dimension and nonlinearity

To apply the CCM method, the embedding dimension (E) should be determined. The embedding dimension (E)
is the number of time steps used for the prediction. Following previous studies, the optimal E values for NFW,
GW, and DW were computed using a simplex projection (Table 2)**?*. Nonlinearity was identified by observing
the best prediction when different combinations of the degree of nonlinearity (6) and embedding dimension
(E) were tested. When the best prediction was shown with 6> 0, the time-series variable was nonlinear. The
nonlinearity was assessed by S-map with the embedding dimension (E, 1, 2,..., 10) and the degree of nonlinear-
ity (6, 0,0.25,0.5,..., 0).

Differentiation of causation from non-causal relationships
In the CCM method, we attempted to differentiate causation from non-causal correlations between observed
and estimated variables: NFW — GW, GW — DW, and NFW — DW, using cross map skill. Figure 4 shows the
cross map skill (p) between the observed and estimated variables with different library lengths (L). Interestingly,
overall relationships had high cross map skill (p) with a longer library length (L) with the significant results
(p-value <0.01). The causality was detected at NFW — GW, which was driven by the vertical water flow from
surface to groundwater. The high cross map skill (p) of GW — NFW was likely due to the seasonal flow from
upland to NFW via GW in this region’. The causality results between precipitation and hydrologic variables
(e.g, NFW, GW, and DW,,,) showed precipitation exhibited a causal relationship with three hydrologic variables
(p-value <0.01, Fig. S3 of the Supplementary Material). This finding suggested that the seasonal lateral movement
of GW to NFW could be substantiated by the causative link between precipitation and these hydrologic variables.
However, the significant test showed that the cross map skill of GW — NFW at full library size was lower than
the highest lagged cross-correlation, indicating non-causation (Fig. 4a). The cross map skill (p) of GW — DW,,,
and DW 4 was high and remained unchanged regardless of the length of the library (L). DW,,, and DW; repre-
sents the combination results of hydrological landscape components. A tiny component (GW) could have mini-
mal impacts on DW,,, and DW, g and thus the cross map skill (p) of GW — DW,,, and DW,q; did not consistently
increase with an increase in the length of the library (L). In contrast, DW,,, and DW,4; complied with seasonal
dynamics indicated by dominant driving forces (e.g., P and ET), leading to a relatively high value of the cross map
skill (p) of DW,,,, and DW, 4 — NFW/GW’. Except for GW — NFW, all interactions were statistically significant.

org

Detecting causality in the hydrological connectivity between NFW, GW, and DW

First, we applied extended CCM method to further identify the true causality among NFW, GW, DW,,, and
DW,q;. The true causations in Fig. 4 were further explored. Figure 5a shows that the optimal cross map lags of
NFW — GW was not distinguishable from zero lag time. This was likely because the spatial configuration of the
well and piezometer might lead to synchronization between NFW and GW. In addition, daily measurements
might not capture lagged responses of GW to NFW.

The optimal lag time of GW — DW,y,,, was observed at a negative one day (Fig. 5b), indicating that changes
in GW would be reflected in DW,,,, one day later. Non-causation with the positive optimal lag time was found
in the opposite direction (DW,,,— GW). The optimal lag time of NFW — DW,,,, was negative 3 days, and the
opposite direction was zero (Fig. 5c). The results of NFW — DW,,,, informed that after 3 days, any changes in
NEW would affect DW,,,,. Regarding the lag time in the causal chain of NFW, GW, and DW,,, the CCM results
represented changes in NFW caused changes in GW and then subsequently affected DW,,. The lag times of
among NFW, GW, and DW,,,, agreed with our assumption as the sum of the lag times of two direct causal links
(NFW— GW and GW — DW,,) was lower than the indirect causal link (the optimal lag of NFW — DW,,).
Moreover, the two lagged interactions (GW — DW,,, and NFW — DW,,,) were found to be statistically signifi-
cant (p-value<0.01). Regarding the optimal lag times, the significance of two causal links (GW at t — DW,,, at
t+1and NFW at t— DW,,, at t+ 3, where t represents the time) were assessed using the method proposed by
Bonotto et al.?® and Ye et al.*%. The results from extended CCM well demonstrated the causal chain from NFW
to DW,,, via GW with different lag times.

In the case of GW — DW,g;, the optimal lag time was a positive one day, representing that DW,4; responded
to GW although any changes did not take place at GW (Fig. 5d). The optimal lag time of DW,y— GW with the
positive optimal lag time also showed non-causation. Interestingly, a negative one day was the optimal lag time
of NFW — DW,;, indicating the changes in NFW will be reflected in DW, after one day. Regarding a transitive
causal chain from NFW to DW through GW, the negative one-day optimal lag time of NFW — DW,y could

rg>

Attributes | E | Nonlinearity
NFW 3 | 6=3.0,E=4
GW 2 |0=4.0,E=3
DW,, 3 16=0.75E=3
DW,y 2 |6=8,E=10

Table 2. The optimal embedding dimensions (E) and degree of nonlinearity (6) of time-series observations.
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Figure 4. Cross map skill (p) of observed and estimated values as a function of the length of the library (L):
(a) NFW and GW, (b) GW and DW,,y, (c) NFW and DW,,,, (d) GW and DW,4;, and () GW and DW ;. The
dotted horizontal line is the highest lagged cross-correlation. x—y indicates x affects y. NFW and GW indicate
non-floodplain wetland and groundwater, respectively. DW,,, and DW,; are baseflow derived from streamflow
measured at USGS gauge stations #01491000 and #01491500, respectively. The figure was generated by the R
3.6.1 program.

not support the GW hydrologic connectivity between NFW and DW,4 because GW was not causal to DW 4
(Fig. 5e). Therefore, the extended CCM analysis showed that the evidence of causal relationships in a transitive
causal chain from NFW to DW through GW was only found at DW,,, and not at DW,4; based on the lagged
responses among them.

Discussions and limitations

In this study, CCM was used to find causal relationships in nonlinear dynamical systems for observables with
weak or moderate coupling. Previous studies explored various causal relationships between two entities in
environmental systems using CCM***%, Among them, different causal methods including CCM were compared
for the hydrologic variable?*-*%. A study by Bonotto et al.?® tested the impacts of data seasonality, sampling
frequency, and long-term trends on the performance of CCM. Following previous studies, this study could
provide additional insight on the use of CCM on the causality between one small casual variable (i.e., NFW)
and an aggregated affected-variable (i.e., DW). NFW is one of water storages that drains to DW known as the
summation of intra-watershed processes, and thus NFW might have trivial impacts on DW. To partially address
the uncertainty on the causal impacts of NFW on DW, this study introduced pseudo DW to demonstrate the
reliability of CCM results. This method could offer the potential way of using CCM to see causality between a
small causal variable and the aggregated-affected variable. However, the observed causal relationship between
NFW and DW was uncertain although this study adopted pseudo DW to partially address this issue. Extensive
observations along the hydraulic gradient from NFW to DW might offer reliable evidence of causation, but this is
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Figure 5. Cross map skill (p) with cross map lag between: (a) NFW and GW, (b) GW and DW,,,,, (c) NFW
and DW,,,, (d) GW and DW,y;, and (e) GW and DW, 4. x—y indicates x affects y. NFW and GW indicate
non-floodplain wetland and groundwater, respectively. DW,,, and DW,y; are baseflow derived from streamflow
measured at USGS gauge stations #01491000 and #01491500, respectively. The figure was generated by the R

3.6.1 program.

challenging. To achieve dependable causality, efforts to install multiple observations along a hydrologic gradient
between NFW and DW would be critical.

This study used daily time series of NFW, GW and DW mainly due to missing data in NFW (see the green
line in Fig. 3a). In-situ observational data from a well and piezometer inevitably includes missing data due to
uncontrollable environment conditions. The CCM results with daily time series represented the synchronized
behaviors between NFW and GW (Fig. 5a), but sub-daily time series might show the lagged interaction between
NFW and GW. The CCM analysis could not be performed with missing data. Accordingly, 15-min monitoring
data were converted into daily data to replace missing data by the simulations from a process-based model that
demonstrated decent performance measures in this region®®. The process-based model only simulated daily
dynamics of NFW?*. Sub-daily observations data are recommended to see lagged responses of GW to NFW since
the CCM results were sensitive to the sampling frequency?.

To test the influence of sampling frequency on CCM results, this study applied a conversion process that
transformed daily data into 3-day and 7-day intervals through the averaging of daily values (Fig. 6). Despite
variations in sampling frequency, the overall trends remained consistent. The highest lagged cross-correlation,
represented by the dotted horizontal line, tended to increase as the temporal frequency decreased from 1 to
7 days. Notably, the causal link between NFW and GW exhibited significance with one-day data but did not
show significance with 7-day data. This discrepancy was attributed to the lower cross-map skill at the full library
size, which fell below the highest lagged cross-correlation (Fig. 6f). This observation suggests that the causal
interaction between NFW and GW might not be effectively captured by CCM when utilizing 7-day data, as their
interactions are subtle and low-frequency data fails to depict their causal behaviors. The conversion of data from
higher to lower frequencies likely resulted in smoother data patterns, allowing for the generalization of subtle
behaviors observed in individual NFWs.
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Figure 6. Cross map skill (p) of observed and estimated values as a function of the length of the library (L) with
3-day (a-e) and 7-day (f-j) data. The figure was generated by the R 3.6.1 program.

The spatial configuration of a well and piezometer also likely led to synchronization between NFW and GW
(Fig. 5a). If a piezometer was distant to a well, the lagged response of GW to NFW might be observed. How-
ever, the subsurface soil characteristic greatly affected the vertical water transport from NFW to GW*°. When
groundwater flow direction was not clear, measurements from a piezometer might not be associated with those
from a well away from a piezometer. Thus, implementing a piezometer at the spot distant to a well is challenging.
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Although NFW and GW were monitored at the same spot with different vertical ranges, that practices might be
the best option to see hydrologic interactions of NFW with sub-surface systems.

Using pseudo DW (represented as DW,q), this study showed a transitive causal chain from NFW to DW via
GW in this region. The two direct causations (NFW — GW and GW — DW,,,,) had a shorter lag time than one
indirect causation (NFW — DW,,), but the one direct causation (GW — DW,,,) showed a lower correlation than
indirect one (NFW — DW,,). Extended CCM method emphasized a direct causation with shorter lag times
and stronger correlation than an indirection one*'. However, our results were not consistent with the previous
study?'. It was speculated that: (1) a lower correlation in direction causation was likely due to the monitoring
spot of GW spatially far away from DW; and (2) the two entities (NFW and DW,,,,) in indirect causality were
directly exposure to driving forces and their behaviors might have great similarity while GW indirectly affected
by driving forces could have less similarity.

In this region, the nutrient transport time via GW ranged from years to decades and this time varied by
subsurface conditions®. Our results estimated a 3-day lag time from NFW to DW via GW, which is not in agree-
ment with a previous study?”. This could be explained by “old” water in long-term groundwater storage®**’. The
streamflow is mainly comprised of baseflow derived from long-term groundwater storage (“old” water), and the
“new” precipitation has strong impacts on streamflow at storm events®. The water vertical transport from NFWs
to GW is the pressure head of the groundwater storage, sequentially pushing the old water from upgradient to
downstream and eventually releasing “old” water closer to streamflow. As groundwater storage is influenced by
various landscape components, the analysis of a 3-day lag time using only the concept of “old” water may not be
adequately comprehensive. The cumulative effects of multiple landscape elements on downstream water through
groundwater could lead to an extended lag time for indirect causation, compared to the total of the lag times
for two direct causations. More accurate estimation of lag time would be possible using tracers® and extensive
monitoring stations. This study is the first attempt to corroborate GW hydrologic connectivity between NFW
and DW using CCM with available monitoring data and showed causal signals. This finding would provide
insight on the role and NFW at a watershed. As emphasized by Bonotto et al.?$, environmental monitoring data
are often limited and thus the interpretation of CCM results should be performed with detailed observations.

Conclusions

Our study applied a causal inference method (CCM) to detect causality between NFW and DW through GW
on the Coastal Plain of the CBW. The hydrologic connectivity of NFW with DW via surface runoff was often
observed, but demonstrating the connectivity via GW is difficult because strong climatic seasonality causes
all landscape components have similar behaviors. CCM could detect causality among variables in nonlinear
dynamical systems using time-series observations. Using CCM, we examined the causal relationship between
NFW and DW via GW using daily time series. The CCM results showed a transitive causal chain from NFW to
DW through GW with shorter lag of direct causation (NFW — GW and GW — DW) relative to indirect causation
(NFW — DW). However, this causal chain was not observed with pseudo DW. These results support the notion
that NFW is hydrologically connected with DW through GW. These findings emphasize the important role and
benefits of NFW in landscape hydrology.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request.
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