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Modeling of formation damage 
during smart water flooding 
in sandstone reservoirs
Mohammad Amin Bagrezaie 1, Bahram Dabir 1,2*, Fariborz Rashidi 1,2 & Ali Reza Moazzeni 1

Impairment of permeability has been observed as an effective factor in production decline during 
secondary and tertiary recovery processes such as water flooding. Among different permeability 
damage mechanisms, fines migration and deposition is known as the main mechanism which occurs 
due to pore throat clogging and blocking. Because injected water and formation water are usually 
incompatible, permeability damage evaluation and scale formation prediction must be done before 
the water flooding process in the oil field is implemented. For this purpose, compatibility tests and 
core flood experiments are common, but experimental approaches with time and facility limitations 
are expensive. Thus, by decreasing the time required for conducting experiments, modeling 
approaches can replace the routine laboratory experiments. Based on thermodynamic balance and 
the solubility of ions in water, scale development due to seawater injection in an Iranian oil field was 
predicted in this work using the OLI ScaleChem software. After that, it was suggested that special 
water be introduced to help reduce the amount of scales that had accumulated in the rock pore space. 
The extent of permeability damage in various seawater injection scenarios was then assessed via 
dynamic core flood experiments. Finally, scales-seawater injection into the core was simulated using 
digital core analysis (DCA) results and the pore scale modeling approach. The core flood experiment 
data are consistent with the scale formation prediction made by the OLI ScaleChem software, 
which indicates that smart water can be determined by optimizing the salinity and ion content of 
injected water. Also, results of permeability damage prediction by our modeling approach have good 
agreement with the core flood experiment data. Therefore, our modeling approach can replace the 
conventional core flood experiments as a low-cost method with high computational efficiency and 
high enough accuracy to evaluate formation damage in the water flooding process.

Abbreviations
CFD 	� Computational fluid dynamic
Vc 	� Critical velocity, m/s
D	�  Microchannel diameter, m
τw	�  Wall shear stress, pa
µ	�  Dynamic viscosity, Pa.s
ρp	�  Particle density, kg/m3

ρ	�  Fluid density, kg/m3

dp	�  Particle diameter, m
b	� Particle deformation normal to surface, m
a	�  Particle deformation along the surface, m
F 	� Body force, N
u∗	�  Wall shear velocity, m/s
V 	�  Fluid velocity, m/s
P	�  Pressure, Pa
є	� Relative dielectric constant of water
ǫ0	�  Dielectric constant in vacuum
δ	� Separation distance between the particle and surface, m
ζp	� Zeta potentials of the particle, mV
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ζg	� Zeta potentials of the surface, mV
κ	� Debye reciprocal double layer thickness, m
I	� Ionic concentration in the water, mol/L
NA	� Avogadro’s number, 1/mols
e	� Elementary charge, C
T	� Absolute temperature, K
k	� Boltzmann’s constant
WA	�  Work of adhesion, J/m2

Kc	�  Composite young’s modulus, 1/pa
ϑs	�  Poisson’s ratio value of the wall surface
ϑp	�  Poisson’s ratio value of the particle
Es	�  Young’s modulus value of the wall surface, pa
Ep	�  Young’s modulus value of the particle, pa
H	�  Hamaker constant
Hp	�  Hamaker constant of the particle
Hw	�  Hamaker constant of the water
Hs	�  Hamaker constant of the sand
Ks	�  Static friction coefficient
Pr	�  Collision probability
r	�  Particles radius, m
vrel	�  Particles relative velocity, m/s
�t	�  Time step
Vcp	�  Volume of the continuous-phase cell, m3

bact	�  Actual collision parameter
Y 	�  Random number
bcrit	�  Critical offset
f 	�  Relative radius function
We	�  Collisional Weber number
Td	�  Average thickness of deposited layer, m
Ap	�  Deposited particle area, m2

L	�  Microchannel length, m
PC	�  Particles concentration
P/D	�  Ratio of particle mean diameter to microchannel diameter
L/D	�  Ratio of microchannel length to microchannel diameter
Re	� Reynolds number
ANN	�  Artificial neural networks
gij 	� Hydraulic conductivity of the throat, m/s
ROA	� Rain optimization algorithm
nPop	�  Population number
MaxIt 	� Maximum iteration
nVar 	� Number of variables
VarMin	� Lower bound of variables
VarMax	� Upper bound of variables
InitR	�  Initial radius of droplet
α	� Soil adsorption constant
CT	� Contact time

Due to the availability of seawater and the fact that it can be used in either the early or late stages of field develop-
ment, water flooding is one of the most popular IOR techniques in offshore fields1–3. Implementing this process 
depends on the extent of formation damage due to mineral scaling, which can lead to the technical failure of this 
method. Scale formation in the reservoir rock and precipitation of these scales leads to clogging and blocking of 
the pore throat and eventually permeability damage. In addition, it also leads to destruction of equipment in the 
production system. Therefore, to assess and manage the deposition of mineral scale, a study of the incompatibility 
between injected water and formation water is required. Ionic composition, salinity, pressure, temperature, and 
pH are the primary parameters in the scale deposition analysis4,5.

Smart water selection refers to a recent study aimed at techniques to prevent or limit the formation of scale 
by altering the ion composition and salinity of injected water6,7. Generally, sea and formation waters may contain 
anions such as sulfate (SO4

−2), chloride (Cl−), and bicarbonate (HCO3
−) and cations such as magnesium (Mg+2), 

calcium (Ca+2), ferrous (Fe+2), strontium (Sr+2), barium (Ba+2), sodium (Na+), and potassium (K+). Therefore, 
based on ionic concentration and ionic potential, various scales may form. In fact, ionic concentration controls 
the amount of scale and ionic potential controls the type of scale. Ionic potential refers to power of cation to 
polarize the anion and form an ionic network (scale) by ionic bond. When cation with a higher positive charge 
and smaller size polarizes the anion with higher negative charge and larger size, then the ionic potential is maxi-
mal. Hence, among the various possible scales, a scale will be formed first in which the ionic potential between 
the cation and the anion is maximal. The polarizing power of different cations as well as the polarizability of 
different anions is given in Fig. 1.

Therefore, in the same condition based on ionic potential, the possibility of sulfate scale formation is more 
than chloride and carbonate scales. However, precipitation of chloride scales because of solubility in water is not 
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a concern. Thus, the high concentration of sulfate (SO4
−2) anion in seawater and divalent cations in the formation 

water led to precipitation of harmful scales except for magnesium sulfate (MgSO4), which is soluble in water and 
will not damage the formation. In fact, the high charge density of magnesium cation led to high hydration energy 
and the great difference in ionic size between magnesium cation and sulfate anion led to low lattice enthalpy, 
resulting in the very low solubility of magnesium sulfate (MgSO4) in water. Moreover, the low concentration 
of sulfate (SO4

−2) anion in comparison to bicarbonate (HCO3
−) anion led to precipitation of carbonate scales. 

Calcium sulfate (CaSO4), strontium sulfate (SrSO4), barium sulfate (BaSO4), calcium carbonate (CaCO3), and 
ferrous carbonate (FeCO3) are the most prevalent scales in Iranian offshore oil fields. These substances can pre-
cipitate as both large and minor scales at the same time8–13. The deposition probability of different mineral scales 
on the reservoir rock surface and consequent permeability damage has been studied by many researchers8–10,14,15.

Nowadays, digital core analysis can replace the expensive core flooding experiments as a rapid and cheap 
method and also provide a better understanding of pore scale properties of reservoir rock, especially in the 
sandstone core due to lower heterogeneity. This method uses data from scanning electron microscopy (SEM), 
thin-section micrographs, plug micro-CT, and whole-core computed tomography (CT) to estimate reservoir 
rock attributes, including porosity, grain size distribution, pore/throat size distribution, and others. Then the 
pore network modeling approach will be considered for pore scale simulations of flow in the core16–18.

In this study, water flooding was evaluated in an Iranian oil reservoir. For this purpose, the amount of seawa-
ter salinity and seawater composition was initially optimized by OLI ScaleChem software which considers the 
thermodynamic aspects of mineral scale formation. Then, the amount of permeability damage due to seawater 
injection into the core was investigated by both modeling and experimental approaches. A 2-D pore network 
model based on porosity, pore size distribution, and throat size distribution was created using the modeling 
approach as a random distribution in accordance with the core dimension. A dual pore scale model was created 
using the MATLAB software to calculate pressure drop and the permeability damage in the pore network model. 
Additionally, the amount of permeability damage caused by the optimum seawater (smart water) injection and 
seawater injection were determined and compared using experimental approaches. The mechanism of smart 
water flooding in oil reservoirs is very complex due to different effective parameters such as formation mineral-
ogy, formation water salinity and composition, and reservoir temperature. Therefore, our model is only appli-
cable to the target reservoir in this study, but our approach can apply to all oil reservoirs. In short, our approach 
includes modeling of particle-fluid flow in pore space using the modified DPM model, proxy modeling based 
on the ANN method, and modeling of particle-fluid flow in porous media using the PNM method alongside 
with scales formation evaluation and digital core analysis. Figure 2 shows the workflow of this research. Our 
modeling methodology can be used as an alternate way for core flooding experiments when there are time and 
facility constraints based on a good match between the modeling approach results and core flooding data.

Methodology
Smart water determination
The OLI ScaleChem software was used in this study to gain the smart water by determining its optimum salinity 
and composition. This software can forecast the amount of precipitated scales and the potential for mineral scal-
ing under both pressure and temperature conditions. In order to forecast mineral scaling during water injection, 
the thermodynamic balance and ion solubility in water were actually investigated.

Optimum salinity of injected water
Equal mixtures of formation water and diluted seawater were taken into consideration in six situations of 2, 4, 5, 
6, 10, and 15-times dilution in order to determine the optimum salinity of the injected water. Then, using OLI 
ScaleChem software, the amount of precipitation in each combination was assessed. The make-up of seawater 
and diluted seawaters used to determine the optimum salinity is shown in Table 1. The situation with the least 
amount of precipitation has the best salinity of injected water. The amount of precipitation for each scenario is 
shown in Fig. 3 under reservoir conditions, with the best case occurring at a 5 times dilution of seawater.

Optimum composition of injected water
This section examined mineral scaling under reservoir conditions of 85 °C and 3222 psi by combining formation 
water and seawater at a 5 times dilution, which is the optimum salinity of injected water. Overall, nine cases with 

Figure 1.   Polarizing power of cations vs polarizability of anions.
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different chemical compositions for finding the optimum ion composition of injected water were considered. 
In each case, the concentration of Ca2+, Mg2+, and SO4

2− changed between 1 and 3 times that of seawater at 5 
times dilution. For example, in the case of SW5D-1C3M1S, the concentrations of Ca2+, Mg2+, and SO4

2− of the 
injected water were considered as 1, 3 and 1 times those of the SW5D case. Also, the optimum ion composition 
of injected water occurs in a case with the lowest amount of precipitation. Table 2 shows different cases with 
various ion compositions. Figure 4 shows the amount of precipitation for different cases mentioned in Table 2.

Figure 2.   Research workflow.

Table 1.   Composition of different diluted seawater.

Composition Seawater (mg/L)
2 × diluted seawater 
(mg/L)

4 × diluted seawater 
(mg/L)

5 × diluted seawater 
(mg/L)

6 × diluted seawater 
(mg/L)

10 × diluted seawater 
(mg/L)

15 × diluted seawater 
(mg/L)

Na+ 16,814.54 8407.27 4203.63 3362.9 2802.42 1681.45 1120.96

Ca2+ 596.5 298.25 149.12 119.3 99.41 59.65 39.76

Mg2+ 1945 972.5 486.25 389 324.16 194.5 129.66

Cl− 29,334 14,667 7333.5 5866.8 4889 2933.4 1955.6

SO4
2− 4360 2180 1090 872 726.66 436 290.66

HCO3
− 184.5 92.25 46.12 36.9 30.75 18.45 12.3

TDS 53,235 26,617 13,308.75 10,647 8872.5 5323.5 3549

Figure 3.   Precipitation amount of diluted seawater.
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Based on Fig. 4, in cases with higher concentration of Mg2+, the amount of precipitated scales is lowest and 
in cases with higher concentration of SO4

2−, the amount of precipitated scales is highest. The formation of mag-
nesium sulfate, which is soluble in water and will not damage the formation, is really caused by the magnesium 
ion initially creating an ion pairing with the sulfate ion because of the higher ionic potential. Therefore, a higher 
magnesium ion concentration results in a decrease in the quantity of sulfate ions and prevents the formation 
of calcium sulfate, which is the main cause of formation damage. When the sulfate ion concentration is low, on 
the other hand, the magnesium ion likes to form ion pairings with the carbonate ion. Because calcium carbon-
ate is another damaging scale, a larger concentration of magnesium ions hinders its development. According 
to this study, a rise in the concentration of magnesium ions or a drop in the concentration of sulfate ions can 
help determine the smart water. SW5D-1C3M1S is the most likely smart water instance, according to software 
projections. Figure 5 displays the quantity of scale precipitation for the injected smart water; in this instance, only 
CaCO3 was produced, whereas Fig. 3 previously reported that the injected seawater produced CaSO4, CaCO3, 
and SrSO4 with a total precipitation amount of 2333.13 mg/L.

Experimental study
Glass microchannel flooding tests
In this work, a set of water-particle suspension injection into the glass test device was performed for modified 
DPM model validation. Figure 6 shows a schematic of the suspension injection experimental setup and Fig. 7 
shows the glass test device includes three separate microchannels with 0.04 cm diameter and 10 cm length. In 
this work, the carbonate calcium powder and distilled water were used for the suspension preparation. Based 
on the carbonate calcium powder catalog, pH is equal to 9.5, mean particle size is equal to 2 microns, CaCO3 
content is equal to 98%, MgCO3 content is equal to 1.5%, Fe2O3 content is equal to 0.2%, and insoluble HCl 
content is equal to 0.15%.

Core flooding tests
Materials.  Brine. In this work, both injected water and formation water were prepared as synthetic using ana-
lytical grade salts of NaCl, NaHCO3, Na2SO4, CaCl2.2H2O, MgCl2.6H2O, SrCl2.6H2O with high purity from 
Merck company. This was accomplished by dissolving a precise quantity of each salt in deionized water, stirring 

Table 2.   Chemical composition of injected water with different ion compositions.

Composition Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) Cl− (mg/L) SO4
2− (mg/L) HCO3

− (mg/L) pH (mg/L) TDS (mg/L)

SW5D 3362.92 119.3 389 5866.82 872 36.9 7.77 10,647

SW5D-1C3M1S 2163.97 119.3 1167 6287.6 872 36.9 7.65 10,647

SW5D-2C3M1S 2034.2 238.6 1167 6298.55 872 36.9 7.63 10,647

SW5D-3C3M1S 1904.1 357.9 1167 6309 872 36.9 7.62 10,647

SW5D-1C2M2S 2673.7 119.3 778 5295.18 1744 36.9 7.71 10,647

SW5D-2C2M2S 2543.6 238.6 778 5305.6 1744 36.9 7.69 10,647

SW5D-3C2M2S 2413.8 357.9 778 5316.5 1744 36.9 7.67 10,647

SW5D-1C1M3S 3183.1 119.3 389 4302.25 2616 36.9 7.79 10,647

SW5D-2C1M3S 3053.3 238.6 389 4313.15 2616 36.9 7.76 10,647

SW5D-3C1M3S 2923.21 357.9 389 4323.59 2616 36.9 7.74 10,647

Figure 4.   Scales precipitation amount for injected waters with different ion composition.
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the brine solutions for 24 h, and then filtering the brine solutions using paper filters. Therefore, the final brine 
solutions will be stable and free of suspended scales. Based on the data that are currently available from the 
examined oil field, Table 3 in this work establishes the chemical composition of seawater from the Persian Gulf 
as injected water and formation water.

Figure 5.   The amount of scale with ratio of seawater at reservoir condition.

Figure 6.   Schematic of suspension injection experimental setup (Bagrezaie et al.24).

Figure 7.   Glass test device (Bagrezaie et al.24).
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Table 3.   Chemical composition of Persian Gulf seawater and formation water.

Composition Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) Cl− (mg/L) Sr2+ (mg/L) SO4
2− (mg/L) HCO3

− (mg/L) pH (mg/L) TDS (mg/L)
Ionic strength 
(mol/L)

Seawater 16,814.54 596.5 1945 29,334 0 4360 184.5 8.15 53,235 1.06

Formation water 59,112.8 23,547.4 2744.4 141,151.25 976 396.2 294 6.16 228,222 4.71

Figure 8.   XRD result of core sample.

Figure 9.   SEM images of core sample.
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Rock sample. Based on core mineralogy from the XRD test and SEM images analyses, the rock is made of 
quartz grains with carbonated cements. Figures 8 and 9 show the XRD results and SEM images of the core. 
Mineralogical data from XRD analyses are given in Table 4.

Experimental procedure.  Three core samples were taken from an Iranian sandstone reservoir for core-flooding 
tests. All the core samples before seawater flooding were first flooded with 1000 ppm NaCl until 4 PV to remove 
any dissolvable salts. After that, they were cleaned with a Soxhlet extractor device using toluene at 23 °C, dried in 
an oven at 100 °C, and left alone for 24 h. In Table 5, the core samples’ physical characteristics are listed. Figure 10 
depicts the core flooding system’s schematic.

Results and analysis.  In this section, synthetic seawater was injected into the core at a continuous flow rate 
of 0.2 mL/min at reservoir conditions, which are a temperature of 85 °C and pressure of 3222 psi, following 
core preparation, which comprises cleaning and saturation of the core with synthetic formation water. Seawater 
flooding was implemented in four scenarios including three steps of seawater injection until 2 pore volumes and 
then the core was set aside for 0, 6, 12, and 24 h and injection of seawater until 3 pore volumes at the end. The 
injection of seawater was stopped in this study to investigate the effect of the amount of time formation water 
had to touch the seawater. According to Fig. 11, the ratio of final permeability to beginning permeability as a 
function of injected pore volume was shown in order to evaluate the contact time during seawater injection. The 
permeability of the core after seawater flooding was determined using Darcy’s linear flow equation.

Based on Fig. 11, the permeability damage increased with an increase of contact time, but after 12 h, reduction 
of permeability was not significant. Therefore, in this work, after core preparation, in each scenario of seawater 
flooding, 2 pore volumes of modified seawater were initially injected, and then injection was stopped for 12 h, 
and 3 pore volumes of modified seawater were injected at the end. Figures 12 and 13 display the pressure drop 
and permeability ratio as a function of injected pore volume for flooding the seawater from the Persian Gulf 
and different modified seawaters.

Generally, the permeability damage mechanism involved in scale nucleation, precipitation, growth, and depo-
sition in rock pores. The scale nucleation and precipitation are faster than scale growth and deposition. According 
to Figs. 11, 12, and 13, for example in the case of pure seawater injection (SW), the maximum pressure drop and 

Table 4.   Core sample mineralogy based on XRD results.

Phases Quartz Dolomite Microcline Anorthite Kaolinite Gypsum Total

Percentage % 66.43 19.48 5.42 4.16 2.34 2.17 100

Table 5.   Core samples physical properties.

No Length (cm) Diameter (cm) Pore volume (cm3) Porosity (%) Absolute permeability (md)

1 13.3 3.8 22.85 18.05 49.73

2 13.3 3.8 24.32 17.52 46.84

3 13.3 3.8 23.81 17.13 47.76

Figure 10.   Schematic of core flooding apparatus.
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Figure 11.   Variation of permeability ratio, showing effect of contact time during seawater flooding.

Figure 12.   Pressure drop as function of injected pore volume for different modified seawaters.

Figure 13.   Permeability ratio as function of injected pore volume for different modified seawaters.
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consequent permeability decrease occur until 0.5 PV, then the permeability decrease becomes smoother. Thus, 
permeability decreases involves two periods. In the initial period, the main reason for permeability decrease is 
pore clogging due to scale nucleation and precipitation, which leads to a sharp decrease, but in the later period, 
the main reason for permeability decrease is pore blocking due to scale growth and deposition, which leads to 
smooth decrease. Therefore, the fluctuation of pressure drop in the initial period is lower than the later period. 
The reason for pressure drop fluctuation is pore blocking due to bridging (jamming) and bridge breaking due 
to supplied pressure.

Based on scale precipitation prediction by OLI ScaleChem software and core flooding experiment results, an 
increase in magnesium ion concentration or decrease in sulfate ion leads to lower scale deposition and finally 
lower permeability damage. Therefore, the case of SW5D-1C3M1S is the smart water in our case study.

Digital core analysis and pore network generation
In this study, the watershed segmentation algorithm (WA) was used to create 2-D binary images of the core thin 
section, and ImageJ software was used to quantify parameters of the porous media structure, such as porosity, 
pore size distribution, and throat size distribution. Utilizing noise filtering and majority transform techniques, 
the watershed segmentation algorithm (WA) helps to prevent small, unconnected pores19–23.

In this study, the watershed segmentation algorithm is enhanced with a city-block distance transform and 
median filtering to more effectively identify and distinguish overlapping porous geometries. Pore size distribution 
was calculated by measuring the area of detected pores and computing the radius of corresponding circles with 
the same area. Porosity was calculated by dividing the area summation of detected pores across the entire 2-D 
picture area. Additionally, the area of detected throat bodies was measured, and the radius of equivalent cylin-
ders with the same area was calculated in order to determine the throat size distribution based on the watershed 
ridge line, which is the contact line between two neighboring pores, and the coordination number, which is the 
average number of independent throats connected to a particular pore. Figure 14 displays the 2-D binary images 
generated from SEM image binarization that were taken before and after seawater flooding.

Based on Fig. 14, the total porosity of 2-D binary images was calculated by dividing the area summation of 
pore space over the total 2-D image area using ImageJ software. For this purpose, the first images of rock were 
converted into an 8-bit image to enhance the image contrast. Then, analysis was done after elimination of random 
noises and segmentation of the image. Eventually, the value of total porosity was 31.12% and 22.76% before and 
after seawater flooding which was related to both interconnected and isolated pore space. Therefore, the amount 
of deposited scales in the core by subtraction of total porosity after seawater flooding from total porosity before 
seawater flooding can be calculated equal to 8.36% and this amount can be considered an approximate of mobile 
particle concentration in pore space.

Figure 15 shows the pore space segmentations before and after seawater flooding which are obtained after 
applying the watershed segmentation algorithm on 2-D binary images. The calculated effective porosity value of 
2-D images by the watershed segmentation algorithm was 18.34% and 10.93% before and after seawater flooding 
which show about 5% error related to the experimental measurement.

Figures 16 and 17 show the pore size distribution and throat size distribution before and after seawater flood-
ing, which are validated by the porosity match.

In this work, size distribution of formed scales in the rock pore space was determined after seawater flood-
ing using ImageJ software. Figures 18 and 19 show the SEM image of rock pore space and scale size distribution 
after seawater flooding, respectively.

In this work, the 2-D pore network was generated based on porosity, pore size distribution, and throat size 
distribution as random distribution. Table 6 shows the values of different parameters used to generate the pore 
network. According to core dimension, the 2-D generated pore network has a total pore number of 1400 and 

Figure 14.   2-D binary images of core thin sections: (a) before seawater flooding and (b) after seawater flooding.
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Figure 15.   2-D pore space segmentations: (a) before seawater flooding and (b) after seawater flooding.

Figure 16.   Pore size distribution before and after seawater flooding.

Figure 17.   Throat size distribution before and after seawater flooding.
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total throat number of 1380 and in the pore network, pores were considered as squares instead of circles as 
shown in Fig. 20.

Numerical modeling
The method created by Bagrezaie et al. was applied in this study to simulate the injection of seawater into core 
samples, which involves the flow of seawater and the formed solid scales24. This approach is summarized as 
follows:

The DPM model’s simulation of solid particles and fluid flow in a single microchannel (pore/throat).
Development of a proxy model based on the results of simulation of the flow in a single microchannel.
Dual pore scale model simulation of particle-fluid flow in the pore network (core).

DPM model development
The DPM model created by Bagrezaie et al. was utilized to simulate particle-fluid flow in each pore and throat. 
They modified the default DPM model of Ansys Fluent software for laminar and single-phase flow of distillated 
water and particles in the microchannel. As a result, the modeling did not take into account the impacts of par-
ticle breakup, capillary forces, van der Waals forces, and electrostatic forces. The modified DPM model created 

Figure 18.   SEM image of rock pore space after seawater flooding.

Figure 19.   Scale size distribution after seawater flooding.

Table 6.   Parameters used to generate pore network as random distribution.

Parameter Minimum pore size Maximum pore size Mean pore size Minimum throat size Maximum throat size Mean throat size Porosity

Value 2 µm 366 µm 67 µm 2 µm 144 µm 31 µm 18.34%
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by Bagrezaie et al. was added to in this work, along with the impacts of van der Waals forces and electrostatic 
forces, although other presumptions remained24.

The general DPM model mathematical formulation is available in the literature24. The main mechanisms of 
permeability damage in this work are particle detachment from the rock surface, particle attachment to the rock 
surface, particle agglomeration, and clogging and/or blocking of pore throats. These mechanisms are based on 
the physics of scale movement by seawater in rock pore space. As a result, UDF code should be used to add the 
impacts of these mechanisms to the Ansys Fluent software’s generic DPM model. We adopt the Bagrezaie et al. 
approach, which proposed a critical velocity concept based on semi-empirical correlation for particle-fluid flow 
in the microchannel as follows, to apply the effects of particle detachment and attachment in pore and throat 
media24:

In Eq. (1), Vc is the critical velocity and defined as the velocity above which particles are detached from the 
wall and is applicable for stable laminar flow, τw is the wall shear stress, and D is the microchannel diameter. 
Therefore, the particles become detached from the wall surface if the particle adhesion forces cannot overcome 
the fluid forces. According to research on various particle detachment mechanisms, the rolling and sliding 
mechanisms particularly the rolling mechanism, which predominates for spherical particles are the principal 
causes of particle detachment25. The rolling mechanism states that the particle begins to roll if the moment owing 
to fluid forces at the interface of the particle–wall contact exceeds the moment due to particle adhesion forces. 
As a result, rolling will cause the particle detachment condition to be as follows:

In Eq. (3), FD is the drag force, FL is the lift force, Fad is the particle adhesion force, b is the particle deforma-
tion normal to surface, and a is the particle deformation along the surface as shown in Fig. 21.

The impact of lift force on particle separation is typically far less than that of drag force in actual situations. 
Also, in the elastic particle adhesion, b is very small in comparison with particle radius. Therefore, Equation (3) 
is simplified to:

However, due to the salinity of the water, the effects of van der Waals and electrostatic forces during seawater 
injection are considerable. The London-van der Waals force, which tends to be stronger than other van der Waals 
forces, and the electrical double layer force, which only manifests itself for small particles with a diameter of 
less than 5 microns, were taken into account in this study26–28. The London-van der Waals force and the electri-
cal double layer force both have an effect in the direction normal to the surface, but the London-van der Waals 
force is invariably attracting while the electrical double layer force is often repulsive in the presence of water29. 
Equation (4) can therefore be represented as:
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Figure 20.   2-D generated pore network according to core dimension.
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In equation (5), drag force on a spherical particle can be calculated as follows:

where u∗ is the wall shear velocity and calculated as follows:

In equation (5), electrical double layer force is calculated as follows30:

 where є is the relative dielectric constant of water, ǫ0 is the dielectric constant in vacuum, δ is the separation 
distance between the particle and surface, ζp and ζg are the zeta potentials of the particle and surface, respectively. 
κ is the Debye reciprocal double layer thickness which is calculated as below:

 where I is the ionic concentration in the water, NA is Avogadro’s number, e is the elementary charge, T is absolute 
temperature, and k is Boltzmann’s constant.

In equation (5), particle adhesion force based on Hertz contact theory can be calculated as follows:

In Eq. (10), WA is the thermodynamic work of adhesion. The deformation of particle along the surface is 
calculated as:

 where Kc is composite Young’s modulus, ϑs and Es are Poisson’s ratio and Young’s modulus value of the wall 
surface, respectively, and ϑp and Ep are Poisson’s ratio and Young’s modulus value of the particle, respectively.

In equation (5), London-van der Waals force is calculated as below30:

 where H is the Hamaker constant which is expressed for particle-water–sand as follow31:
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Figure 21.   Geometric attributes of a spherical particle in contact with a surface (Bagrezaie et al.24).
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In addition to the rolling mechanism, a particle can detach from the wall surface under the sliding mecha-
nism. The particle detachment condition due to sliding will be as follows:

where Ks is the static friction coefficient between the particle and the wall surface. Finally, the particle will be 
detached due to the rolling or sliding mechanism if the summation of the drag and electrical double layer forces 
exceeds the summation of the adhesion and London-van der Waals forces.

When particle–particle interactions outweigh particle-fluid interactions, particle agglomeration is another 
important mechanism in the transport of scales by saltwater in rock pore space32. Applying particle collision and 
subsequent particle agglomeration using O’Rourke’s algorithm was done in this work. This algorithm considers 
the particle collision as stochastic and assumes the collision probability as follows:

In Eq. (16), r1 and r2 are the radius of the two particles that participate in the collision, vrel is the relative 
velocity of the two particles, �t is the time step used to integrate the trajectories of the particles, and Vcp is the 
volume of the continuous-phase cell.

When two particles collide, O’Rourke’s algorithm determines if coalescence will occur as a result. If not, the 
two particles preserve their original physical characteristics, with the exception of their velocities. If the critical 
offset value is bigger than the actual collision parameter, then the coalescence is the result of collision33. Follow-
ing is a calculation of the actual collision parameter:

where Y  is a random number between 0 and 1 and the critical offset is calculated as follows:

In Eq. (18), We is the collisional Weber number and f  is a function of the relative radius and is calculated 
as follows:

In this study, the dynamic mesh option of Fluent software was used to apply the effects of the pore throat 
clogging mechanism by microchannel wall motion to the center of the microchannel in the model. By adjusting 
the wall’s velocity, the decrease in microchannel cross-sectional area was taken into account based on the aver-
age thickness of the deposited particle layer in the preceding time steps. The average thickness of the deposited 
particle layer on each wall of the microchannel in the 2-D model can be determined using the formula below24:

 where n is the total number of deposited particles on the wall in each time step, Ap is the area of deposited 
particle and L is the length of microchannel as shown in Fig. 22.

By setting the outlet boundary condition to no flow boundary, the impacts of the pore throat blocking mecha-
nism are also implemented in the mentioned model. In this work, the pore throat blocking mechanism will be 
initiated when the free cross-section available for fluid flow is lowered to 40% of the initial value, based on the 
range of Reynolds numbers and particle concentration34,35.
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Figure 22.   Average thickness of deposited particle layers on microchannel walls (Bagrezaie et al.24).
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Simulation of scales motion in pore space by modified DPM model
The software SolidWorks 2018 was used to create several 2-D geometric models with two-dimensional surface 
roughness profiles. In this work, pores were assumed to be square microchannels and throats to be rectangle 
microchannels. Due to the heterogeneity impact, the random rectangular surface roughness model was chosen 
among the other surface roughness models. Figure 23 depicts a schematic of the pore network and 2-D geomet-
ric models, which also incorporate the random rectangular surface roughness model. The grid independence 
test based on the Poiseuille number and Ansys meshing software were used to mesh geometric models with a 
uniform quadratic mesh36.

The prenominated DPM model is used in this study to solve the governing equations for simulating the move-
ment of scales and seawater in a single microchannel using Fluent 19 CFD software. For precise calculation of 
objective functions in the simulations, the pressure-based solver and the gravity effect are taken into account. 
Water was characterized in the material option as having characteristics resembling those of seawater and calcium 
carbonate was selected in the material option. Additionally, a logarithmic Rosin-Rammler function was used to 
generate a scale size distribution with a size range of 5 nm to 5000 nm. The diffusion-based smoothing method 
was chosen in the dynamic mesh option. The QUIK scheme was used to implement the suspension volume 
fraction, the SIMPLE method was used to relate velocity and pressure, and the Second Order Upwind approach 
was used to interpolate additional parameters in the equations. Upper and lower edges of the microchannel 
were taken into account as walls in the boundary condition section, the inlet boundary as velocity inlet and the 
outlet boundary as outflow24,37.

Finally, several scales-seawater flooding scenarios were simulated up to three pore volumes in a single micro-
channel, and in each scenario, pressure drop was calculated as a function of injected pore volume. The range of 
various parameters in several simulated scenarios is displayed in Table 7.

Proxy model development
In engineering problems with complex physics, numerical simulation is computationally expensive due to solving 
the governing equations by performing a large number of simulation runs. Therefore, development of a proxy 
model is at the forefront of engineering problem solving and optimization. The application of the proxy model in 
petroleum engineering has been made in the areas of risk analysis, reservoir characterization, upscaling geologic 
models, production optimization, field development planning, history matching, and flow simulation in porous 
media38–41. Machine learning and pattern recognition are used to operate the proxy model based on system 
behavior. Artificial neural networks (ANN) are applicable as a virtual intelligence technique for identifying and 
approximating the relationship between inputs and outputs of a system that is highly non-linear. Proxy model 
development by various techniques, such as polynomial, radial basis function, Gaussian process, ANN, and 
genetic algorithms, is common42. Three processes are involved in creating a proxy model using artificial neural 
networks: data collection based on experimental findings or simulation outcomes; network training based on 
error feedback to the network; and network validation24.

Figure 23.   Schematic of 2D geometric models of microchannel.

Table 7.   Range of various parameters in the different simulation scenarios.

Parameter Value

particle concentration (PC) 6 to 10%

Ratio of particles mean diameter to microchannel diameter (P/D) 0.001 to 0.2

Ratio of microchannel length to microchannel diameter (L/D) 1 to 250

Reynolds number (Re) 0.3
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Based on simulation results of scale-seawater injection into a microchannel using the modified DPM model, 
a proxy model was created in this work utilizing the artificial neural network (ANN) method. Additionally, for 
data collection, injected pore volume as an input parameter, particle concentration, microchannel length to 
microchannel diameter ratio, particle mean diameter to microchannel diameter ratio, and pressure drop as an 
output parameter were all used.

The utilized artificial neural network includes three hidden layers with, respectively, 9, 6, and 3 neurons 
(Fig. 24). Through the MATLAB Neural Fitting Toolbox, the ANN is trained using the Levenberg–Marquardt 
backpropagation technique. In order to achieve the lowest mean squared error, we trained the network 653 
times. Seventy percent of the 14400 dataset samples were used for network training, fifteen percent for network 
verification, and fifteen percent for network testing.

Dual pore scale model development
The first introduction of pore network modeling was made by Fatt in 1956, and it comprises pores that are con-
nected to one another by interconnected throats43. This method involves solving a set of basic equations that 
represent the conservation of mass at each pore in order to derive the pressure field of the network model. Fol-
lowing is a derivation of the fundamental equation for each pore in a single-phase system:

In this equation, qij is the volumetric flow rate of element i to a neighbor element j and is a function of pres-
sure drop across an element (Pj−Pi) , the conductivity in element gij , and fluid viscosity µ , respectively. Therefore, 
Eq. (22) can be written as follows:

By using equation (23) for each element (pore or throat), a system of linear equations is created, and by simul-
taneously solving this system of equations, the pressure field of the network model is determined44,45. Although 
other approaches, such as Gauss-Seidel, can be used to solve the matrices of a system of linear equations, the 
developed proxy model was used in this study. Our proxy model can determine the pressure drop across each 
element (pore or throat) based on the element’s characteristics, such as the ratio of the particles’ mean diameter 
to the element’s diameter, the ratio of the particles’ length to the element’s diameter, the particles’ concentration, 
and the injected pore volume.

In this work, a numerical modeling approach to simulation of the scales-seawater movement in a core sample 
was developed based on the computational fluid dynamic (CFD) and pore network modeling approach using 
MATLAB software. In this approach, details of flow in the microscopic media (pores and throats) by CFD 
approach and details of flow in the macroscopic media (core) by pore network modeling approach were analyzed. 
The pressure decrease brought on by the movement of the scales-seawater in the pore network is first calculated 
by our dual pore scale model as a function of the injected pore volume. After then, the pressure drop will be 
converted into permeability damage using Darcy’s Law. The flowchart for the dual pore scale model’s calculation 
of permeability damage is shown in Fig. 25.

According to Fig. 25, for calculating the permeability damage by dual pore scale model, first the pressure 
will be assigned in all nodes of the network model based on initial guess. Then, using the proxy model, the flux 
going through each pore and throat of the network model will be determined. Following that, the total value of 
the input and output flux flows at each node will be determined. The problem is solved if the flux sum value for 
each node is equal to zero; if not, the rain optimization algorithm (ROA), a meta-heuristic approach to problem 

(22)
∑

j

qij = 0

(23)
∑

j

[(Pj − Pj)
gij

µ
] = 0

Figure 24.   Optimum network architecture.
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optimization, would adjust the anticipated pressures46. Finally, until the flux sum value for each node equals 
zero, the aforementioned operations will be repeated repeatedly.

Validation of modified DPM model
Figure 26 shows a good agreement between simulation results using the modified DPM model with experimental 
data for the base case. In the base case, particles concentration is equal to 8 percent, the ratio of particles mean 
diameter to microchannel diameter is equal to 0.005, the ratio of microchannel length to microchannel diameter 
is equal to 250, and the Reynolds number is equal to 0.3.

Validation of dual pore scale model
For validation of the dual pore scale model, a comparison was made between the simulation results of scales-
seawater flow in the network model with experimental data. For this purpose, suspension injection in three 
particle concentrations including 6, 8, and 10 percent, particles mean diameter equal to 1.8 micron, and Reynolds 
number equal to 0.3 were simulated according to core flooding experiments. On the basis of Table 8 and the cost 
function depicted in Equation (23), the initial tuning parameters of the rain optimization algorithm (ROA) are 
also taken into consideration.

Figure 25.   Flowchart for calculating the permeability damage by dual pore scale model.

Figure 26.   Matching modified DPM model results and experimental data.
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The modeling results for pressure drop and permeability damage as a function of injected pore volume are 
shown in Figs. 27 and 28, together with data from the core flooding experiment. According to the results, the 
best match is found in particles with a concentration of 8%, which is in line with the digital core analysis result 
of 8.36%.

Conclusion
Core flood experiments have proven to be an efficient tool for research in reservoir engineering, if the results 
of these tests are accurate and have high quality. However, achieving core flooding results with high quality in 
laboratory conditions is not easy due to uncertainties such as instrumental and manual error. Also, implementa-
tion of the core flooding experiment in reservoir conditions is a time-consuming approach. Therefore, providing 
a rapid alternative approach for core flood experiment with suitable accuracy and lower cost seems necessary.

In this work, a rapid, accurate, and low-cost approach was developed to modeling the particle-fluid flow in the 
core sample (porous media) for water flooding process optimization in an Iranian oil reservoir. This approach is 
demonstrated to be an appropriate replacement for core flooding experiments when the results of this modeling 
approach are compared with the data obtained from the experiments.

Our key conclusions are listed below in brief:

Table 8.   Initial tuning parameters of rain optimization algorithm (ROA).

Parameter nPop MaxIt nVar VarMin VarMax InitR Speed α

Value 100 100 1000 0 12,000 600 0 0

Figure 27.   Matching dual pore scale model results and experimental data.

Figure 28.   Matching dual pore scale model results and experimental data.
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•	 Prior to implementing water flooding in the field, it is crucial to optimize the salinity and ionic composition 
of the injected seawater since these factors have a significant impact on the permeability damage. Addition-
ally, the composition of the injected saltwater contains more Mg2+ and less SO4

2−, which prevents the growth 
of additional scales and reduces permeability damage.

•	 The parameter of contact time between formation water and injected water has a strong impact on the per-
meability damage severity, so the effect of this parameter should be considered for accurate evaluation of 
permeability damage in the core flood experiment.

•	 In our case study, determination accuracy of porous media structure parameters using 2-D binary image and 
SEM image analysis is high enough and maximum error related to experimental measurement is about 5%.

•	 Computational efficiency of our model by applying the proxy model approach and rain optimization algo-
rithm as well as accuracy of our model by adding the various particles capture mechanisms to the DPM model 
is high enough, so this approach is a suitable choice for formation damage studies, especially when there are 
limitations on time and facilities.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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