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Optimal view detection 
for ultrasound‑guided 
supraclavicular block using deep 
learning approaches
Yumin Jo 1,6, Dongheon Lee 2,5,6, Donghyeon Baek 3, Bo Kyung Choi 4, Nisan Aryal 4, 
Jinsik Jung 1, Yong Sup Shin 1,7* & Boohwi Hong 1,5,7*

Successful ultrasound-guided supraclavicular block (SCB) requires the understanding of sonoanatomy 
and identification of the optimal view. Segmentation using a convolutional neural network (CNN) 
is limited in clearly determining the optimal view. The present study describes the development of 
a computer-aided diagnosis (CADx) system using a CNN that can determine the optimal view for 
complete SCB in real time. The aim of this study was the development of computer-aided diagnosis 
system that aid non-expert to determine the optimal view for complete supraclavicular block in real 
time. Ultrasound videos were retrospectively collected from 881 patients to develop the CADx system 
(600 to the training and validation set and 281 to the test set). The CADx system included classification 
and segmentation approaches, with Residual neural network (ResNet) and U-Net, respectively, 
applied as backbone networks. In the classification approach, an ablation study was performed to 
determine the optimal architecture and improve the performance of the model. In the segmentation 
approach, a cascade structure, in which U-Net is connected to ResNet, was implemented. The 
performance of the two approaches was evaluated based on a confusion matrix. Using the 
classification approach, ResNet34 and gated recurrent units with augmentation showed the highest 
performance, with average accuracy 0.901, precision 0.613, recall 0.757, f1-score 0.677 and AUROC 
0.936. Using the segmentation approach, U-Net combined with ResNet34 and augmentation showed 
poorer performance than the classification approach. The CADx system described in this study showed 
high performance in determining the optimal view for SCB. This system could be expanded to include 
many anatomical regions and may have potential to aid clinicians in real-time settings.

Trial registration The protocol was registered with the Clinical Trial Registry of Korea (KCT0005822, 
https://​cris.​nih.​go.​kr).

Supraclavicular block (SCB) is useful for both surgical anesthesia and perioperative analgesia in patients under-
going upper limb surger1. Ultrasound-guided SCB was shown to be safer than landmark or nerve stimulator 
techniques, as it alleviates concerns about the proximity of the brachial plexus (BP) to the pleura and reduces 
inadvertent vascular punctures2,3. Ultrasound can easily visualize the BP, lying close (postero-lateral) to the 
pulsatile subclavian artery (SA) above the hyperechoic first rib at the supraclavicular fossa4. In this position, all 
the components of the BP are surrounded by a sheath at a shallow depth just above the clavicle. SCB, also called 
the ‘spinal of the arm’, can therefore anesthetize almost the entire upper extremity1.

However, simply using ultrasound alone does not guarantee the success of SCB2 or avoid complications such 
as pneumothorax5. Optimising the ultrasound view for SCB requires the probe should be angled or tilted until a 
lower trunk is visualized laterally to the SA and above the clavicle6. This so-called corner pocket (CP) approach7 
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is a common and safe procedure with a low risk of having pneumothorax8; however, few studies have focused 
on classifying the optimal view for SCB.

Ultrasound-guided regional anesthesia (UGRA) has been a useful technique for perioperative anesthesia as it 
can prevent inadvertent injuries caused by needles1. Recently, AI-assisted UGRA has become a novel technology 
that aids the process of local anesthetic injection to peripheral nerves. The greatest advantage of a deep learning-
based computer-aided diagnosis (CADx) system is that it is suitable for the increasing demand for training 
UGRA for residents9–11. Feedback by the CADx system can be helpful for learners who do not have much access 
to guided training12,13. Bowness, James et al. developed a U-Net based ScanNav that performs segmentation on 
seven different anatomical structures, including the supraclavicular region, using 253 scan videos obtained from 
244 healthy individuals14. Notably, ScanNav visualizes a color overlay on real-time ultrasound to highlight key 
anatomical structures, specifically, brachial plexus (BP) region. It may support non-experts in training and clini-
cal practice, and experts in teaching UGRA​15. However, the issue of clinicians having to perform time-consuming 
labelling work remains a challenge for conducting the segmentation task.

Tyagi et al. developed a segmentation model with dice coefficient performances of 0.84 and 0.94 in the 
Supraclavicular and interscalene areas, respectively, using approximately 35,000 frames of ultrasound images 
obtained from 196 patients16. However, while showing high performance on images from a single ultrasound 
device, the model has limitations in its generality, as it performs poorly on lower quality images from different 
ultrasound devices.

To handle current limitations on AI-assisted UGRA for SCB, we suggest a deep learning-based CADx system 
that can distinguish between optimal and non-optimal views for the CP approach. The CADx systems were 
developed with a classification approach that trains all ultrasound images, distinguishes between optimal and 
non-optimal images, and a segmentation approach that trains images by designating anatomical structures, as 
in previous studies. Our CADx system showed considerable accuracy and robustness across three ultrasound 
machines. Furthermore, it can visualize the optimality score and semantic segmentation results in a real-time 
environment.

Methods
Study design
The CADx systems were developed using a convolutional neural network (CNN) to detect the optimal view for 
ultrasound-guided SCB. The developed systems utilized a classification approach and a segmentation approach 
(Fig. 1). This single-centre, retrospective study was approved by the institutional review board of Chungnam 
National University Hospital (CNUH, Daejeon, Korea, CNUH IRB 2022-05-071, Chairperson Prof. Jeong Lan 
Kim) on 10 June 2022, with the modified protocol approved on 7 November 2022. Due to the retrospective 
nature of the study, CNUH waived the need of obtaining informed consent. The protocol was registered with 
the Clinical Trial Registry of Korea (KCT0007482, https://​cris.​nih.​go.​kr). All experiments were performed in 
accordance with relevant guidelines and regulations.

Ultrasound image acquisition and curation
All patients at CNUH underwent routine sequential ultrasound imaging technique (SUIT) before any BP block6, 
as SUIT has been shown useful to identify individual elements of the BP and vascular structures above the 
clavicle17. Patients were maintained in a supine position with the head turned to the contralateral side and the 
ipsilateral shoulder slightly elevated with a pillow (Supplementary Fig. 1a). The probe was applied to the upper 
part of the interscalene groove and slid downward from the fifth cervical nerve root (C5) to the first thoracic 
nerve root (T1) until the complete BP was evaluated on the first rib at the supraclavicular fossa; the probe was 
subsequently slid upward in the reverse direction to the interscalene level6.

The optimal image for each SCB was defined as an image that enabled visualization of the corner pocket 
by the first rib, the SA and the neural component (Supplementary Fig. 1b)7. Optimal and non-optimal images 
were distinguished by several ultrasound anatomic characteristics. In optimal images, the SA presented large 
and round hypoechoic appearance with clear hyperechoic rim. In addition, while sliding the probe from the 
cephalad to caudad direction, the first rib was visible from lateral to medial under the BP. The BP appeared as 
a honeycomb mass or small hypoechoic clustered structure and was located on the inferolateral side of the SA 
and completely above the first rib. Both the nerve itself and the relationship between each BP and its adjacent 
structures were important in determining the optimal view6.

Patient data at CNUH were collected using a video capture device (SurgBox, MTEG Co. Ltd. Korea) and 
stored on a video archiving and communication system (VACS; MTEG Co. Ltd.)18. The ultrasound videos were 
reviewed by two regional anaesthesiologists, who distinguished between optimal and non-optimal imaging data-
sets and selected well-focused, high-quality videos of appropriate brightness and depth. All patient-identifying 
information on ultrasound images was pseudonymized.

Dataset
Ultrasound videos were collected retrospectively from 881 patients scheduled to undergo elective surgery at 
CNUH from January 2019 to August 2022. Videos of image quality too poor to detect BP were excluded. The 
images were sampled from the videos to construct datasets for training, validation, and test steps. The sampling 
rate was a half second which is lower than the minimal unit of the labeled classification interval.

The method proposed in this study consists of classification and segmentation approaches. For the training 
and validation datasets, the former used all frames as labels, while the latter used masks from a single frame of 
the optimal view as labels. Therefore, in the classification approach, the labels consist of frames from both optimal 
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and non-optimal views in the videos, and in the segmentation approach, masks from one section of the optimal 
view are used as labels, which corresponds to the number of ultrasound videos.

The training and validation dataset consisted of 600 ultrasound videos obtained with a high-resolution ultra-
sound system (X-Porte, FUJIFILM SonoSite, Inc., Bothell, USA) and HFL50xp 15–6 MHz probe (X-Porte). The 
training set consisted of 3060 optimal images and 28,085 non-optimal images from 506 videos. The validation 
set consisted of 618 optimal images and 5799 non-optimal images from 94 videos (Supplementary Fig. 2).

Three test datasets were prepared. For generalizability, two datasets were constructed from images taken by 
ultrasound machines different from the training dataset. The test set 1 consisted of 1030 optimal images and 4532 
non-optimal images from 100 videos obtained from an additional 100 patients using the X-Porte ultrasound 
system. The test set 2 consisted of 836 optimal images and 7718 non-optimal images from 100 videos obtained 
from 100 patients with a Venue Go ultrasound machine (GE Healthcare, Florida, USA) and a 12–4 MHz linear 
probe. The test set 3 consisted of 755 optimal images and 5032 non-optimal images obtained from 81 videos of 
81 patients with a TE 7 ultrasound machine (Mindray, Shenzhen, China) and a 11–3 MHz linear probe. The com-
positions of these datasets, including the demographic characteristics of included patients, are shown in Table 1.

Preprocessing
The images from the datasets were processed before being fed into the CADx system. For the CNN training, the 
acquired ultrasound images were resized to 224 × 224 pixels. Adapted from the work by Pi et al.19, we designed 
an automated background removal algorithm that can be deployed in a real-time setting (Supplementary Fig. 6). 
To improve performance during the training phase, augmentation techniques, such as random cropping, noise 
addition, blurring, affine transformation, non-linear spatial transformation, and adjusting brightness and con-
trast were randomly applied. The software used for image preprocessing was OpenCV (version 4.5.5.64) and 
an image augmentation library called Albumentations20. Examples of the augmentation results are shown in 
Supplementary Fig. 3.

Figure 1.   Overview of computer-aided diagnosis systems for determining the optimal view for ultrasound-
guided supraclavicular block. (a) Classification approach: Vanilla CNN (b) classification approach: supervised 
contrastive learning (c) classification approach: CNN combined with GRU (d) segmentation approach; the 
predicted segmentation maps from the segmentation model act as pseudo-labels and serve as inputs for the 
subsequent classification model.
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Development of CNN for determining optimal views: classification approach
Residual neural network (ResNet) was selected for the backbone network of the CADx system for its excellence 
in classification tasks despite of its relatively small model size. The performances of the ResNet models were 
compared by training various models from shallow to deep layers.

The ResNet model has a CNN encoder part and a fully connected (FC) layer. An optimality score for SCB is 
then computed from the output of the FC layer normalized by a sigmoid function21. As proposed by Van Boxtel 
et al.22, ResNet (18, 34, 50, 101, and 152 layers) models, pre-trained with the ImageNet dataset, were trained 
with a binary cross entropy loss. As the number of optimal view images was far less than the non-optimal view, 
the weight for the optimal view class was multiplied by the ratio of the number of optimal to non-optimal view 
examples. Among the ResNet models, the one that performed best according to our evaluation method was 
selected for further modifications to improve its classification performance.

Recurrent neural network
In another model, it was devised that the encoder branch of the ResNet was connected to a recurrent neural 
network (RNN) as shown in Fig. 1c. The features of sequential images extracted by the encoder were taken as 
serial inputs to RNN to capture time-dependent features23. For the classification task, only the output of the last 
RNN unit was used to classify its label (many-to-one). Similar to the proposed structure by Chen et al.24 where 
CNN was jointly combined with a long short-term memory (LSTM) network25, we adopted the gated recurrent 
units which are known to require less memory than LSTM but can deal with the vanishing gradient problem 
of a vanilla RNNs26. The extracted features were embedded into a latent space of 128 dimensions. The hidden 
dimension and the number of nodes of RNN were set to 256 and 8. Finally, an FC layer was joined to the output 
of the last node for the optimal view classification.

Supervised contrastive learning
One of our proposed networks utilized supervised contrastive learning27 before getting trained for the optimal 
view classification task as shown in Fig. 1b. We utilized the labels of data to better segregate the ultrasound images 
in a feature space similar in essence to self-supervised learning that learns the representations of unlabeled data28. 
Using the method in Khosla et al.27, the encoder network was pre-trained with the supervised contrastive learning 
loss, and then the linear classifier was jointly trained with the encoder.

Development of CNN for determining optimal views: segmentation approach
The segmentation approach was a CADx system that predicts the regions of the SA, first rib and BP to determine 
whether the view is optimal or not. Because the optimal view could not be directly determined from the predicted 
result of the segmentation model, the classification model was applied as a cascaded structure after application of 
the semantic segmentation model. U-Net29, as a semantic segmentation network was combined with the ResNet 
encoder (Fig. 1d). This approach is similar to Van Boxtel et al.22, but basically different in that the segmentation 
network is followed by the classification network. The predicted segmentation maps, along with the original 
ultrasound images, were reused as input to the classification model, as pseudo-labels.

Implementation details
All the models except for the segmentation network were trained maximum of 30 epochs, with an initial learning 
rate of 0.0001 with a decay of 0.1 for every 10 epochs. The segmentation network was trained maximum of 100 
epochs, with an initial learning rate of 0.001 with a decay of 0.1 for every 25 epochs. In all cases, a batch size of 64 
and an Adam optimizer were used30. The models were developed on an NVIDIA V100 GPU and were implanted 
by Python (version 3.9.; Python Software Foundation, Beaverton, OR) and PyTorch (version 1.11.0) software. All 
source codes of this study are uploaded on https://​github.​com/​nistr​ing/​Ultra​sound-​Optim​al-​View-​Detec​tion.

Evaluation metrics
On test datasets, the labeled ground truth was compared with the model’s prediction. Receiver operating char-
acteristic (ROC) curves and precision-recall (PR) curves were plotted with the areas under the ROC (AUROC) 

Table 1.   Dataset composition and demographics. Values are presented as number (%) or median 
[interquartile range]. Cls classification, Seg segmentation.

Dataset Training (Cls./Seg.) Validation (Cls./Seg.) Test 1 (X-Porte) Test 2 (Venue Go) Test 3 (TE7)

Number of Patients (videos) 506 94 100 100 81

Number of Images (frames) 31,145/506 6417/94 5562 8554 5787

Demographics

Age (years) 55.0 [36.5;64.0] 57.5 [43.0;67.0] 57.0 [42.5;65.0] 62.0 [53.5;70.5] 64.0 [54.0;74.0]

Female (n) 225 (44.8%) 41 (43.6%) 44 (44.4%) 48 (48.5%) 43 (54.4%)

Height (cm) 164.0 [156.0;171.0] 162.5 [156.0;170.0] 162.0 [155.0;170.0] 161.0 [156.0;168.0] 159.0 [153.0;170.0]

Body weight (kg) 64.5 [56.0;74.0] 64.0 [58.0;72.0] 66.0 [58.5;73.5] 60.0 [53.5;68.5] 62.5 [56.0;71.5]

BMI (kg/m2) 24.2 [22.1;26.7] 24.4 [22.9;26.8] 24.8 [22.3;27.0] 23.1 [20.6;26.0] 24.5 [22.5;27.2]

https://github.com/nistring/Ultrasound-Optimal-View-Detection
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and PR curves (AUPRC). Since AUPRC is more appropriate than AUROC when there’s a highly imbalanced 
dataset31, AUPRC was mainly used as a metric for comparing the models’ performances. Subsequently, accuracy, 
precision, recall, and f1-score were calculated on an optimality threshold value where the f1-score had the highest 
value on ROC curves. The Inference speed was measured by a unit of frames per second (fps).

In the inference phase, gradient-weighted class activation mapping (Grad-CAM)32 was applied as described 
in Hassanien et al.33. The Grad-CAM was calculated by the weights of the last convolutional layer of CNN to 
identify the region within each ultrasound image that influenced the CNN’s prediction (Fig. 2b).

Results
Comparative performances among classification approaches
In this work, we sought to discover the best backbone layer for predicting the optimal view for SCB among the 
ResNet with different number of layers. Comparing performances of ResNet with different number of layers 
(18, 34, 50, 101, and 152 layers), AUROC and AUPRC didn’t significantly improve and began to level off for the 
networks deeper than ResNet34 (Supplementary Fig. 4).

Thus, ResNet34 was selected as the backbone model and several approaches was evaluated. (Table 2). The 
predicted probability on test-set lower than the threshold value was classified as non-optimal view. The threshold 
value was 0.81 obtained when the f1-score on validation set was highest. It is evident that the image augmentation 
made the model more generalizable to images from other US machines (Table 2; Fig. 3). ResNet34 with GRU 
and augmentation showed the highest performance, with a mean accuracy of 0.901, a mean precision of 0.613, 
a mean recall of 0.757, a mean f1-score of 0.677, and a mean AUROC of 0.936. This method, however, showed 
the lowest performance at 153.2 fps (Table 2; Fig. 3b).

By comparison, ResNet34 with supervised contrasting learning (SCL) and augmentation showed a mean 
accuracy of 0.899, a mean precision of 0.606, a mean recall of 0.74, a mean f1-score of 0.666 and a mean AUROC 
of 0.932, with no significant differences compared with ResNet34 with GRU and augmentation, and a highest 
inference speed of 910.8 fps (Table 2; Fig. 3b).

Comparative performances of the classification and segmentation approaches
In the segmentation approach, it was evident that ResNet with deeper layer (50, 101, and 152) was never better 
than ResNet34, and this is consistent with results obtained in the classification approach. U-Net with ResNet34 
as the final model was evaluated the performance based on the highest probability value on the test set by deter-
mining an f1-score threshold of 0.88 in the validation set.

The cascaded model with augmentation showed a mean accuracy of 0.903, a mean precision of 0.67, a mean 
recall of 0.606, a mean f1-score of 0.635, a mean AUROC of 0.939 and a mean 500.6 fps (Table 2; Fig. 3). This 

Figure 2.   Qualitative results of deep learning approaches for determining optimal views for ultrasound-guided 
supraclavicular block. The bar at the top-left represents the probability predicted by the convolutional neural 
network model. TE7, Venue Go, and X-Porte results are pictured in order from top to bottom. (a) Original 
ultrasound images. (b) Results predicted by the classification approach: gradient-weighted class activation 
mapping. (c) Results predicted by the segmentation approach.
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segmentation approach showed poorer performance than the classification approach of ResNet34 with aug-
mentation methods.

Figure 2 shows the qualitative results of optimal view determination of ultrasound-guided SCB block using 
both the classification and segmentation approaches. Application of the trained CNN model during the infer-
ence phase enabled visualization of the gradient-weighted class activation mapping (Grad-CAM)34 results by 
overlapping the original ultrasound images. Red colour in the heatmap is indicative of higher chance of finding 
the optimal view around that area (Fig. 2b). Examples of qualitative results of the CADx system with the ultra-
sound equipment used are shown in Supplementary Videos 1–6. Figure 4 shows examples of evaluation of the 
performance of each ultrasound video, consisting of comparisons between the CNN prediction of the optimal 
view section and the ground truth section. CNN with higher overlapping area between the predicted score and 
the binary ground truth value is proved to demonstrate a better performance. The threshold values obtained from 
the validation set for the classification and segmentation approaches were 0.81 and 0.88, respectively. When the 
threshold was exceeded, the model predicted that test sets 1–3 would provide optimal views.

Discussion
SCB is a common procedure usually with the CP approach, which has a low risk of causing pneumothorax8. 
Despite this, there have been few studies focused on identifying the optimal view for SCB. To address the cur-
rent limitations of AI-assisted UGRA for SCB, we proposed a CADx system utilizing deep learning technology. 
The CADx is likely to be a proper model capable of distinguishing between optimal and non-optimal views for 
the CP approach with a high AUPRC and a decent inference speed. We also confirmed that the CADx system 
guarantees considerable robustness across three different ultrasound machines.

The CADx systems have been developed in a variety of fields to assist the optimal view determination such 
as cardiac23, fetal24, breast19 and thyroid35 ultrasound. More specifically, some practical studies about AI-assisted 
UGRA detect BP at the interscalene level15,22 and visualize the relevant anatomic structures in real time14. How-
ever, to our best knowledge, no studies have described methods for optimal view detection for SCB and our study 
broadens the applicability of the CADx for SCB.

During labelling in videos, large intra-individual variations even within the optimal views were observed and 
many optimal images did not show large inter-individual variations when compared with non-optimal views. 
Nevertheless, the most important ultrasound image characteristics distinguishing optimal from non-optimal 
views was the finding that BP was located lateral or postero-lateral to the SCA on top of the first rib in optimal 
views. One concern with the classification approach was the lack of transparency of the process used to deter-
mine the outcome, as the CNN model was unable to provide an explanation for the outcome36. The Grad-CAM 
result of the classification approach, however, showed that the heatmap was consistently activated in the area 
of the first rib. Although it was not intended by clinicians during SCB, the first rib was located in the middle 
of optimal images. This indirect determination of the method used by the classification model was somewhat 
consistent with clinical inferences.

Table 2.   Comparative performances of deep learning approaches. Significant values are in bold. Aug 
augmentation, SCL supervised contrastive learning, Acc accuracy, Pre precision, Rec recall; fps frame per 
second.

Deep learning approach CNN model Test set Acc Pre Rec F1-score AUROC AUPRC fps

Classification

ResNet34

Test set 1 (X-Porte) 0.839 0.551 0.717 0.623 0.866 0.576 –

Test set 2 (Venue Go) 0.859 0.37 0.627 0.466 0.848 0.442 –

Test set 3 (TE7) 0.873 0.509 0.683 0.584 0.906 0.564 –

Average 0.857 0.477 0.676 0.558 0.873 0.527 888.4

ResNet34 (w/Aug.)

Test set 1 (X-Porte) 0.861 0.605 0.714 0.655 0.895 0.617 –

Test set 2 (Venue Go) 0.91 0.57 0.688 0.623 0.949 0.617 –

Test set 3 (TE7) 0.924 0.683 0.784 0.73 0.965 0.761 –

Average 0.901 0.619 0.728 0.669 0.936 0.665 790.1

ResNet34 + GRU (w/Aug.)

Test set 1 (X-Porte) 0.863 0.607 0.73 0.66 0.895 0.621 –

Test set 2 (Venue Go) 0.917 0.558 0.724 0.63 0.949 0.615 –

Test set 3 (TE7) 0.924 0.673 0.815 0.737 0.965 0.761 –

Average 0.901 0.613 0.757 0.677 0.936 0.666 153.2

ResNet34 + SCL (w/Aug.)

Test set 1 (X-Porte) 0.858 0.596 0.726 0.655 0.896 0.618 –

Test set 2 (Venue Go) 0.915 0.551 0.69 0.614 0.939 0.564 –

Test set 3 (TE7) 0.923 0.67 0.8 0.729 0.962 0.734 –

Average 0.899 0.606 0.74 0.666 0.932 0.639 910.8

Segmentation U-Net + ResNet34 (w/
Aug.)

Test set 1 (X-Porte) 0.857 0.61 0.634 0.622 0.898 0.620

Test set 2 (Venue Go) 0.925 0.638 0.549 0.59 0.951 0.606

Test set 3 (TE7) 0.927 0.766 0.636 0.695 0.966 0.773

Average 0.903 0.67 0.606 0.635 0.939 0.666 500.6
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The deep learning-based classification and segmentation approaches developed in this study both used 
ResNet34, enabling the application of a light-weight model for real-time processing in a clinical environment. 
In general, the number of parameters and the performance of a model tend to be proportional; however, this 
proportionality was not observed in the ImageNet dataset and other domains such as the chest X-ray dataset37. 
This trend is qualitatively similar to Guo et al.35 where even ResNet18 was shown to be highly effective enough 
to recognize a target image. This indicates that there might be no need for large-sized models in the ultrasound 
classification task, and also it showed similar results (Supplementary Fig. 4). A simple and cost-effective model 
without additional information presented here was sufficient for the ultrasound image classification task. This 
result demonstrates the feasibility of the CADx system in a real-time clinical environment.

Figure 3.   Comparative performances of the proposed deep learning approaches: (a, c, e) ROC curves of test 
sets (a) 1 (X-Porte), (c) 2 (Venue Go), and (e) 3 (TE7). (b, d, f) PR curves of test sets (b) 1 (X-Porte), (d) 2 
(Venue Go), and (f) 3 (TE7).
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In this study, we confirmed that the proposed classification approach shows near real-time performance, and 
for future application in a real clinic environment, two approaches can be considered. The first is embedding 
the CAD system into the ultrasound device being used, for which a high-performance GPU system would also 
need to be installed. Another approach is to apply the CAD system to a screen that captures the output from a 
split channel of the ultrasound monitor. This has the advantage of allowing for simultaneous comparison of the 
original ultrasound image and the image to which the CAD system has been applied.

In addition, the CADx system showed similar high performance when evaluating test sets acquired from two 
other ultrasound imaging devices (Venue Go, TE7) and a test set acquired with the same device as the training set 
(X-Porte). Thus, the CADx system may be applicable to images acquired with many types of ultrasound machines.

In addition to the cascaded architecture proposed in this study, a model that effectively predicts optimal and 
non-optimal view segments could potentially be developed using a single architecture through multi-task learn-
ing (MTL). However, this approach would require labels for both classification and segmentation, making the 
labeling process in the preparation of ultrasound video training data burdensome. And also, the optimal view for 
SCB in this study was defined as where relevant anatomical structures (SA, first rib and BP) are simultaneously 
observed, they are regarded as quintessential and contain useful information on the optimal view. Therefore, 
the output of the segmentation network was concatenated with the original ultrasound images to be reused as 
input to the classification network in cascaded structure.

Figure 4.   Examples of convolutional neural network prediction and ground truth in each ultrasound video for 
(a) test set 1 (X-Porte), (b) test set 2 (Venue Go), and (c) test set 3 (TE7).
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This study had several limitations. First, since this study is a single centre study and the data were analyzed 
retrospectively, there may have been selection bias. Multi-center, prospective studies are needed to evaluate the 
generalizability of the developed model. Second, although the developed CADx systems showed high quality 
performance, their clinical efficacy has not yet been determined. Although these models have been evaluated 
using quantitative measures, ​​such as accuracy, f1-score, and fps, it is unclear whether these metrics are associated 
with clinical efficacy. Thus, real-time clinical application of the CNN model is required to determine whether it 
improves performance outcomes. Finally, the segmentation approach did not measure the dice coefficient for the 
test set, as the objective of this study was to distinguish between optimal and non-optimal views for ultrasound-
guided SCB, so only the classification performance was evaluated quantitatively.

In conclusion, this study described the development of CADx systems, using both classification and segmenta-
tion approaches, which could optimally detect corner pocket images for complete SCB. Both approaches showed 
high performance in detecting optimal views and functioned well in real-time settings. This proposed method 
may be applicable to various anatomical structures14 and to systems of tracking nerves along their courses and 
selective trunk identification38,39.

Data availability
The data used during the current study are available from the corresponding author on reasonable request.
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