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Morphological diagnosis 
of hematologic malignancy 
using feature fusion‑based deep 
convolutional neural network
D. P. Yadav 1, Deepak Kumar 2, Anand Singh Jalal 1, Ankit Kumar 1, Kamred Udham Singh 3 & 
Mohd Asif Shah 4,5,6,7*

Leukemia is a cancer of white blood cells characterized by immature lymphocytes. Due to blood 
cancer, many people die every year. Hence, the early detection of these blast cells is necessary for 
avoiding blood cancer. A novel deep convolutional neural network (CNN) 3SNet that has depth-wise 
convolution blocks to reduce the computation costs has been developed to aid the diagnosis of 
leukemia cells. The proposed method includes three inputs to the deep CNN model. These inputs are 
grayscale and their corresponding histogram of gradient (HOG) and local binary pattern (LBP) images. 
The HOG image finds the local shape, and the LBP image describes the leukaemia cell’s texture 
pattern. The suggested model was trained and tested with images from the AML-Cytomorphology_
LMU dataset. The mean average precision (MAP) for the cell with less than 100 images in the dataset 
was 84%, whereas for cells with more than 100 images in the dataset was 93.83%. In addition, the 
ROC curve area for these cells is more than 98%. This confirmed proposed model could be an adjunct 
tool to provide a second opinion to a doctor.

Bone marrow, a soft and versatile tissue accessible in bone depressions, is the site of hematopoiesis, producing 
millions of blood cells every day1. Hematopoiesis promotes the formation of blood, which is one the essential 
components of the human body and it is composed of 80 percent water and 20 percent solid2. The red blood 
cells (RBC), white blood cells (WBC), platelets and plasma are the four blood components available3. White 
blood cells make up roughly 1% of blood. e. 1 WBC is present in every 100 red blood cells. The neutrophils, 
lymphocytes, eosinophils, basophils and monocytes. These cells have an average count of 60%, 30%, 5% and, 4 
%, under 1% of the total WBC count, respectively4. Blood cell cancer refers to bone marrow contains leukemia 
cells, which are abnormal WBC5.

The current prognosis for leukemia is not encouraging, and the disease continues to pose a significant risk 
to the health of humans. Leukemia was estimated to be the 15th most common cause of cancer incidence and 
the 11th most common cause of cancer-related mortality worldwide in 2020. It was responsible for 474,519 
cancer-incident cases and 311,594 cancer-related deaths. In addition, leukemia is the most common cancer in 
children younger than five. It is also responsible for the highest percentage of deaths, which substantially costs 
individuals, families, and countries6.

Acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), 
and chronic myeloid leukemia (CML) are the most common types of leukemia identified7. The rapid deterioration 
of the patient is caused by acute leukemia, while chronic leukemia is characterized by gradual progression and 
may be lymphocytic or myelogenous. Two methods are widely used to diagnose leukemia: The French-American-
British (FAB) classification and the World Health Organization (WHO) proposal.

Early identification of this disease is critical for successful treatment. Pathological testing, full blood count, 
aspiration biopsy, and bone marrow aspiration involving the creation of microscopic blood smear images 
taken from the potential patient are the methods used to diagnose leukaemia8. The leukaemia laboratory test is 
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time-consuming and inconvenient, requiring extra time and effort9. Manual analysis for leukaemia diagnosis 
can result in diagnostic variability and inaccuracies in blast cell counting. As a result, there may be discrepancies 
in diagnostic outcomes10. The significant challenges with manual leukaemia diagnosis are non-standardization, 
conflicting, and subjective findings due to the possibility of human error or differing expert opinions11.

The morphological features-based study of the blood cells is less accurate than automated techniques12. When 
an extensive dataset is available, a machine learning (ML) algorithm can help differentiate the blood cells with 
leukemia from the healthy cells.

Various studies have proved that Machine learning (ML) techniques are more helpful in detecting blast 
cells from healthy cells and are gaining popularity, as it is faster and more accurate than traditional diagno-
sis methods13. It can be formulated as an image classification task because the cytomorphological analysis is 
focused on evaluating microscopic cell pictures14. In the field of natural image and visual question-answering 
classification, deep convolution neural networks (CNNs) have proven very effective15,16. CNNs have recently 
been successfully applied to different medical imaging activities, including the identification of skin cancer17–19, 
the assessment of retinal disorders20, and the analysis of histological sections21,22, e.g. by mitosis detection23, 
the detection and analysis region24 or the segmentation of tissue types25. This propels us to apply CNNs to the 
cytomorphological characterization of platelets, specifically those significant in AML. Past work on leukocyte 
order has predominantly been centered on feature extraction from cytological images26,27.

More focus was given to lymphoblastic leukemia, where the cytomorphology is less diverse than in the mye-
loid case28,29. In medical image analysis, supplying sufficient numbers of labelled images for deep learning models 
to work has proven to be challenging due to restrictions on the availability and the cost of expert time to provide 
ground truth annotations30,31. Therefore, numerous research focused on data sets restricted by the number of 
patients included or the classification of individual cytological images32,33. So far, applications of CNNs to clas-
sify white blood cells have concentrated on differentiating subtypes such as erythroid and myeloid precursors32.

Matek et al.34 have used the ResNext model to classify leukemia cells. They improved the dataset size using 
augmentation techniques. The augmented dataset contains 15000 images, which took approximately 96 h to train 
and test the model. In addition, the method’s sensitivity toward the cells having less number of images in the 
dataset is less. Boldu et al.35 proposed ALNet by coming to the two modules from VGG16 and VGG19. VGG16 
module performs the classification of 4 class, and vgg16 perform the classification of 2 class. They reported clas-
sification accuracy of 92% on cells and 100% on smears. Eckardt et al.36 use a multi-step deep CNN model using 
the transfer-learning technique to segment and classify bone marrow cells. Their method classifies bone AML 
and healthy control with an accuracy of 87%. Khandekar et al.37 applied the You Only Look Once (YOLOv4) deep 
CNN model to classify blood smears. They perform preprocessing to resize the image and maintain orientation. 
After that, the concerned object of interest is detected using the segmentation technique, and finally, the feature 
is extracted using a deep CNN model. Their method reported an F1-score of 92% and a recall of 96%. The rest 
of the recent methods have been summarized in Table 1

In short, all these methods have a high potential for classifying blood smears. However, the blood smears 
having less number of images in the dataset need to be explored for better classification. The leukemia cell’s 
morphological characteristics are very similar, which makes it difficult to differentiate them. In addition, a key 
challenge is cells having less than 100 images in the dataset, which needs a highly sensitive model for identifica-
tion. Therefore, in the proposed approach, we developed a multilevel feature fusion-based 3SNet for the leukemia 
cell classification.

The paper’s significant contribution is as follows.

(1)	 We introduced 3SNet, a novel multi-scale feature fusion-based deep learning model with depth-wise con-
volution blocks that efficiently differentiate leukemia cells using less computational resources.

Table 1.   Summary of the recent work using machine learning and deep learning.

Author Method Dataset Size Accuracy (%)

Talaat et al.38 OCNN 30,000 images 94.04

Rahman et al.39 SVM, CNN, Alex-net model 260 images 98.11

Ansari et al.40 Generative adversarial network (GAN) 938 Images 99

Safuan et al.41 CNN, VGG, Alexnet, and GoogleNe 1800 Images 99.13

Pallegama et al.42 CNN 841 Images 98.53

Rahman et al.43 ResNet50 CNN 3262 images 99.84

Revanda et al.44 Mask R-CNN 301 multi-cell image 83.72

Sorayya et al.45 ResNet-50, VGG-16 CNN 12,528 images 81.63, 84.62, 82.10

Mallick et al.46 Five-layer DNN classifier 72 samples with 7128 genes 98.2

Ahmad et al.47 Convolutional generative adversarial network 6562 images 99

A. Batool et al.48 Lightweight efficientnet-B3 15,114 images 99.31

Rejula et al.49 Adaptive neuro-fuzzy neural network 12,500 images 97.14

Elhassan et al.50 Deep convolutional autoencoder (DCAE) 18,365 images 97

Ahmad et al.51 DenseNet121-ResNet50-MobileNet 10,661 images 98.2
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(2)	 The fewer images of the leukemia cell in the dataset and morphologically similar characteristics make the 
problem more challenging. Hence, Leukemia cell image and their corresponding LBP and HOG images 
at three scales are used to extract spatial features, and the fusion technique generates an enhanced feature 
pool. That makes the system more sensitive toward leukemia cells having fewer images in the dataset.

(3)	 We experimentally demonstrated that the proposed model outperforms the AML-Cytomorphology_LMU 
dataset.

The rest of the paper is organized as follows.
In "Proposed method" section, the proposed method algorithm and model architecture have been elaborated. 

The result of the 3SNet is discussed in "Results" section, whereas in "Discussion" section, a comparison of the 
results with the state-of-the-art method has been discussed. Finally, in "Conclusion" section, we have concluded 
the proposed method.

Proposed method
In this study, we developed a deep convolutional neural network model called 3SNet, which incorporates a 
multilayer feature fusion approach. The architecture of 3SNet is depicted in Fig. 1. The feature fusion model 
employed in this study is designed to extract features from the grey image as well as the corresponding histogram 
of oriented gradients (HOG) and local binary patterns (LBP) images. Subsequently, the aforementioned features 
are integrated in order enhance their effectiveness, after that the classification module is added to performs clas-
sification leaukemia cells.

The convolution blocks are designed using depth-wise convolution techniques to reduce the computation 
costs. Several methods in the past have done a significant job of improving leukaemia cell classification. However, 
several limitations of these methods motivated us to design a robust and efficient model. A detailed summary 
of the models is described in Table 2.

Figure1.   Proposed 3SNet for the leukemia diagnosis.

Table 2.   The detailed summary of the previous models used for leukemia classification.

Deep CNN Neurons Limitations

VGG16 33 × 106 This model is slow in training and computationally expensive due to many trainable parameters

AlexNet 24 × 106 Due to the large number of trainable neurons, AlexNet is also costly. Moreover, the model is unable to detect 
all high-dimensional spatial features

ResNetXt 23 × 106
ResNeXt is a fifty-layer deep CNN model that can extract high-dimensional features that require a large train-
ing dataset. In addition, it cannot be used for real-time applications due to the significant number of trainable 
parameters

DenseNet-121 7.2 × 106 DenseNet-121 has significantly less trainable parameters. However, this model’s performance is less compared 
to other state-of-the-art models
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Local binary pattern (LBP)
The texture of leukemia cells is heterogeneous, which can be explored to categorize them. Hence, in the pro-
posed work, we have used a powerful feature descriptor developed by Ojala et al.52. This descriptor associates 
the analysis of occurrences and local structure analysis by assigning binary patterns to each pixel pc . After that, 
the difference between pixel pc grey level value and its circular region is evaluated with the radius R centred at 
pc . The LBP of the central pixel pc is calculated as follows.

If the value of qc − pc>0, then 1 is assigned in the Eq. (1); otherwise, 0. Finally, the LBP picture is created by 
combining the texture descriptor and the LBP distribution pattern, as illustrated in Fig. 2. The histogram vector 
H of the LBP for image representation is given as follows.

The LBP image and their feature descriptor calculation are shown in Figs. 3 and 4, respectively.

Histogram of oriented gradient (HOG)
Dalal and Triggs first used the HOG descriptor for object detection53. It focuses on the local shape and structure 
of an object. For the region of the image, the histogram is generated by calculating the magnitude and direction 
of the gradient. In the proposed work, images are resized to 256 × 256. After that, a sliding window of size 3 × 3 
is used to calculate the gradient Gradx in the Y-direction and Grady in the X-direction as follows.

(1)LBPQ,R
(

pc
)

=

Q−1
∑

q=0

(qc − pc)2
q

(2)H =

W
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i=1

D
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δ
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(

i, j
)

− k
)

(3)Gradx = Im(r, c + 1)− Im(r, c − 1)

Figure 2.   Here, (a–c) are sample images used in the experiment.

Figure 3.   LBP image calculation.
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where r and c refer to the row and column of the image. Finally, magnitude and direction are calculated using 
the following formulae.

Novel 3‑scale deep CNN model (3SNet)
We have designed a novel 3-scale deep CNN model in the present study. The grey image and their corresponding 
LBP and HOG images are fed as input to the model. Each scale is seven layers deep and contains a convolution 
layer of 3 × 3 filter and Conv1, Conv2, Conv3, Conv4, Conv5 and Conv6 of sizes 16, 32, 64, 128, 256, and 512 
respectively. After each convolution block, rectified linear unit (ReLU) and batch normalization (BN) are applied. 
The ReLU activation adds non-linearity to the model by applying a threshold to the pixels obtained from BN 
layers. This model has 9 × 109 trainable parameters, and it can avoid degradation problems, saturation of the 
model and gradient descent problems54. The ReLU activation is defined as.

where x = input to the layer. After each convolution layer, a max-pooling layer of size 3 × 3 and stride of 2 × 2 
is incorporated. Finally, a global average pooling at each layer is applied that generates channel descriptors and 
combines them to develop feature fusion. The output from the fused feature acts as an input to a Fully Connected 
layer with 1024 filters followed by BN and ReLU activation. In the end, a dense layer of 15 neurons was added 
for AML-Cytomorphology_LMU respectively. The classification of multiclass classification is performed using 
the Softmax optimization function, which converts logits into probability. The input weight and bias calculate 
the probability value. Finally, the probability value is converted to a particular class of leukaemia cells. The value 
of the Softmax optimizer can be calculated using Eqs. (7) and (8).

where N = 15, w0y0 = bias of kth class, � =input vector, and the value of k = 0–14 for multiclass (15 class of 
leukemia cell).

Feature fusion
Feature fusion improves the performance of the deep CNN. We have used three deep CNN models for feature 
extraction in the proposed method. The feature extracted from the HOG, Leukemia Cell and LBP image is fused 
as follows.

(4)Grady = Im(r − 1, c)− Im(r + 1, c)

(5)Magnitude(M) =

√

Grad2x + Grad2y

(6)Direction(D) = arctan

(

Grady

Gradx

)

(7)F(x) =

{

0, x < 0

x, x > 0

}

(8)P(x = k|�(i)) =
e�

(i)

∑N
k=0 e

�
(i)
N

(9)� = w0y0 + w1y1 + . . .+ wNyN

(10)X = {x1, x2 . . . xn}

(11)Y =
{

y1, y2 . . . yn
}

(12)Z = {z1, z2 . . . zn}

The neighbours and observed pixel

[195 − 140
125 − 75 ] = [5550]

Feature vector

Figure 4.   LBP image feature descriptor calculation.
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Respectively where, n = 512 . An enhanced features pool is generated by concatenations as follows.

where Fcon is final feature vector with a bag of 1536 features. The original image and their LBP and HOG image 
is shown in Fig. 5.

.

Algorithm1
(1) Find the HOG and LBP image using the equation described in sections II (A) and II (B)
(2) Apply a 5-fold cross-validation to the leaukemia dataset and set an initial learning 
rate of 0.0001 
(3) for i=1 to 50 do
(a) Train and validate the model with a batch size of 32
(b) Calculate the training loss and validation loss

end
(4)  Generate the confusion matrix for each fold of the validation dataset.
(5) Plot the training as well as validation loss graph of the each epoch
(6) Draw the ROC curve for each class 

Consent to participate
The authors declare their consent to participate in this article.

Results
Dataset
The images used in this research have been taken from the available Munich AML Morphology Dataset, con-
taining 18,365 expert-labelled single-cell images55. These single-cell images were produced using the M8 digital 

(13)Fcon = X ⊕ Y ⊕ Z =
(

x1, x2, . . . xn, y1, y2, . . . yn, z1, z2, . . . zn
)

Figure 5.   Here, (a–c) original image, (d–i) represents their corresponding LBP and HOG image respectively.
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microscope/scanner from peripheral blood smears of 100 people from each group, with the first group comprised 
of patients diagnosed with Acute Myeloid Leukemia at Munich University Hospital between 2014 and 2017and 
the second group having patients without signs of hematological malignancy.

Training and validation
The training and validation of the proposed method are performed in Python 3.6, Tensorflow 2.0, Windows 10, 
Nvidia GeForce GTX TITAN X GPU with 128 GB RAM. The leukemia cells like lymphocyte and Promyelocyte 
have very similar morphological characteristics. Also in the dataset few classes like Lymphocyte, Basophil, Pro-
myelocyte, Promyelocyte (bilobed), Myelocyte, Metamyelocyte, Monoblast, Erythroblast, and Smudge cells have 
less than 100 images. Due to this high classification, accuracy is difficult to achieve. Considering these challenges, 
a multimodal features fusion-based model has been proposed to discriminate 15 classes of leukemia cells. The 
3SNet model is trained with an image size of 256 × 256 pixels and batch size 32 for 50 epochs. The initial learn-
ing rate was set to 0.0001. Since the dataset is imbalanced, we have applied fivefold cross-validation to avoid 
the biased performance of the model. In a fivefold cross-validation for each fold, one set is used for validation 
and four sets are used for training. Hence, in each fold, 20% images are used for validation and 80%, of images 
are used for training. In Fig. 6, we have depicted the confusion matrix of each fold. From the confusion matrix 
average performance measures like precision, recall, F1-score and accuracy are calculated.

The loss function categorical_crossentropy is used to calculated the training and validation loss of the pro-
posed method and shown in the Fig. 7. We can see in Fig. 7a that initially, validation accuracy fluctuates, but after 
40 epochs, changes are negligible. Similarly, in Fig. 7b, training loss reaches close to zero. In addition, initially, 
validation loss fluctuates and becomes less vibrant after 40 epochs. This shows that the 3SNet model can dif-
ferentiate leukemia cells with high accuracy and less training and validation loss.

The performance measures of the model are calculated for each fold, as shown in Table 3. Table 3, shows preci-
sion, recall F1-score, and accuracy values for each fold. It can be observed, in fold-1, that model performance is 
less than 50%. After that, it gradually increases in substituent folds. Finally, we can see proposed model achieved 
an average of 87.93% precision, 88.65% recall, 88.11% F1-score, and 98.16% accuracy.

Discussion
Microscopic image analysis for blood smear provide essential data for diagnosing and predicting diseases in 
hematological assessment. Blood comprises three major components red blood cells (RBCs), white blood cells 
(WBCs) and platelets. Out of these, white blood cells (WBCs) are a part of the immune system and play an 
important role in the body’s immune system. Leukemia, a blood malignancy that affects the bone marrow and 
lymphatic system, is generally caused by abnormalities in these WBCs. The morphological differences in the 
lymphocytes in blood and bone marrow from patients with chronic lymphocytic leukemia and healthy ones have 
been noticed in various studies. These morphological differences can potentially diagnose the malignancy at 
various stages, from the primary to the acute stage. Nevertheless, the manual detection of these morphological 
differences needs expertise, effort and time. Due to this, it is very difficult to identify these cells, and it is necessary 
to automate this diagnosis with the help of CNN. In this study, we have used a dataset of 18,365 leukemia cells 
divided into 15 classes. The expert annotates the dataset, which is unbalanced due to the unequal distribution 
of data. In addition, out of 15 classes, nine classes contain less than 100 images. In Table 4 we have presented a 
summary several methods using different CNN models on different datasets.

In the past, several research on leukemia cells classification has been reported, shown in Table3. In this regard, 
Thahn et al.35 developed a CNN model for normal and abnormal cell classification. They applied the data aug-
mentation technique to increase the dataset’s size, and the model’s classification accuracy is 96.6%. In a similar 
type of research, Shafique et al.56 classify blood smears and their three subtypes using AlexNet. The overfitting 
of the model is avoided using the data augmentation technique and achieves 96.06% classification accuracy. 
Pansombut et al.57 utilized machine and deep learning to classify leukemia cells. First, the feature is extracted 
using ConvNet; after that, the feature is optimized using a genetic algorithm and finally, a classification accuracy 
of 81.74% is obtained using a support vector machine (SVM). Ahmed et al.59 reported the comparative study 
of several machine-learning algorithms and the effect of data augmentation on training. They also proposed a 
deep CNN model for the classification of leukemia cells. Their model classifies leukemia cells with an accuracy 
of 88% and its subtype with an accuracy of 81%.

Prellber and Kramer et al.60 classify leukemia cells using ResNeXt50 with a Squeeze-and-Excitation block. 
They train their model with original and augmented images and archive a weighted F1-score of 89.91%. Many 
pieces of research on leukemia cell classification also applied a transfer learning-based approach. Loey et al.61 
compare the performance of AlexNet before and after fine-tuning. They claim that fine-tuning AlexNet per-
formed better and achieved an accuracy of 100%. In similar research, Vogado et al.62 applied three deep learning 
models AlexNet, Coffenet, and Vgg-f to extract features from the leukemia cells. In addition, two classifiers, 
SVM and KNN were applied for classification. They reported an SVM classifier to outperform and archived an 
accuracy of 99.76%. Ruberto et al.63 also extract features from pre-trained AlexNet. Nevertheless, before extract-
ing features from leukemia cells, they applied preprocessing, detecting blob, and segmentation to extract objects 
of interest. Their method achieves 94.1% classification accuracy.

Rehman et al.64 extract features using the deep CNN model. Comparative analysis of three classifiers, Naive 
Base, KNN, and SVM, are performed using the deep features. Out of these three classifiers, Naïve Base achieved 
78.34%, KNN 80.42%, SVM 90.91%, and proposed deep classifier 97.78%. Huang et al.65 also applied a transfer-
learning approach to extract features from Leukemia cells. The Inception-V3, ResNet50, and DenseNet121 
classify with a notable accuracy of 74.8%, 84.9% and 95.3% respectively.
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In short, all these methods have a high potential for the classification of blood smears. However, many 
researchers experiment on small datasets, as data augmentation techniques have been used to increase the dataset 
size. Due to image augmentation, overfitting of the model can be avoided, but several images of the same type 
lead to the biased performance of the model. In addition, blood smears having a smaller number of images in 
the dataset need to be explored for their better classification. Therefore, we have not applied the data augmenta-
tion technique in the proposed method and focused on the blood smears having fewer images in the dataset. 
Features extracted from the HOG, Leukemia, and LBP images and aggregated together to form a feature fusion 

Figure 6.   The confusion matrix of fold1, fold2, fold3, fold4 and fold5 are shown in the (a–e) respectively.
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vector that improves the classification performance of the leukemia cell. The 3SNet is the three-scale sequential 
model used for feature extraction and classification. Each model is trained with the input of 256 × 256 pixels 
images with a batch size 32 for 50 epochs. Further, a fivefold cross-validation scheme is applied to the model to 
evaluate bias-free performance. The multi-scale fusion-based CNN model outperforms most blood smears, and 
outstanding performance is obtained for the cells with less than 100 images in the dataset. The average sensitivity 
and precision obtained from fivefold cross-validation for the cells with more than 1000 images in the dataset are 
more than 95%, while cells with less than 100 images in the dataset are 70%. The class-wise performance of each 
class cell has been compared with the method proposed by Matek et al.34.

Table 5 shows that the Neutrophil (segmented) cells have 8484 images, which is the highest number in the 
dataset. For the Neutrophil cell, the precision of the model is close to 99%, and the sensitivity is 99.4% better 
than the 96% of Matek et al.34. For other leukemia cells having more than 1000 images in the dataset, the fusion-
based outperforms compared to the available method. Furthermore, the 3SNet is highly sensitive toward the 
cells having less than 100 images in the dataset. For such cells, except for the myelocyte cells, which had 76.2% 
precision, achieved more than 80% precision and 80% sensitivity. This notable precision and sensitivity confirm 
that the proposed 3SNet model can be used for real-time diagnosis.

Figure 7.   The training and Validation accuracy and loss of 3SNet is shown in (a) and (b) Respectively.

Table 3.   The performance measures of the 3SNet model.

Folds

Performance measures

Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Fold1 47.03 44.66 45.34 91.70

Fold2 92.60 98.60 95.26 99.16

Fold3 100 100 99.98 99.97

Fold4 100 100 99.99 99.97

Fold5 100 100 100 100

Average 87.93 88.65 88.11 98.16
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Table 4.   Comparison of 3SNet with the recent deep learning methods.

Study Deep learning model Images in the dataset Accuracy (Leukemia detection) Leukemia subtype accuracy

Thahn et al.35 CNN 108 96.6% NR

Shafique et al.56 (AlexNet) 260 99.5% 96.06%

Pansombut et al.57 CNN 363 81.74% 81.5% B-lymphoblasts

Ahmed et al.58 CNN 354 88.25% NR

Jha et al.59 LDP 260 98.7% NR

Prellberg et al.60 ResNeXt50 12,528 88.91% NR

Matek et al.34 ResNeXt 18,365 (3,312 BL) 90% 94% myeloblasts 41% Ab. prom

Loey et al.61 AlexNet 564 100% NR

Vogado et al.62 AlexNet, 377 99% NR

Di Ruberto et al.63 AlexNet 33 94.1% NR

Rehman et al.64 AlexNet 330 97.78% NR

Huang et al.65 DenseNet121 1322 95.3% 95.25%

Boldú et al.66 VGG-16 16,450 (4825 BL) 94.2% (cell) 100% (smear) 89.5% (cell) 94.7% (smear)

Proposed 3SNet CNN 18,365 (3312 BL) 98.16% 99% myeloblasts

Table 5.   Class-wise performance of 3SNet and Matek et al.34 method.

Class Sensitivity(proposed)/Matek et al.34 Precision (Proposed)/Matek et al.34 Images in the dataset

Mature leukocytes

 Neutrophil (segmented) 99.4/96 99.6/99 8,484

 Neutrophil (band) 80/59 74.6/25 109

 Lymphocyte (typical) 99.4/95 97.8/96 3,937

 Lymphocyte (atypical) 80/7 76/20 11

 Monocyte 97.2/90 94.6/90 1,789

 Eosinophil 97/95 97.8/95 424

 Basophil 83.40/82 82.4/48 79

Immature leukocytes

 Myeloblast 96.73/94 98.6/94 3,268

 Promyelocyte 82.3/54 94.6/63 70

 Promyelocyte (bilobed) 86.6/41 90/45 18

 Myelocyte 80/43 76.2/46 42

 Metamyelocyte 80/13 80/7 15

 Monoblast 80/58 80/52 26

 Erythroblast 97.80/87 91.8/75 78

 Smudge cell 85/77 85/53 15

Total 18,365

Figure 8.   The ROC Plot for the proposed method.
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Further, an receiver operating characteristic (ROC) curve is plotted for performance visualization, taking the 
true positive rate on the Y-axis and the false positive rate on the X-axis67,68, shown in Fig. 8. We can see in Fig. 8 
that most of the leukemia cell ROC curve area is 1, while EBO shows 98% and MON 99%. This confirms that 
our model is highly sensitive towards leukemia identification. The class-wise performance can also be observed 
using the bar chart shown in Fig. 9. We can see in Fig. 9 that the proposed 3SNet model sensitivity and specificity 
are better than the state-of-the-art method.

Ablation study of the proposed model
We conducted two experiments on similar settings, as discussed in "Training and validation" section. However, 
we changed the setting of the proposed model as follows: In the first experiment, we removed the HOG feature 
and trained the model for 50 epochs in a batch size of 32. After training of the model, performance measures 
precision, recall, F1-score and accuracy of the model are calculated as shown in Table 6. Table 6 shows that the 
3SNet achieved average precision and F1-score of 86.60% and 85.10%, respectively.

In the second experiment, we removed the LBP feature, and the model was trained using gray and HOG 
features for 50 epochs in a batch size of 32. The average performance measures are shown in Table 7. In Table 7, 
we can observe that the model achieved an accuracy of 96.13% and a recall value of 84.61%.

The dataset used in the study is divided into training and validation. The proposed method applied a similar 
training and validation set as utilized by Matek et al.34. However, we conducted an ablation study and divided 
the dataset into 80%, 10%, and 10% for training, validation and testing, respectively. The class-wise sensitivity 
and precision of each cell on the test dataset are shown in Table 8. In Table 8, we notice that the sensitivity and 
precision of the cells with large numbers of images is more than 90%. Furthermore, the cells having fewer images 
also achieved notable performance measure values.
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Figure 9.   The bar plot for the comparison of precision and sensitivity with the method34.

Table 6.   The performance measures of the 3SNet mode using Grey and LBP features.

Folds

Performance measures

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Fold1 88.27 46.15 41.83 43.88

Fold2 96.49 90.48 91.72 91.09

Fold3 97.06 98.17 94.28 96.18

Fold4 97.67 98.87 95.19 96.30

Fold5 98.73 99.35 96.81 98.06

Average 95.64 86.60 83.96 85.10
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Conclusion
This research proposes a novel 3SNet, a deep CNN model for leukemia cell classification. Leukemia cells are a 
major cause of blood cancer. These blood smears’ morphological characteristics are very similar in several classes. 
Due to this, classification tasks are difficult. To tackle this problem, our method implicitly extracts features from 
leukemia and their corresponding HOG and LBP images using 3SNet. The HOG feature locates the local shape, 
and the LBP feature describes the texture pattern of leukemia cells, which helps to discriminate the morphologi-
cal characteristics of blood smears. The features extracted from three scales are fused and refined to enhance the 
feature pool. After that, the feature vector is passed to the classification module. The classification performance 
depicted in Table 5, confirms that the proposed method not only classifies cells having a large number in the 
dataset with high accuracy but also cells having a smaller number of images in the dataset. Further, depth-wise 
separable convolution block reduces the computation cost and resources. Hence, this method can be used to 
design computer-aided diagnostic (CAD) tools that can provide a second opinion to a doctor. The limitation of 
the model is to feed the images at three scales for training. In addition, the computation costs of the algorithm 
can be further reduced. In future work, we will add other texture features and a grayscale image to the deep CNN 
model for further performance improvement. In addition, feature optimization techniques can be applied to the 
feature pool to enhance the fused features. Further, other lightweight deep CNN models with attention mecha-
nisms can be explored to improve the classification performance. The 2D convolutional layers of the proposed 
model can be replaced with 3D convolution layers to perform analysis of the 3D images. This will improve the 
model’s capability to diagnose disease more accurately.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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Table 7.   The performance measures of the 3SNet mode using Grey and HOG features.

Folds

Performance measures

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Fold1 87.15 45.04 42.74 43.85

Fold2 97.23 89.87 93.18 91.50

Fold3 98.42 97.28 92.59 94.87

Fold4 98.78 99.51 96.94 98.21

Fold5 99.11 99.76 97.64 98.69

Average 96.13 86.29 84.61 85.42

Table 8.   Class-wise performance of the proposed 3SNet on the test dataset.

Class Sensitivity Precision Images in the dataset

Mature leukocytes

 Neutrophil (segmented) 96.53 97.27 8484

 Neutrophil (band) 75.16 68.94 109

 Lymphocyte (typical) 94.32 91.50 3937

 Lymphocyte (atypical) 58.46 42.37 11

 Monocyte 94.81 90.12 1789

 Eosinophil 95.76 93.48 424

 Basophil 80.39 78.21 79

Immature leukocytes

 Myeloblast 92.75 96.34 3268

 Promyelocyte 79.18 81.56 70

 Promyelocyte (bilobed) 73.67 76.19 18

 Myelocyte 76.84 72.30 42

 Metamyelocyte 52.23 57.82 15

 Monoblast 76.14 78.75 26

 Erythroblast 94.59 86.60 78

 Smudge cell 55.27 48.58 15

Total 18,365
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