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This paper investigates the intricate energy distribution patterns emerging at an orthotropic
piezothermoelastic half-space interface by considering the influence of a higher-order three-phase
lags heat conduction law, accompanied by memory-dependent derivatives (referred to as HPS) within
the underlying thermoelastic half-space (referred to as TS). This study explores the amplitude and
energy ratios of reflected and transmitted waves. These waves span various incident types, including
longitudinal, thermal, and transversal, as they propagate through the TS and interact at the interface.
Upon encountering the interface, an intriguing dynamic unfolds: three waves experience reflection
within the TS medium, while four waves undergo transmission into the HPS medium. A graphical
representation effectively illustrates the impact of higher-order time differential parameters and
memory to offer comprehensive insights. This visual representation reveals the nuanced fluctuations
of energy ratios with the incidence angle. The model astutely captures diverse scenarios, showcasing
its ability to interpret complex interface dynamics.

Many disciplines, including geophysics, earth-quake engineering, and seismology, have intensely interested in
studying wave reflection and refraction phenomena. Studies of these phenomena are crucial for revealing the
interior makeup of the Earth’s structure. They are significant when considering theoretical research and real-
world applications in industries like mining and acoustics.

Fourier’s law of heat conduction provides a framework for the classical theory of thermoelasticity (CTE),
developed by Duhamel. Fourier’s law produces the famous heat equation as the partial differential equation
regulating heat transfer when coupled with the energy conservation law. There are two shortcomings in the CTE:
first, the mechanical state of an elastic body does not affect the temperature, and second, the parabolic heat equa-
tion predicts an infinite propagation speed of heat. Biot! proposed the model of coupled thermoelasticity, which
stated that temperature changed independent of elastic variations and removed the first paradox of CTE. But the
diffusion-type of heat conduction equation makes it difficult for the CTE and the Biot theory of thermoelasticity
to describe the thermal signal velocity mechanism.

In 1967, to overcome this difficulty, Lord and Shulman (L-S)* developed the generalized thermoelastic theory
by incorporating one relaxation time into Fourier’s heat transfer law. Green and Lindsay® developed the second
generalized theory of thermoelasticity with two relaxation time parameters and included the temperature rate-
dependent term in the heat equation. For the homogenous isotropic material, the three new thermoelastic models
depending on the energy dissipation and thermal signal, were developed by Green and Naghdi*® and labeled
as GN-I, GN-II, and GN-III. The linearized form of the GN-I model is the same as the CTE and displays the
heat conduction paradox. The finite heat conduction speed without energy dissipation predicted by the GN-II
model makes it the most controversial of the three. The GN-IIT model includes the preceding two models as
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exceptional cases. In GN-III model, a second sound may arise, but only when there is no dissipation, i.e., when
the hyperbolic heat equation.

Tzou” proposed the dual-phase-lag (DPL) heat conduction model by introducing two phase lag times z, (for
heat flow) and 7 (for temperature gradient) in the heat conduction equation. Microscopically, phonon-electron
interaction in metallic films and phonon scattering in dielectric films, insulators, and semiconductors control
heat transfer. Classical theories made from the macroscopic point of view, like heat diffusion based on Fourier’s
law, are unlikely to be helpful at the microscale since they depict the macroscopic average behavior of numerous
grains. Finite periods, from femtoseconds to seconds or even longer, are needed to complete the microstructural
interactions. The lagged response describes the temperature gradient and the heat flow vector, which appear at
various points in the heat transfer process. Roy Choudhuri® extended the DPL model and presented the three-
phase-lag (TPL) model by introducing the new phase lag time 7, (for thermal displacement gradient).

In 2011, Wang and Li’ discovered the novel concept of memory-dependent derivatives (MDD) as a substitu-
tion of fractional order derivative, in which, using kernel function, the fractional derivative developed by Caputo
and Mainardi'® was transformed into an integral form of derivative, and it can be written mathematically as
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Here, the kernel function « (t — ¢) and the time-delay parameter > 0 can be chosen freely depending on the
nature of the problem. From a physical perspective!!, we usually assume that 0 < (¢t — ¢) < land t should be
less than the upper limit set by the kernel function to make sure that the solution is unique and exists such that
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Also, Wang and Li'®*? proved that this concept is preferable to fractional calculus to display the instantane-
ous rate of change depending on the past state (memory effect). So many examples, like weather population
models, forecasts, etc., need data from the recent past. This is only possible with the concept of MDD because
fractional derivatives fail if the lower terminal value is much less than the upper terminal value in the definition
of fractional order derivatives.

In the last few decades, piezo thermoelectric materials have gained interest in energy harvesting structures, actua-
tors, transducers, dynamic sensing, surface acoustic wave, intelligent networks, mechanical systems, etc. Both experi-
mental and theoretical studies on wave propagation in piezothermoelastic materials are active research subjects for
researchers, scientists, and engineers. Mindlin'* was the first person who developed the piezothermoelectricity theory
and its governing equation. Later, Nowacki'® and Chandrasekharaiah'® extended the physical law of piezothermo-
electricity. Recently, Gupta and his team'”-?* studied the various reflection and deformation problems at the interface
of piezothermoelastic medium under different piezothermoelasticity theories. Several researchers, Barak et al.** and
Kumar et al.*>~?’, verified the energy balance law of incident, reflected and transmitted waves at the interface of various
media. Li and his research team*-*! delved into the diverse challenges surrounding the thermo-electromechanical
behavior of intricate piezoelectric smart nanocomposite structures by employing the size-dependent piezoelectric
thermoelasticity theory and using the Laplace transformation technique.

To better understand the high-order consequences of thermal lagging, Chirita** studied resonance phenom-
ena under high-frequency excitations about micro or nanoscale heat transport models. This issue is significant
when the model being considered has to account for interactions between various energy carriers as well as the
impacts of the microstructural interactions that play a role in the quick and transitory transport of heat transient.
Recently, Abouelregal and his team®** worked on several problems about the higher-order time differential of
heat conduction equation by expanding Fourier’s law with Taylor’s series expansion. They successfully developed
the idea of higher order time differential on various generalized thermoelastic theories such as L-S, GN-II, GN-
III, DPL, and TPL under the presence and absence of MDD.

In this current manuscript, the energy ratios of various reflected/transmitted waves for incidence P, T, or
SV at the interface x3 = 0 of orthotropic piezothermoelastic half-space in the context of a triple-phase lag heat
conduction law with higher order MDD underlying a thermoelastic half-space are investigated. The impact of
higher-order MDD on the various energy ratios is analyzed and depicted graphically.

532

Basic equations

The constitutive relations for a homogenous, anisotropic piezothermoelastic solid under three-phase lag heat
transfer law with higher-order MDD in the absence of free charge density, body forces, and shear forces are given
by Abouelregal et al.*® and Barak and Gupta¥, as

Oij = Cijro €ro — Nijr Er — Bij T, (3)
Oijj = P > (4)
Ei = - ¢3i > (5)
D; = &iEj + nijr ejr +pi T, (6)
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the higher orders p, I, n € Nandj, j, r, o = 1,2, 3. Chirita et al.*® show thatn > 5or p > 5leads to an unstable
system, and therefore they cannot accurately describe an actual situation. Tzou® presented a fascinating concept
concerning this heat equation whenn = p or whenn = p — 1 connecting the progressive exchange between the
diffusive and wave behaviors.
The governing equations for a thermoelastic solid without energy dissipation and body forces are given by

Green and Naghdi® as:
e e 4 eyy2e e e eazae
(24 p)V(V - i) 4+ u V2 — BVT =r'a ©)
R a2
2
KfVATC = p°C} v + B¢ T08 S (V-u°), (10)
o = 2w Sy + 1 (sl ) — B0y (i 7 =1,2,3). (11)

Limiting cases
This work shows that the higher-order MDD piezothermoelastic proposed model is an extension of numerous
generalized models, with or without the memory effect. The three-phase lag heat transfer law with higher order
memory-dependent derivative Eq. (7) in the limiting case by setting.

Casel:ty =17 =7, = 0,and K* = 0 corresponds to Biot! model.

Case2:n =115 > 0,7, =77 = 0 K =0,k(t—¢) =1l,and D; — corresponds to Lord and Shulman’s®
model.

Case3:n > 1,7y > 0,7, = 77 = 0, and K} = 0, transforms into the higher order MDD heat equation with
one delay time 7, developed by Abouelregal et al.*.

Cased:ty =17 =7,=0,K;j=0,k(t —¢) =L and D; — 5 corresponds to Green and Naghdi type-II
model.

Case5:ty =171 =7, =0,k(t —¢) = Land D; — 3 corresponds to Green and Naghdi type-III model.

Case6:p=1,n=2, K =1,=0,k(t—¢)=1,and D; — corresponds to Tzou” model.
Case7:p=Il=1n= 2, Kj; = 7, = 0 corresponds to Ezzat et al.‘“’ model.

Case 8: 1, p > 1, K} = 1, = 0 transforms into the dual phase-lags heat conduction equation with higher
order MDD developed by Abouelregal®'.

Case9:p=I=1Ln=2,k(t—¢)=1lLandD; — 5 corresponds to Roy Choudhuri® model.
Case 10: p = [ = 1,and n = 2, corresponds to Ghosh et al.*> model.

Casell:n,p,l > 1,k(t —¢) = l,and D; — % change into the higher-order time derivative three-phase lag
heat equation without MDD proposed by Abouelregal®.

Nomenclature

Cijro = elastic stiffness tensor

Bij = thermal moduli tensors

Nijr» &ij = piezothermal moduli tensors

E; = electric field density

p = density

D; = electric displacement

ejj = component of strain

4, n = Lame’s constant

® = circular frequency

Cg = specific heat at constant
strain

Kjj = components of thermal conductivity

Kl;f = heat conduction tensor

74 = phase lag of heat flux

K} = material constant

7, = phase lag of thermal disp. gradient

pi = pyroelectric constants

7r = phase lag of the temperature gradient

¢ = electrical potential

0jj = components of the stress

T = thermal temperature

To = reference temperature

for clarity, engineering notations are employed, and the terms partial derivative with respect to time or the cor-

responding Cartesian coordinate are denoted by a superimposed dot “” or a subscript followed by a comma ,
respectively. A superscript “e” denotes thermoelastic half-space parameters.
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Formulation of the problem
As illustrated in Fig. 1, the orthotropic piezothermoelastic half-space under the reference of a triple-phase lag
theory of higher order memory-dependent derivatives (HPS) (x3 > 0) underlying a thermoelastic half-space (TS)
(x3 < 0) are welded together. The thermoelastic plane wave propagates in the x;x3— plane, and the displacement
vector for HPS and TS is represented by i = (u1, 0, u3) and u° = (15, 0, u§) respectively.

Following Slaughter*?, the governing equations for two-dimensional HPS medium are determined from
Eqgs. (3)-(8) as

C11U1,11 +C55U1,33 (€13 + ¢55)u3,13 + (31 + N15)¢,13 —P1T>1 = piiy, (12)

(c13 + €55)U1,13 C55U3,11 +€33U3,33 +N15011 +1330,33 —B3T>3 = pii, (13)

p
0 I{fl m v m * *
o <1 + m; LD (KT +K3Tos) + 1+ Z D) (K{ T +K5 o)

m=1

(14)
n m
Tq m had . . e
= (1 + Z m'qu> (0CeT + To(Brii1 +B3iizz —p3d3)),
m=1 "
(15 + M31) 1,13 +N15U3,13 +133U3,33 —€11P>11 —€33¢,33 +p3T53 =0, (15)
where Kjj = K;8jj, Kij = K;*8jj, Bij = Bidij, and i is not summed.
For convenience, the dimensionless quantities are taken as
(x> x3,) = % (x1, %3), (“'1» y, 1S, u?) = % (w1, us, u§,u5),t' = ot <o,-},cr§/)
1 1
_ 1 e A ;_ @11731 /
= m <Uij)0ij>, (TT; Ty Iv) = w1 ( T, Tq>Tv)> ¢ = o ,31T0¢’ T (16)
C 2
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Using the Eq. (16) in the set of Egs. (10)-(11) and (12)-(15) with the removal of primes () takes the follow-
ing form
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Figure 1. Refraction and reflection of plane wave in TS and HPS.
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Method (wave propagation analysis)
Taking plane wave form solution for HPS medium as

X1
(u1, u3, ¢, T)(x1,x3,t) = (H, M, N, U) exp [lw<_7 —qx3+ t)], (24)
where, H, M, N, U are the amplitude vectors, q and c are the slowness parameter, and the apparent phase veloc-

ity, respectively.
Inserting Eq. (24) in a set of Egs. (17)-(20) yields a homogenous system

QR=0 (25)
I+ q2112 111132 111142 —his 5\{/1
) Ly, d I —ql
Q= qc 21+ g7 da+q°lhs ng  R= i (26)
c qla1 —ql3; I+ q°l4 N
cq dy + @l —dis — ¢*le - qlas U

where,
2
h=c—c, ha=dnc, iz =dipc?, s =disc?, his =S, by = day — dp3c?, by = dnc?, bz = dasc?,

dys 2 Ad dyzc? Ard
by =55 Iy = dysc?, by = dzec?, by = S50 4 Apdyy — 925, Iy = (A2d34 - HTsz>52) Iy = dpc?,

w
P _m noo.m
2 2d 14T 14T T -1 % -1
lp = dauc®, Iy =5, A= 1+r;’ Ay = Jri’ [y= 3 56" 'T(er,b), Ty = ) L™ F(Tq,b),
m=1 m=1

Z m
[3= 3 250" 'T(1,b),b = 1w

—b212(a? — 28 + 1) + 2b7; (o — 202 —bt) + b21t? — 2bB71; + 202
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The coefficient matrix’s Q determinant must be zero for the non-trivial solution, leading to a characteristic
equation.

G11q8+G12q6+G13 q4+G14q2+G15 =0. (27)

When Eq. (27) is solved using the MATLAB software, the roots are found to be organized in magnitude-wise
decreasing order and are denoted as follows for convenience: g; (i = 1 — 4) represents the roots of this equation
with positive imaginary parts and g; (i = 5 — 8) represents those with negative imaginary parts. The eigenvalue
qa corresponds to the component of the electric potential (eP ) mode of wave propagation andq; (i =1 — 3)
corresponds to the quasi P (qP ), quasiT (gT' ), and quasi S (gS) propagating modes, respectively. The expres-
sion Gy; (i = 1 — 5) is provided in the Appendix.

The eigenvectors Hj, M;, N;, and U; corresponding to each ¢; (i = 1 — 8) can be written as

Q) o (Qa3)y, _of (Qua)g,

@, T @y o Qg (28)

where
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Wi=—1 &=, 0=, (29)

and cf (Qij)%‘ denote the cofactor Gjj corresponding to the eigenvalue g;. The corresponding amplitudes

(Hi, M;, N;and Uj;) decrease when the thermoelastic plane waves go through the HPS medium, depending on
the frequency of these waves.

Following Achenbach*!, the displacement components of the TS medium can be expressed in terms of the
potential function ¢° and 1/° by the relation

e_aqse_awe e_ad)e—’_aw.e

= dx1 dx3’ "= 0x3 axy G0
Using Eq. (30) in Egs. (21)-(23), we get
afPViL — ¢ —yT¢ =0, 31)
O[;szzwe _ 12}6 =0, (32)
alV2T® — T° — aiV?¢© =0, (33)

o5 2 Kr 2 _ BBTG

s Of s

where,af = L a3 = a1 = pace = peace

For thermoelastic plane harmonic wave propagating in TS medium establishing an angle 6y with the x3—
axis (see Fig. 1), we can take

(qﬁe, T®, we) = (A¢e,ATe,A¢e) exp [thk(—x; sinfy — x3 cos ) + twt] (34)

where k(= w/ c) is the complex wavenumber, Age, Ate, Ay are the wave amplitudes constants.
Using Eq. (34) in Egs. (31)-(33), we get

/a2
2 SikySi—4% %2 (35)

Ter, = 2 » Ty = G

where $; = a? + o} + a3y, S, = af?al.

Here r2, rZ corresponds to positive and negative signs, respectively. These roots indicate that two coupled
longitudinal waves exist, namely, an elastic wave (P-wave) and a thermal wave (T-wave). ré corresponds to
transversal SV- wave.

Refraction and reflection coefficients

Amplitude ratios

Assuming that train of a thermoelastic plane wave (P or SV or T) striking at the interface via the TS medium
form an angle 0 with the x3— axis, causing three waves to be reflected in the TS medium and four waves to be
transmitted in the HPS medium. The expression for the stress, electric displacement, mechanical displacements,
electric potential, and temperature assumed in an HPS medium becomes

4
X1
(033, 031, D3) = 1w ZI (Avis Aziy A7i) Hi exp [tw (—7 —qx3+ t)], (36)
i=
4 x1
(un, 13, 6, T) = D (1 Wi, @i, ©) Hy exp (10( == =gy +1) ). (37)

i=1

Boundary conditions

The possible boundary conditions, i.e., equality of distribution of normal stress, tangential stress, tangential dis-
placement, and normal displacement, along with the isothermal, insulated boundaries, and vanishing of electric
displacements across an interface, x3 = 0 are as follows:

033 =033, 031 =03, Uy =uj, u3 =u3, T =T
P 1
9 o zm aT aTe (38)
K—|1+ Ipm )+ [1+) XLD"||— =K'—, D; =0.
38t< mz::l ml T 3 mg ml ) s € ks

The full structures of the wave field made up of the incident and reflected wave in the TS medium meet the
boundary conditions, are
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¢° = A{ exp {iki (—x1 sin 6y — x3 cos 6y) + twt} + A] exp {iki(—x; sin ) + x3 cos 6) + 1wt}
+Bj§ exp {ika(—x1 sin 6y — x3 cos 6y) + twt} + Bf exp {iky(—x1 sin 6, + x3 cos 6;) + twt},

T® = 51AG exp {ik1 (—x1 sin 6y — x3 cos ) + wwt} + £1AT exp {iky (—x; sin6; + x3 cos 1) + twt}
+42BG exp {ika(—x1 sin 6y — x3 cos 6p) + twt} + 5B exp {iky (—x1 sin 6, + x3 cos 62) + wwt},

Y¢ = D§ exp {ik3(—x sin 6y — x3 cos 6y) + twt} + DS exp {ik3(—x) sin 63 + x3 cos 63) + twt}, (41)

where §i= % <r2 — ai"z), j =1, 2and A§, B, D§ (AS, B, D) represent the coefficients of amplitudes of the

¢
incident (reflected) P-, T-, and SV- waves, respectively and
B§, D = 0, for incidence of P-wave.
A§, D§ = 0, for incidence of T-wave.
A§, Bj = 0, for incidence of SV-wave.
Snell’s law is given as

sin 6y sin 6; sin 6, sin 63
= = = ) (42)
Vo Te, Te Tes

where,

re, for incidentof T — wave . (43)

te, for incident of P — wave
Vo =
te, for incident of SV — wave

Using the set of Egs. (36)-(43), we obtain a system of non-homogenous equations that may be expressed as

AX=Q (44)
where
Apr A Az Ay Ags A Ay X Q1
A1 A Az Apg Azs Aps Azz X Q
Azl Az Aszz Aszg Aszs Asze Asz X3 Qs
A=Ay Ap Az Agg Ags Dy Ay |, X= | Xy |, Q= | Qs
Asy Asy Asz Asy Ass Asg 0 Xs Qs
Ae1 A2 Aez Ass Des Ags 0 Xe Qs
A71 A7y A7z Az 0 0 0 X7 0
- c Wi | 13§ ), _ cub Ao — Wi i mis®i AL — WA — Q-
Avi = _/315205 - </§TT0 + ﬂzi CI),)ql La)lfifis"o Osfai = f;lSToC BiTo 611;31 Asi = LAsi = WiAsi = 05
Asi = —[Kf(1 4+ 1, I'(1, b)) + K3(1 + 17T (7, b)) tw 1| Oig;
2
11731 cigiWi  cnéss 3C .
Ay = — 1 — 4% + qﬁb,-}-ip 112 ®;, i=1-4,
B1Tonzsc B1To 133731 twns3 By To
_ Croi+ik}pf (e —204% sin 6 ) _ Cro+idpf (e —205% sin 6) _upt
Als == anTy » 816 = whTy T TE
k5 pat sin 20 kiat” p® sin 20 k5as” p¢ sin 20 ksas? p 20, .
Ay = —73’7[3315%: A5 = —710(1@%15}: 5 Ag = —72%@%15}: 2, Ny = —73%,“%1%5 %, Azs = tky sin 0,
A36 = Lk2 sin 92, A37 = Lk3 CosS 93, A45 = —Lk1 COoS 91,
. —1k1 K cos 61 —ok; cos 0K
Ags = —tkacosty, Agy =tk3sin€s, Ass = —01, Asg=—0, Ags = ——c——Ngg = ——_—%,

-4
— A®

L

Dy
x5 x

X,=H i=1-4),X; 2

Ax X6 = X7 =
¢ Forincidence P wave: A* = Aj, Q1 = —A15,Qy = A25,Q3 = —A35, Qs = Ay5,Qs = —Ass5, Q6 = Aes.
e For incidence T wave: A* = Bf, Q1 = —A16, Q2 = A2, Q3 = —A36, Qs = Ass, Qs = —As6, Qs = Ags.

e For incidence SV wave: A* = D§, Q1 = A17,Q; = —A27,Q3 = A37,Qs = —A47,Q5 = 0,Q = 0.

Energy ratios

The average energy flux of the incident, refracted, and reflected waves could be used to figure out the energy
distribution between refracted and reflected waves at the interface x3 = 0, across a unit area of the surface ele-
ment. According to Kumar and Sharma*, the normal acoustic flux in an HPS material is represented by as follows

- - =N 1 T
P = —Re (Glsul + o33tz — ¢pD3 + K373, ?). (45)
0

and for the incident and reflected waves for the elastic phase are
P® = —Re (03)i; + 033l3). (46)

The average energy fluxes of the incident waves are as follows
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1
(Pip) = 5 (0K + Cra1) kiwoRe(eos )| A5 |, (47)
1
(Pir) = 5 (@ p*K} + Créa) kawRe(cos o) B, (48)
1
(Pfs) = Eozgz,oekg’a)Re(cos Go)yDg‘z (49)
The average energy fluxes of the reflected waves are as follows
1
(Pp) = =5 (@ 0%k + Crtr) kioRe(cos 01)|Af 2 (50)
1
(Pir) = =5 (@ 0°K; + Cr4a) kawRe(cos 62) | Bf % (51)
1
(Pgs) = —Eagzpekga)Re(cos 63)|D§ |2. (52)
The average energy fluxes of the refracted waves are as follows
1 — t Kz—
(Po) = szRe(AZS + AW+ 7@ + ;f&;@:) Hil?, (s=1-4). (53)
0
The energy ratios of the reflected and refracted waves are defined as.
(i) for incident P wave
(Pe) (Pkr) (PRs) (P)
Egrp = , ErT = , Ers = , ESg = , (s=1-4). (54)
(Pip) (Pip) (Pip)” " (Pip)
(ii) for incident T wave
j pe P (Py)
Epp = (Py) }:P>, Epr = < IZT>, Egs = (Phs) §S>, ES;= =%, (s=1—4). (55)
(Pir) (Pir) (Pir) (Pir)
(iii) for incident SV wave
P P Py P
Epp = < IZP>, Epr = < ReT>, Eps = < I§S>, ES; = ( ;) s (s=1-4). (56)
(Pis) (Pfs) (Pfs) (Pfs)

The interaction energy ratios (interaction between different fields and displacement corresponding to
refracted waves) are.

Ey = (P §’> for an incident of P wave, Ey; = (P j’) for an incident of T wave, and Es; = (P ;‘) for an incident of
(Pfp) (Pir) (Pfs)
SV wave.
Where
1 2 j— J— J— —_ —_— L K3 J— —_
(Pgt) = Ew Re( AyHsHy + AisWiHHy + A7 @i H H + ;TA5SG)SHSHI’ . (57)
0
The energy is conserved if
4
Z (ESs + Eint + Egrp + Err + Egs) = 1, (58)
s=1
4
where Ejyy = Y Ey is the resultant interaction energy between the refracted waves.

s,t=1,s#t

Discussion and numerical findings

The energy ratios for the incidence longitudinal P wave, thermal T wave, or transversal SV wave at the interface
of TS/HPS are computed and plotted graphically with the help of MatLab software for a particular model of TS
medium (magnesium) and HPS medium (cadmium selenide). The material parameters of cadmium selenide and
magnesium are borrowed from Mondal and Othman*® and Kumar and Sarthi*, as shown in Table 1.

The most notable benefit of this extended model is that it is based on heat transfer with MDD of order (n, p,
and /), and its flexibility in applications due to the free choice of the delay time factor and kernel function as
stated earlier in Egs. (1) and (2) Chiritd et al.*® show thatn > 5or p > 5leads to an unstable system and cannot
accurately describe an actual situation. Zampoli*® states that the expansion orders must be less than or equal to
4 for the accompanying models compatible with thermodynamically provided that the correct phase lag time
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Symbol | Value Symbol | Value

cn 74.1 x 10° Nm~2 To 298 K

12 45.2 x 10° Nm™2 B 6.21 x 10° Nm—2K~!
ci3 39.3 x 10° Nm~2 B3 5.51 x 10° Nm—2K~!
33 83.6 x 10° Nm~2 M3 —0.160 Cm—2

cs5 13.2 x 10° Nm 2 ns —0.138 Cm™2

en 826 x 1071 C2N"Im~2 | n33 0.347 Cm™2

€33 9.03 x 1071 C?2N"I'm~2 | Cj 1.04 x 10 Jkg ™" deg™!
P3 —29x 107°Cm™2K~! | 2¢ 2.696 x 1010 Nm~2
K, K3 [9Wm k™! ue 1.639 x 10'° Nm~2
Kf, K¥ |7 Wmlk!s! p¢ 1.74 x 10° kgm™

K} CE(h+2um)/4 B 2.68 x 10° Nm =2 deg ™"
o 5504 kgm > w 100 Hz

Table 1. Values of the materials constants.
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Figure 5. Variation of energy ratio ES; with 6.

assumptions are made. We choose the kernel function K;(t —¢) =1 — (t — ¢) / t,5i=gq, T, vand phase lags
74 = 0.055, 77 = 0.03s, 7, = 0.02s such that they fulfill the conditions established by Quintanilla and Racke®.
To study the impact of higher-order MDD (n, p, and I) on the variations of the energy ratios, we developed the
three different models according to three distinct choices of n,pand I suchthatn = 4,p =3,I=3n=3,p =2,
I =2;andn = p = I = 1represented by solid red, green, and blue lines respectively as shown in the Figs. 2, 3, 4, 5,
6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25. Egp, ErT, and Egs stand for energy ratios cor-
responding to reflected P, T, and SV waves, respectively, and ES;;i = 1 — 4 stand for refracted qP, qT, qS, and eP
waves, respectively. The overall interaction energy ratio between the various refracted waves is denoted by the Ejp.

For incident P wave

Figure 2 depicts that for the model n = p = I = 1, the magnitude of Epp is first decreases gradually with an
increased angle of incidence 0° < 6y < 30°. After a further increase in the angle of incidence 30° < 6, < 90°,
the magnitude of Egp increases monotonically. But in then =4, p = 3,1 = 3andn = 3, p = 2,1 = 2 models,
we noticed that magnitude of Egp increases with 6y, but the increment is slow at near the grazing and normal
incidence. P wave reflects more in the n = 3, p = 2,1 = 2 model than the other two considered models.

In Fig. 3, we observed that the magnitude of Egr increases with 6y go to maximum and then decreases
approaches to zero near the grazing incidence and follow the parabolic path for then =4, p =3,/ =3 and
n =3, p = 2,1 = 2models. On the other hand, for the n = p = | = 1 model, the magnitude of Egr approaches
zero in a complete range of considered 0y but near the grazing incidence magnitude of Ery increases rapidly.
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Figure 4 shows that the magnitude of Egg first increase with the angle of incidence goes to maximum and
then decreases with a further increase of angle of incidence. The magnitude of reflected SV waves is dominated
inthen = p = I = 1 model following then = 4, p = 3,1 = 3andn = 3, p = 2,1 = 2 models. In all considered
models, fewer SV waves are reflected near the normal and grazing incidence.

Figures 5, 6, 7 and 8 reveal that the transmitted wave modes, namely, the qS mode, propagate more easily
in a piezothermoelastic medium than the other modes. In contrast, gP mode is significantly less excited in the
piezothermoelastic medium. Except for the gS mode, all transmitted modes are not excited near the normal
incidence. The gT, gS, and eP wave modes are more excited for then = p = [ = 1 model compared to two other
considered models in the complete range of angle of incidence. In contrast, initially, the gP wave mode is more
enthusiastic in the n = 3, p = 2,1 = 2 model but after 6y > 58° the n = p = | = 1 model dominates over the
other two models.

From Fig. 9, we noticed that the Ei, increases with increases angle of incidence up to 6y = 21° after that,
critical angle interaction energy ratios become positive to negative, and with further increases with angle of
incidence, the interaction energy decreases, and at near the grazing incidence, interaction energy again increases.

For incident T wave

In all three models taken into consideration, Fig. 10 demonstrates that the magnitude of Egp initial rises grows
monotonically to a maximum and subsequently declines to a minimum, following a parabolic path with a ris-
ing angle of incidence. P waves reflected more readily in then = 4, p = 3,1 = 3andn = 3, p = 2,1 = 2 models
than then = p = I = 1 model.
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Figure 11 shows that in all three considered models, the magnitude of Err first monotonically falls approaches
zero, with an angle of incidence 0° < 6y < 45°, then monotonically grows and reaches unity with the angle of
incidence 45° < 6y < 90°. Higher order MDD parameters #, p, I do not seem to have any discernible effects.
Figure 12 demonstrates that the magnitude of Egs the whole range of angle of incidence follows the almost
inverted pattern of Fig. 11.

Figures 13 and 14 reveal that as the angle of incidence increases, the magnitude of ES; and ES; increases
gradually for the n = p = | = 1 model while for then =4, p = 3,1 = 3andn = 3, p = 2,1 = 2 models follow
the parabolic path whereas around grazing incidence, the magnitude of ES; and ES; climb extremely fast in all
three considered models. The sub-indent figure of Fig. 13 depicts the magnified image of the overlapping curves
to observe the variation in the microscale level. For the n = p = | = 1 model, the transmitted wave modes qgP
and qT propagate quickly near the grazing incidence compared to the other two models. While in the remain-
ing range of angle of incidence, the magnitude of gP mode in then = 3, p = 2,1 = 2 model dominated over the
n =4, p = 3,1 = 3model and reversed behavior is observed in the gT mode.

The gS and eP wave modes transfer rapidly in the piezothermoelastic medium at the mid-angle of incidence,
as shown in Figs. 15 and 16. On the other hand, ¢S and eP modes are less excited near the grazing incidence
and are not excited near the normal incidence for all three considered models. The magnitude of gS wave mode
dominates for the n = p = | = 1 model, followed by then =4, p =3,l =3andn = 3 p = 2,/ = 2 models. In
contrast, the magnitude of eP wave mode dominates for then = p = [ = 1model, followed by then = 4, p = 3,
I=3andn =3, p=2,] =2models.

Figure 17 shows that the incidence wave’s interaction energy ratio initially increases to the maximum and
then decreases with the angle of incidence. For then = 4, p = 3,1 = 3 model, the magnitude of Ej,; most minor
compared to the other two models. In then = 3, p = 2,1 = 2 model near the grazing incidence, the magnitude
of Eint sharply increases, while in the other two models, it slightly decreases.

For incident SV wave

Figures 18, 19 and 20 reveal that reflected energy ratios |Egp| and |Err| in the range of angle of incidence
0% < 9y < 58 follows the two peaks in contrast |Egg| trend almost linear and follow the two peaks only for the
n =3, p = 2,1 = 2model. Figures 18 and 19 follow nearly the same pattern, but their magnitudes differ. After
the 6y = 58°, no significant impact of higher-order MDD parameters is observed. For then =3, p=2,1 =2
model, the magnitude of reflected energy ratios is maximum, followedbyn =p=I=landn=4,p=3,1=3
models. But at near grazing incidence, the gT mode is no longer excited. After 6y = 58° all the curves overlap,
the impact of higher-order parameters has disappeared.

Figures 21, 22, 23 and 24 depict that the magnitude of all transmitted wave modes corresponding to the
n =p =1=1model lies between the n =4, p=3,] =3 and n =3, p =2, =2 models. The qP and ¢S
wave modes quickly propagate in piezothermoelastic medium for n = 3, p = 2, ] = 2 model as compared to
n=p=1=1landn =4, p =3, = 3models. On the other hand, reverse behavior is observed for the propaga-
tion of the T wave mode. The gS waves have a critical angle 6y = 37°. After reaching this critical angle, the qS
modes are no longer excited, and the impact of higher-order MDD parameters are disappeared since all curves
overlap. As shown in Fig. 24, the electric potential wave does not propagate in a piezothermoelastic material for
all investigated models except for the range of angle of incidence 36° < 6y < 56°. The eP wave modes are highly
stimulated at the angle of incidence 36° < 6y < 45°.

Figure 25 illustrates the oscillating and almost reverse pattern seen in Figs. 18, 19, 20 and 21 for interaction
energy ratios. The interaction energy changes from negative to positive at an angle of incidence 6y = 40°. After
0o > 58°, all four models’ curves coincide, as discussed in Figs. 18, 19, 20, 21 and 22. In the case of incidence
SV wave as contrary to incidence P or T wave, for all energy ratios, a critical angle 6y = 58° is observed in all
considered higher-order MDD models. The identification of a critical angle for the incidence of SV waves agrees
with the study conducted by Barak et al.'*.

Conclusion

The thermoelastic plane wave phenomena at an interface between TS and HPS are examined in this study, and
the effect of higher-order time differential parameters on energy ratios is studied. The energy ratios of various
refracted and reflected waves are calculated using the amplitude ratios for incident P, T, or SV waves. We built
three distinct models to investigate the effect of higher-order MDD (#, p, I) on the variation of the energy ratios
according to three different choices of n, p, I suchthatn = 4,p=3,I=3n=3,p=2,/=2;andn=p=1=1
Following are some of the findings gleaned from this investigation:

® The energy ratios are influenced by factors such as the characteristics of the incident wave, higher-order
MDD parameters, the angle of incidence, and the material’s physical properties. The nature of this reliance
varies for various waves, as seen in Figs. 2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25.

e For incidence P wave, qS wave mode is highly excited. It easily propagates in the piezothermoelastic medium
compared to other transmitted waves, and the magnitude of the reflected P wave is maximum compared
to other T or SV waves. The magnitude of all energy ratios for n = 4, p = 3,1 = 3 model lies between the
n=p=I1=1landn =3, p=2,] =2models.

e For incidence T wave, gP and gT wave modes propagate in piezothermoelastic medium only near the grazing
incidence. In contrast, qS and eP wave modes propagate in a mid-angle range of incidence. The negligible
impact of higher-order MDD parameters is observed in reflected energy ratios of T'and SV waves. In contrast,
in other energy ratios, the effect varies with the angle of incidence.
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For incidence SV wave, near the normal incidence ¢S wave mode is highly excited and easily propagates
in piezothermoelastic medium compared to other transmitted waves. After a particular angle 6y = 58°, all
energy ratios are independent of higher-order MDD parameters, i.e., all three curves overlap.
It is discovered that, in all models considered, the total of the energy ratios is almost equal to one at each
angle of incidence 0° < 6y < 90°. As a result, each model supports the law of energy balance.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary
information file].
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