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Behavior of higher‑order 
MDD on energy ratios 
at the interface of thermoelastic 
and piezothermoelastic mediums
M. S. Barak 1, Hijaz Ahmad 2,3,4, Rajesh Kumar 1, Rajneesh Kumar 5, Vipin Gupta 1*, 
Fuad A. Awwad 6 & Emad A. A. Ismail 6

This paper investigates the intricate energy distribution patterns emerging at an orthotropic 
piezothermoelastic half-space interface by considering the influence of a higher-order three-phase 
lags heat conduction law, accompanied by memory-dependent derivatives (referred to as HPS) within 
the underlying thermoelastic half-space (referred to as TS). This study explores the amplitude and 
energy ratios of reflected and transmitted waves. These waves span various incident types, including 
longitudinal, thermal, and transversal, as they propagate through the TS and interact at the interface. 
Upon encountering the interface, an intriguing dynamic unfolds: three waves experience reflection 
within the TS medium, while four waves undergo transmission into the HPS medium. A graphical 
representation effectively illustrates the impact of higher-order time differential parameters and 
memory to offer comprehensive insights. This visual representation reveals the nuanced fluctuations 
of energy ratios with the incidence angle. The model astutely captures diverse scenarios, showcasing 
its ability to interpret complex interface dynamics.

Many disciplines, including geophysics, earth-quake engineering, and seismology, have intensely interested in 
studying wave reflection and refraction phenomena. Studies of these phenomena are crucial for revealing the 
interior makeup of the Earth’s structure. They are significant when considering theoretical research and real-
world applications in industries like mining and acoustics.

Fourier’s law of heat conduction provides a framework for the classical theory of thermoelasticity (CTE), 
developed by Duhamel. Fourier’s law produces the famous heat equation as the partial differential equation 
regulating heat transfer when coupled with the energy conservation law. There are two shortcomings in the CTE: 
first, the mechanical state of an elastic body does not affect the temperature, and second, the parabolic heat equa-
tion predicts an infinite propagation speed of heat. Biot1 proposed the model of coupled thermoelasticity, which 
stated that temperature changed independent of elastic variations and removed the first paradox of CTE. But the 
diffusion-type of heat conduction equation makes it difficult for the CTE and the Biot theory of thermoelasticity 
to describe the thermal signal velocity mechanism.

In 1967, to overcome this difficulty, Lord and Shulman (L–S)2 developed the generalized thermoelastic theory 
by incorporating one relaxation time into Fourier’s heat transfer law. Green and Lindsay3 developed the second 
generalized theory of thermoelasticity with two relaxation time parameters and included the temperature rate-
dependent term in the heat equation. For the homogenous isotropic material, the three new thermoelastic models 
depending on the energy dissipation and thermal signal, were developed by Green and Naghdi4–6 and labeled 
as GN-I, GN-II, and GN-III. The linearized form of the GN-I model is the same as the CTE and displays the 
heat conduction paradox. The finite heat conduction speed without energy dissipation predicted by the GN-II 
model makes it the most controversial of the three. The GN-III model includes the preceding two models as 
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exceptional cases. In GN-III model, a second sound may arise, but only when there is no dissipation, i.e., when 
the hyperbolic heat equation.

Tzou7 proposed the dual-phase-lag (DPL) heat conduction model by introducing two phase lag times τq (for 
heat flow) and τT (for temperature gradient) in the heat conduction equation. Microscopically, phonon-electron 
interaction in metallic films and phonon scattering in dielectric films, insulators, and semiconductors control 
heat transfer. Classical theories made from the macroscopic point of view, like heat diffusion based on Fourier’s 
law, are unlikely to be helpful at the microscale since they depict the macroscopic average behavior of numerous 
grains. Finite periods, from femtoseconds to seconds or even longer, are needed to complete the microstructural 
interactions. The lagged response describes the temperature gradient and the heat flow vector, which appear at 
various points in the heat transfer process. Roy Choudhuri8 extended the DPL model and presented the three-
phase-lag (TPL) model by introducing the new phase lag time τv (for thermal displacement gradient).

In 2011, Wang and Li9 discovered the novel concept of memory-dependent derivatives (MDD) as a substitu-
tion of fractional order derivative, in which, using kernel function, the fractional derivative developed by Caputo 
and Mainardi10 was transformed into an integral form of derivative, and it can be written mathematically as

Here, the kernel function κ(t − ζ ) and the time-delay parameter τ > 0 can be chosen freely depending on the 
nature of the problem. From a physical perspective11, we usually assume that 0 < κ(t − ζ ) ≤ 1 and τ should be 
less than the upper limit set by the kernel function to make sure that the solution is unique and exists such that

Also, Wang and Li12,13 proved that this concept is preferable to fractional calculus to display the instantane-
ous rate of change depending on the past state (memory effect). So many examples, like weather population 
models, forecasts, etc., need data from the recent past. This is only possible with the concept of MDD because 
fractional derivatives fail if the lower terminal value is much less than the upper terminal value in the definition 
of fractional order derivatives.

In the last few decades, piezo thermoelectric materials have gained interest in energy harvesting structures, actua-
tors, transducers, dynamic sensing, surface acoustic wave, intelligent networks, mechanical systems, etc. Both experi-
mental and theoretical studies on wave propagation in piezothermoelastic materials are active research subjects for 
researchers, scientists, and engineers. Mindlin14 was the first person who developed the piezothermoelectricity theory 
and its governing equation. Later, Nowacki15 and Chandrasekharaiah16 extended the physical law of piezothermo-
electricity. Recently, Gupta and his team17–23 studied the various reflection and deformation problems at the interface 
of piezothermoelastic medium under different piezothermoelasticity theories. Several researchers, Barak et al.24 and 
Kumar et al.25–27, verified the energy balance law of incident, reflected and transmitted waves at the interface of various 
media. Li and his research team28–31 delved into the diverse challenges surrounding the thermo-electromechanical 
behavior of intricate piezoelectric smart nanocomposite structures by employing the size-dependent piezoelectric 
thermoelasticity theory and using the Laplace transformation technique.

To better understand the high-order consequences of thermal lagging, Chiriţă32 studied resonance phenom-
ena under high-frequency excitations about micro or nanoscale heat transport models. This issue is significant 
when the model being considered has to account for interactions between various energy carriers as well as the 
impacts of the microstructural interactions that play a role in the quick and transitory transport of heat transient. 
Recently, Abouelregal and his team33–36 worked on several problems about the higher-order time differential of 
heat conduction equation by expanding Fourier’s law with Taylor’s series expansion. They successfully developed 
the idea of higher order time differential on various generalized thermoelastic theories such as L-S, GN-II, GN-
III, DPL, and TPL under the presence and absence of MDD.

In this current manuscript, the energy ratios of various reflected/transmitted waves for incidence P, T, or 
SV at the interface x3 = 0 of orthotropic piezothermoelastic half-space in the context of a triple-phase lag heat 
conduction law with higher order MDD underlying a thermoelastic half-space are investigated. The impact of 
higher-order MDD on the various energy ratios is analyzed and depicted graphically.

Basic equations
The constitutive relations for a homogenous, anisotropic piezothermoelastic solid under three-phase lag heat 
transfer law with higher-order MDD in the absence of free charge density, body forces, and shear forces are given 
by Abouelregal et al.36 and Barak and Gupta37, as

(1)Dτ f (t) =
1

τ

∫ t

t−τ

κ(t − ζ )f ′(ζ )dζ .

(2)κ(t − ζ ) = 1−
2β

τ
(t − ζ )+

α2

τ 2
(t − ζ )2 =







1 if α = β = 0
1− (t − ζ )

�

τ if α = 0, β = 1
�

2
�

1− (t − ζ )
�

τ
�2

if α = β = 1

.

(3)σij = cijro ero − ηijr Er − βij T ,

(4)σij ,j = ρ üi ,

(5)Ei = − φ,i ,

(6)Di = εijEj + ηijr ejr + pi T ,
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the higher orders p, l, n ∈ N and i, j, r, o = 1, 2, 3 . Chiriţă et al.38 show that n ≥ 5 or p ≥ 5 leads to an unstable 
system, and therefore they cannot accurately describe an actual situation. Tzou39 presented a fascinating concept 
concerning this heat equation when n = p or when n = p− 1 connecting the progressive exchange between the 
diffusive and wave behaviors.

The governing equations for a thermoelastic solid without energy dissipation and body forces are given by 
Green and Naghdi6 as:

Limiting cases
This work shows that the higher-order MDD piezothermoelastic proposed model is an extension of numerous 
generalized models, with or without the memory effect. The three-phase lag heat transfer law with higher order 
memory-dependent derivative Eq. (7) in the limiting case by setting.

Case 1: τq = τT = τv = 0 , and K∗
ij = 0 corresponds to Biot1 model.

Case 2: n = 1 , τq > 0 , τv = τT = 0 , K∗
ij = 0 , κ(t − ζ ) = 1 , and Dτ → ∂

∂t corresponds to Lord and Shulman’s2 
model.

Case 3: n ≥ 1 , τq > 0 , τv = τT = 0 , and K∗
ij = 0 , transforms into the higher order MDD heat equation with 

one delay time τq developed by Abouelregal et al.35.
Case 4: τq = τT = τv = 0 , Kij = 0 , κ(t − ζ ) = 1 , and Dτ → ∂

∂t corresponds to Green and Naghdi type-II 
model.

Case 5: τq = τT = τv = 0 , κ(t − ζ ) = 1 , and Dτ → ∂
∂t corresponds to Green and Naghdi type-III model.

Case 6: p = 1 , n = 2 , K∗
ij = τv = 0 , κ(t − ζ ) = 1 , and Dτ → ∂

∂t corresponds to Tzou7 model.
Case 7: p = l = 1 , n = 2 , K∗

ij = τv = 0 corresponds to Ezzat et al.40 model.
Case 8: n, p ≥ 1 , K∗

ij = τv = 0 transforms into the dual phase-lags heat conduction equation with higher 
order MDD developed by Abouelregal41.

Case 9: p = l = 1 , n = 2 , κ(t − ζ ) = 1 , and Dτ → ∂
∂t corresponds to Roy Choudhuri8 model.

Case 10: p = l = 1 , and n = 2 , corresponds to Ghosh et al.42 model.
Case 11: n, p, l ≥ 1 , κ(t − ζ ) = 1 , and Dτ → ∂

∂t change into the higher-order time derivative three-phase lag 
heat equation without MDD proposed by Abouelregal33.

Nomenclature

cijro = elastic stiffness tensor βij = thermal moduli tensors

ηijr , εij = piezothermal moduli tensors Ei = electric field density

ρ = density Di = electric displacement

eij = component of strain �, µ = Lame’s constant

ω = circular frequency CE = specific heat at constant 
strain

Kij = components of thermal conductivity K∗
ij = heat conduction tensor

τq = phase lag of heat flux K∗
e = material constant

τv = phase lag of thermal disp. gradient pi = pyroelectric constants

τT = phase lag of the temperature gradient φ = electrical potential

σij = components of the stress T = thermal temperature

T0 = reference temperature

for clarity, engineering notations are employed, and the terms partial derivative with respect to time or the cor-
responding Cartesian coordinate are denoted by a superimposed dot “.” or a subscript followed by a comma “,”, 
respectively. A superscript “e” denotes thermoelastic half-space parameters.

(7)Di ,i = 0,

(8)

Kij
∂

∂t

(
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p
∑

m=1

τmT
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(
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(

∇ · �ue
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,
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(
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− βeTeδij
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i, j, r = 1, 2, 3
)
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Formulation of the problem
As illustrated in Fig. 1, the orthotropic piezothermoelastic half-space under the reference of a triple-phase lag 
theory of higher order memory-dependent derivatives (HPS) ( x3 > 0 ) underlying a thermoelastic half-space (TS) 
( x3 < 0 ) are welded together. The thermoelastic plane wave propagates in the x1x3− plane, and the displacement 
vector for HPS and TS is represented by �u = (u1, 0, u3) and �ue = (ue1, 0, u

e
3) respectively.

Following Slaughter43, the governing equations for two-dimensional HPS medium are determined from 
Eqs. (3)–(8) as

where Kij = Kiδij , Kij = K∗
i δij , βij = βiδij , and i is not summed.

For convenience, the dimensionless quantities are taken as

Using the Eq. (16) in the set of Eqs. (10)–(11) and (12)–(15) with the removal of primes (′) takes the follow-
ing form

(12)c11u1,11 +c55u1,33 +(c13 + c55)u3,13 +(η31 + η15)φ,13 −β1T ,1 = ρü1,

(13)(c13 + c55)u1,13 c55u3,11 +c33u3,33 +η15φ,11 +η33φ,33 −β3T ,3 = ρü3,

(14)

∂

∂t

(

1+

p
∑
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τmT
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Dm
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)

(K1T ,11 +K3T ,33)+

(
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l
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τmv
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Dm
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τq
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(
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,

(15)(η15 + η31)u,13 +η15u3,13 +η33u3,33 −ε11φ,11 −ε33φ,33 +p3T ,3 = 0,

(16)

(
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ω 1
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(x1, x3),

(

u′1, u
′
3, u

e′

1 , u
e′

3
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(
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)

=
1
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√
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Figure 1.   Refraction and reflection of plane wave in TS and HPS.
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where d11 = c55
c11

 , d12 = c13+c55
c11

 , d13 = η31+η15
c11η31

β1T0 , d21 = c55
c55+c13

 , d22 = c33
c55+c13

 d23 = c11
c55+c13

 , d24 = η15β1T0
η31(c55+c13)

 , 

d25 =
η33β1T0

η31(c55+c13)
 , d26 = c11β3

(c55+c13)β1
 , d31 =

K∗
1 ρ

T0β
2
1
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K∗
3 ρ

T0β
2
1
 , d33 = K1ω1ρ

T0β
2
1

 , d34 = K3ω1ρ

T0β
2
1

 , d35 = β3
β1

 , d36 =
p3T0
η31

 , 
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c11ρCE

T0β
2
1

 d41 = η15
(η15+η31)

 , d42 = η33
(η15+η31)

 , d43 = ε11β1T0
η31(η15+η31)

 , d44 = ε33β1T0
η31(η15+η31)

 , αe
2 =

√

µe

ρe
d45 =

c11τ3
β1(η15+η31)

 , 

d51 =
K∗
e ρ

β1βeTe
0
 , d52 =

ρeρCe
Ec

2
1

β1βeTe
0

 , αe
1 =

√

�e+2µe

ρe
 , γ = ρβe

ρeβ1
.

Method (wave propagation analysis)
Taking plane wave form solution for HPS medium as

where, H , M, N , U are the amplitude vectors, q and c are the slowness parameter, and the apparent phase veloc-
ity, respectively.

Inserting Eq. (24) in a set of Eqs. (17)–(20) yields a homogenous system

where,
l11 = c − c3 , l12 = d11c

3 , l13 = d12c
2 , l14 = d13c

2 , l15 = ιc2

ω
 , l21 = d21 − d23c

2 , l22 = d22c
2 , l23 = d25c

2 , 
l24 =

ιd26 c
2

ω
 , l31 = d25c

2 , l32 = d36c
2 , l33 = A1d31

ιω2 + A2d33 −
d37c

2

ιω
 , l34 =

(

A2d34 −
ιA1d32

ω

)

c2 , l41 = d42c
2 , 

l42 = d44c
2 , l43 = ιc2d45

ω
 , A1 =

1+Ŵ1
1+Ŵ2

, A2 =
1+Ŵ3
1+Ŵ2

 , Ŵ1 =
p
∑

m=1

τmT
m! b

m−1Ŵ(τT , b) , Ŵ2 =
n
∑

m=1

τmq
m! b

m−1Ŵ
(

τq, b
)

 , 

Ŵ3 =
l
∑

m=1

τmv
m! b

m−1Ŵ(τv , b) , b = ιω

The coefficient matrix’s � determinant must be zero for the non-trivial solution, leading to a characteristic 
equation.

When Eq. (27) is solved using the MATLAB software, the roots are found to be organized in magnitude-wise 
decreasing order and are denoted as follows for convenience: qi (i = 1− 4) represents the roots of this equation 
with positive imaginary parts and qi (i = 5− 8) represents those with negative imaginary parts. The eigenvalue 
q4 corresponds to the component of the electric potential ( eP ) mode of wave propagation and qi (i = 1− 3) 
corresponds to the quasi P ( qP ) , quasi T ( qT ) , and quasi S ( qS ) propagating modes, respectively. The expres-
sion G1i (i = 1− 5) is provided in the Appendix.

The eigenvectors Hi , Mi , Ni , and Ui corresponding to each qi (i = 1− 8) can be written as

where
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and cf
(

�ij

)

qi
 denote the cofactor Gij corresponding to the eigenvalue qi . The corresponding amplitudes 

(Hi , Mi , Ni and Ui) decrease when the thermoelastic plane waves go through the HPS medium, depending on 
the frequency of these waves.

Following Achenbach44, the displacement components of the TS medium can be expressed in terms of the 
potential function φe and ψe by the relation

Using Eq. (30) in Eqs. (21)–(23), we get

where, α∗
1 =

αe1
c1

 , α∗
2 =

αe2
c1

 , a21 =
K∗
c

ρec21C
e  , a22 =

βeβ1T
e
0

ρρec21C
e
E
.

For thermoelastic plane harmonic wave propagating in TS medium establishing an angle θ0 with the x3− 
axis (see Fig. 1), we can take

where k(= ω/ c) is the complex wavenumber, Aφe , ATe , Aψe are the wave amplitudes constants.
Using Eq. (34) in Eqs. (31)–(33), we get

where S1 = a21 + α∗2
1 + a22γ , S2 = α∗2

1 a21.

Here r2e1 , r
2
e2

 corresponds to positive and negative signs, respectively. These roots indicate that two coupled 
longitudinal waves exist, namely, an elastic wave (P-wave) and a thermal wave (T-wave). r2e3 corresponds to 
transversal SV- wave.

Refraction and reflection coefficients
Amplitude ratios
Assuming that train of a thermoelastic plane wave (P or SV or T) striking at the interface via the TS medium 
form an angle θ0 with the x3− axis, causing three waves to be reflected in the TS medium and four waves to be 
transmitted in the HPS medium. The expression for the stress, electric displacement, mechanical displacements, 
electric potential, and temperature assumed in an HPS medium becomes

Boundary conditions
The possible boundary conditions, i.e., equality of distribution of normal stress, tangential stress, tangential dis-
placement, and normal displacement, along with the isothermal, insulated boundaries, and vanishing of electric 
displacements across an interface, x3 = 0 are as follows:

The full structures of the wave field made up of the incident and reflected wave in the TS medium meet the 
boundary conditions, are

(29)Wi =
Mi

Hi
, �i =

Ni

Hi
, �i =

Ui

Hi
,

(30)ue1 =
∂φe

∂x1
−

∂ψe

∂x3
, ue3 =

∂φe

∂x3
+

∂ψe

∂x1
.

(31)α∗2
1 ∇2φe − φ̈e − γTe = 0,

(32)α∗2
2 ∇2ψe − ψ̈e = 0,

(33)a21∇
2Te − T̈e − a22∇

2φ̈e = 0,

(34)
(

φe ,Te ,ψe
)

=
(

Aφe ,ATe ,Aψe

)

exp [ιk(−x1 sin θ0 − x3 cos θ0)+ ιωt]

(35)r2e1,2 =
S1 ±

√

S21 − 4S2

2
, r2e3 = α∗2

2 ,

(36)(σ33, σ31, D3) = ι ω

4
∑

i=1

(�1i , �2i , �7i)Hi exp
[

ι ω

(

−
x1

c
− q x3 + t

)]

,

(37)(u1, u3, φ, T) =

4
∑

i=1

(1, Wi , �i , �i)Hi exp
(

ιω

(

−
x1

c
− qi x3 + t

))

.

(38)

σ33 = σ e
33, σ31 = σ e

31, u1 = ue1, u3 = ue3, T = Te
,

[

K3

∂

∂t

(

1+

p
∑

m=1

τmT

m!
Dm
τT

)

+ K∗
3

(

1+

l
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m=1

τmv
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∂x3
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e

∂Te
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where ζj = ω2

r2ej
γ

(

r2ej − α∗2
1

)

 , j = 1, 2 and Ae
0 , B

e
0 , D

e
0 ( Ae

1 , B
e
1 , D

e
1 ) represent the coefficients of amplitudes of the 

incident (reflected) P-, T-, and SV- waves, respectively and
Be0, D

e
0 = 0 , for incidence of P-wave.

Ae
0, D

e
0 = 0 , for incidence of T-wave.

Ae
0, B

e
0 = 0 , for incidence of SV-wave.

Snell’s law is given as

where,

Using the set of Eqs. (36)–(43), we obtain a system of non-homogenous equations that may be expressed as

where

�1i = − c13
β1T0c

−
(

c33Wi
β1T0

+ η33
η31

�i

)

qi −
c11β3
ιωβ2

1T0
�i , �2i = − c55Wi

β1T0c
−

c55qi
β1T0

− η15�i
cη31

 , �3i = 1 , �4i = Wi , �5i = �i , 

�6i = −
[

K∗
3 (1+ τvŴ(τ , b))+ K3(1+ τTŴ(τ , b))ιω ω1

]

�iqi

�15 =
CT ζ1+k21ρ

e
(

αe21 −2αe22 sin2 θ1
)

ιωβ1T0
 , �16 =

CT ζ2+k22ρ
e
(

αe21 −2αe22 sin2 θ2
)

ιωβ1T0
 , CT = c11β

e

β1
.

�17 = −
k23ρ

eαe21 sin 2θ3
ιωβ1T0

 , �25 = −
k21α

e2
1 ρe sin 2θ1
ιωβ1T0

 , �26 = −
k22α

e2
2 ρe sin 2θ2
ιωβ1T0

 , �27 = −
k23α

e2
2 ρe cos 2θ3
ιωβ1T0

 , �35 = ιk1 sin θ1 , 

�36 = ιk2 sin θ2 , �37 = ιk3 cos θ3 , �45 = −ιk1 cos θ1,
�46 = −ιk2 cos θ2 ,  �47 = ιk3 sin θ3 ,  �55 = −ζ1 ,  �56 = −ζ2 ,  �65 =

−ζ1k1K
∗
e cos θ1
ω

�66 =
−ζ2k2 cos θ2K

∗
e

ω
 , 

Xi =
Hi
A∗ (i = 1− 4) , X5 =

Ae
1

A∗ , X6 =
Be1
A∗ , X7 =

De
1

A∗.

•	 For incidence P wave: A∗ = Ae
0 , Q1 = −�15 , Q2 = �25 , Q3 = −�35 , Q4 = �45 , Q5 = −�55 , Q6 = �65.

•	 For incidence T wave: A∗ = Be0 , Q1 = −�16 , Q2 = �26 , Q3 = −�36 , Q4 = �46 , Q5 = −�56 , Q6 = �66.
•	 For incidence SV wave: A∗ = De

0 , Q1 = �17 , Q2 = −�27 , Q3 = �37 , Q4 = −�47 , Q5 = 0 , Q6 = 0.

Energy ratios
The average energy flux of the incident, refracted, and reflected waves could be used to figure out the energy 
distribution between refracted and reflected waves at the interface x3 = 0 , across a unit area of the surface ele-
ment. According to Kumar and Sharma45, the normal acoustic flux in an HPS material is represented by as follows

and for the incident and reflected waves for the elastic phase are

The average energy fluxes of the incident waves are as follows

(39)
φe = Ae

0 exp {ik1(−x1 sin θ0 − x3 cos θ0)+ ιωt} + Ae
1 exp {ik1(−x1 sin θ1 + x3 cos θ1)+ ιωt}
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(40)
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e
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e
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e
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,
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The average energy fluxes of the reflected waves are as follows

The average energy fluxes of the refracted waves are as follows

The energy ratios of the reflected and refracted waves are defined as.
(i) for incident P wave

(ii) for incident T wave

(iii) for incident SV  wave

The interaction energy ratios (interaction between different fields and displacement corresponding to 
refracted waves) are.

Est =
�Pst �
�PeIP�

 for an incident of P wave, Est = �Pst �
�PeIT�

 for an incident of T wave, and Est = �Pst �
�PeIS�

 for an incident of 
SV  wave.

Where

The energy is conserved if

where Eint =
4
∑

s,t=1,s �=t

Est is the resultant interaction energy between the refracted waves.

Discussion and numerical findings
The energy ratios for the incidence longitudinal P wave, thermal T wave, or transversal SV wave at the interface 
of TS/HPS are computed and plotted graphically with the help of MatLab software for a particular model of TS 
medium (magnesium) and HPS medium (cadmium selenide). The material parameters of cadmium selenide and 
magnesium are borrowed from Mondal and Othman46 and Kumar and Sarthi47, as shown in Table 1.

The most notable benefit of this extended model is that it is based on heat transfer with MDD of order ( n, p, 
and l  ), and its flexibility in applications due to the free choice of the delay time factor and kernel function as 
stated earlier in Eqs. (1) and (2) Chiriţă et al.38 show that n ≥ 5 or p ≥ 5 leads to an unstable system and cannot 
accurately describe an actual situation. Zampoli48 states that the expansion orders must be less than or equal to 
4 for the accompanying models compatible with thermodynamically provided that the correct phase lag time 
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Table 1.   Values of the materials constants.

Symbol Value Symbol Value

c11 74.1× 109 Nm−2 T0 298 K

c12 45.2× 109 Nm−2 β1 6.21× 105 Nm−2K−1

c13 39.3× 109 Nm−2 β3 5.51× 105 Nm−2K−1

c33 83.6× 109 Nm−2 η13 −0.160 Cm−2

c55 13.2× 109 Nm−2 η15 −0.138 Cm−2

ε11 8.26× 10−11 C2N−1m−2 η33 0.347 Cm−2

ε33 9.03× 10−11 C2N−1m−2 Ce
E 1.04× 103 Jkg−1 deg−1

p3 −2.9× 10−6 Cm−2K−1 �
e 2.696× 1010 Nm−2

K1, K3 9Wm−1k−1 µe 1.639× 1010 Nm−2

K∗
1 , K

∗
3 7 Wm−1k−1s−1 ρe 1.74× 103 kgm−3

K∗
e Ce

E(�+ 2µ)
/

4 βe 2.68× 106 Nm−2 deg−1

ρ 5504 kgm−3 ω 100 Hz
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Figure 2.   Variation of energy ratio ERP with θ0.
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Figure 3.   Variation of energy ratio ERT with θ0.
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assumptions are made. We choose the kernel function Ki(t − ζ ) = 1− (t − ζ )
/

τ
i
; i = q, T , v and phase lags 

τq = 0.05 s , τT = 0.03s , τv = 0.02s such that they fulfill the conditions established by Quintanilla and Racke49. 
To study the impact of higher-order MDD ( n, p, and l  ) on the variations of the energy ratios, we developed the 
three different models according to three distinct choices of n,p and l  such that n = 4 , p = 3 , l = 3 ; n = 3 , p = 2 , 
l = 2 ; and n = p = l = 1 represented by solid red, green, and blue lines respectively as shown in the Figs. 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25. ERP , ERT , and ERS stand for energy ratios cor-
responding to reflected P, T, and SV waves, respectively, and ESi ; i = 1− 4 stand for refracted qP, qT, qS, and eP 
waves, respectively. The overall interaction energy ratio between the various refracted waves is denoted by the Eint.

For incident P wave
Figure 2 depicts that for the model n = p = l = 1 , the magnitude of ERP is first decreases gradually with an 
increased angle of incidence 0◦ ≤ θ0 ≤ 30◦ . After a further increase in the angle of incidence 30◦ ≤ θ0 ≤ 90◦ , 
the magnitude of ERP increases monotonically. But in the n = 4 , p = 3 , l = 3 and n = 3 , p = 2 , l = 2 models, 
we noticed that magnitude of ERP increases with θ0 , but the increment is slow at near the grazing and normal 
incidence. P wave reflects more in the n = 3 , p = 2 , l = 2 model than the other two considered models.

In Fig. 3, we observed that the magnitude of ERT increases with θ0 go to maximum and then decreases 
approaches to zero near the grazing incidence and follow the parabolic path for the n = 4 , p = 3 , l = 3 and 
n = 3 , p = 2 , l = 2 models. On the other hand, for the n = p = l = 1 model, the magnitude of ERT approaches 
zero in a complete range of considered θ0 but near the grazing incidence magnitude of ERT increases rapidly.
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Figure 4.   Variation of energy ratio ERS with θ0.
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Figure 6.   Variation of energy ratio ES2 with θ0.
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Figure 7.   Variation of energy ratio ES3 with θ0.

0 10 20 30 40 50 60 70 80 90

Angle of incidence( 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

ES
4

n=1, p=1, l=1
n=3, p=2, l=2
n=4, p=3, l=3

Figure 8.   Variation of energy ratio ES4 with θ0.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17170  | https://doi.org/10.1038/s41598-023-44339-5

www.nature.com/scientificreports/

0 10 20 30 40 50 60 70 80 90

Angle of incidence( 0)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

E i
nt

n=1, p=1, l=1
n=3, p=2, l=2
n=4, p=3, l=3

Figure 9.   Variation of energy ratio Eint with θ0.
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Figure 10.   Variation of energy ratio ERP with θ0.
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Figure 11.   Variation of energy ratio ERT with θ0.
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Figure 4 shows that the magnitude of ERS first increase with the angle of incidence goes to maximum and 
then decreases with a further increase of angle of incidence. The magnitude of reflected SV waves is dominated 
in the n = p = l = 1 model following the n = 4 , p = 3 , l = 3 and n = 3 , p = 2 , l = 2 models. In all considered 
models, fewer SV waves are reflected near the normal and grazing incidence.

Figures 5, 6, 7 and 8 reveal that the transmitted wave modes, namely, the qS mode, propagate more easily 
in a piezothermoelastic medium than the other modes. In contrast, qP mode is significantly less excited in the 
piezothermoelastic medium. Except for the qS mode, all transmitted modes are not excited near the normal 
incidence. The qT, qS, and eP wave modes are more excited for the n = p = l = 1 model compared to two other 
considered models in the complete range of angle of incidence. In contrast, initially, the qP wave mode is more 
enthusiastic in the n = 3 , p = 2 , l = 2 model but after θ0 > 58◦ the n = p = l = 1 model dominates over the 
other two models.

From Fig. 9, we noticed that the Eint increases with increases angle of incidence up to θ0 = 21◦ after that, 
critical angle interaction energy ratios become positive to negative, and with further increases with angle of 
incidence, the interaction energy decreases, and at near the grazing incidence, interaction energy again increases.

For incident T wave
In all three models taken into consideration, Fig. 10 demonstrates that the magnitude of ERP initial rises grows 
monotonically to a maximum and subsequently declines to a minimum, following a parabolic path with a ris-
ing angle of incidence. P waves reflected more readily in the n = 4 , p = 3 , l = 3 and n = 3 , p = 2 , l = 2 models 
than the n = p = l = 1 model.
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Figure 12.   Variation of energy ratio ERS with θ0.

0 10 20 30 40 50 60 70 80 90

Angle of incidence( 0)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ES
1

10-3

n=1, p=1, l=1
n=3, p=2, l=2
n=4, p=3, l=3

0 20 40 60 80
0

1

2

10-4

Figure 13.   Variation of energy ratio ES1 with θ0.
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Figure 14.   Variation of energy ratio ES2 with θ0.
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Figure 15.   Variation of energy ratio ES3 with θ0.
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Figure 16.   Variation of energy ratio ES4 with θ0.
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Figure 17.   Variation of energy ratio Eint with θ0.
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Figure 18.   Variation of energy ratio ERP with θ0.
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Figure 19.   Variation of energy ratio ERT with θ0.
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Figure 20.   Variation of energy ratio ERS with θ0.

0 10 20 30 40 50 60 70 80 90

Angle of incidence( 0)

0

0.002

0.004

0.006

0.008

0.01

0.012

ES
1

n=1, p=1, l=1
n=3, p=2, l=2
n=4, p=3, l=3

Figure 21.   Variation of energy ratio ES1 with θ0.
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Figure 22.   Variation of energy ratio ES2 with θ0.
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Figure 23.   Variation of energy ratio ES3 with θ0.
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Figure 24.   Variation of energy ratio ES4 with θ0.
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Figure 25.   Variation of energy ratio Eint with θ0.
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Figure 11 shows that in all three considered models, the magnitude of ERT first monotonically falls approaches 
zero, with an angle of incidence 0◦ ≤ θ0 ≤ 45◦ , then monotonically grows and reaches unity with the angle of 
incidence 45◦ ≤ θ0 ≤ 90◦ . Higher order MDD parameters n , p , l  do not seem to have any discernible effects. 
Figure 12 demonstrates that the magnitude of ERS the whole range of angle of incidence follows the almost 
inverted pattern of Fig. 11.

Figures 13 and 14 reveal that as the angle of incidence increases, the magnitude of ES1 and ES2 increases 
gradually for the n = p = l = 1 model while for the n = 4 , p = 3 , l = 3 and n = 3 , p = 2 , l = 2 models follow 
the parabolic path whereas around grazing incidence, the magnitude of ES1 and ES2 climb extremely fast in all 
three considered models. The sub-indent figure of Fig. 13 depicts the magnified image of the overlapping curves 
to observe the variation in the microscale level. For the n = p = l = 1 model, the transmitted wave modes qP 
and qT propagate quickly near the grazing incidence compared to the other two models. While in the remain-
ing range of angle of incidence, the magnitude of qP mode in the n = 3 , p = 2 , l = 2 model dominated over the 
n = 4 , p = 3 , l = 3 model and reversed behavior is observed in the qT mode.

The qS and eP wave modes transfer rapidly in the piezothermoelastic medium at the mid-angle of incidence, 
as shown in Figs. 15 and 16. On the other hand, qS and eP modes are less excited near the grazing incidence 
and are not excited near the normal incidence for all three considered models. The magnitude of qS wave mode 
dominates for the n = p = l = 1 model, followed by the n = 4 , p = 3 , l = 3 and n = 3 p = 2 , l = 2 models. In 
contrast, the magnitude of eP wave mode dominates for the n = p = l = 1 model, followed by the n = 4 , p = 3 , 
l = 3 and n = 3 , p = 2 , l = 2 models.

Figure 17 shows that the incidence wave’s interaction energy ratio initially increases to the maximum and 
then decreases with the angle of incidence. For the n = 4 , p = 3 , l = 3 model, the magnitude of Eint most minor 
compared to the other two models. In the n = 3 , p = 2 , l = 2 model near the grazing incidence, the magnitude 
of Eint sharply increases, while in the other two models, it slightly decreases.

For incident SV wave
Figures 18, 19 and 20 reveal that reflected energy ratios |ERP | and |ERT | in the range of angle of incidence 
00 ≤ θ0 ≤ 580 follows the two peaks in contrast |ERS| trend almost linear and follow the two peaks only for the 
n = 3 , p = 2 , l = 2 model. Figures 18 and 19 follow nearly the same pattern, but their magnitudes differ. After 
the θ0 = 58◦ , no significant impact of higher-order MDD parameters is observed. For the n = 3 , p = 2 , l = 2 
model, the magnitude of reflected energy ratios is maximum, followed by n = p = l = 1 and n = 4 , p = 3, l = 3 
models. But at near grazing incidence, the qT mode is no longer excited. After θ0 = 58◦ all the curves overlap, 
the impact of higher-order parameters has disappeared.

Figures 21, 22, 23 and 24 depict that the magnitude of all transmitted wave modes corresponding to the 
n = p = l = 1 model lies between the n = 4 , p = 3 , l = 3 and n = 3 , p = 2 , l = 2 models. The qP and qS 
wave modes quickly propagate in piezothermoelastic medium for n = 3 , p = 2 , l = 2 model as compared to 
n = p = l = 1 and n = 4 , p = 3, l = 3 models. On the other hand, reverse behavior is observed for the propaga-
tion of the qT wave mode. The qS waves have a critical angle θ0 = 37◦ . After reaching this critical angle, the qS 
modes are no longer excited, and the impact of higher-order MDD parameters are disappeared since all curves 
overlap. As shown in Fig. 24, the electric potential wave does not propagate in a piezothermoelastic material for 
all investigated models except for the range of angle of incidence 36◦ ≤ θ0 ≤ 56◦ . The eP wave modes are highly 
stimulated at the angle of incidence 36◦ ≤ θ0 ≤ 45◦.

Figure 25 illustrates the oscillating and almost reverse pattern seen in Figs. 18, 19, 20 and 21 for interaction 
energy ratios. The interaction energy changes from negative to positive at an angle of incidence θ0 = 40◦ . After 
θ0 ≥ 58◦ , all four models’ curves coincide, as discussed in Figs. 18, 19, 20, 21 and 22. In the case of incidence 
SV wave as contrary to incidence P or T wave, for all energy ratios, a critical angle θ0 = 58◦ is observed in all 
considered higher-order MDD models. The identification of a critical angle for the incidence of SV waves agrees 
with the study conducted by Barak et al.17,20.

Conclusion
The thermoelastic plane wave phenomena at an interface between TS and HPS are examined in this study, and 
the effect of higher-order time differential parameters on energy ratios is studied. The energy ratios of various 
refracted and reflected waves are calculated using the amplitude ratios for incident P, T, or SV waves. We built 
three distinct models to investigate the effect of higher-order MDD ( n , p , l  ) on the variation of the energy ratios 
according to three different choices of n , p , l such that n = 4 , p = 3 , l = 3 ; n = 3 , p = 2 , l = 2 ; and n = p = l = 1 . 
Following are some of the findings gleaned from this investigation:

•	 The energy ratios are influenced by factors such as the characteristics of the incident wave, higher-order 
MDD parameters, the angle of incidence, and the material’s physical properties. The nature of this reliance 
varies for various waves, as seen in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25.

•	 For incidence P wave, qS wave mode is highly excited. It easily propagates in the piezothermoelastic medium 
compared to other transmitted waves, and the magnitude of the reflected P wave is maximum compared 
to other T or SV waves. The magnitude of all energy ratios for n = 4 , p = 3 , l = 3 model lies between the 
n = p = l = 1 and n = 3 , p = 2 , l = 2 models.

•	 For incidence T wave, qP and qT wave modes propagate in piezothermoelastic medium only near the grazing 
incidence. In contrast, qS and eP wave modes propagate in a mid-angle range of incidence. The negligible 
impact of higher-order MDD parameters is observed in reflected energy ratios of T and SV waves. In contrast, 
in other energy ratios, the effect varies with the angle of incidence.
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•	 For incidence SV wave, near the normal incidence qS wave mode is highly excited and easily propagates 
in piezothermoelastic medium compared to other transmitted waves. After a particular angle θ0 = 580 , all 
energy ratios are independent of higher-order MDD parameters, i.e., all three curves overlap.

•	 It is discovered that, in all models considered, the total of the energy ratios is almost equal to one at each 
angle of incidence 0◦ ≤ θ0 ≤ 90◦ . As a result, each model supports the law of energy balance.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information file].
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