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Memorability‑based 
multimedia analytics for robotic 
interestingness prediction 
system using trimmed Q‑learning 
algorithm
Hasnain Ali 1*, Syed Omer Gilani 2, Asim Waris 3, Umer Hameed Shah 4*, 
Muazzam A. Khan Khattak 5, Muhammad Jawad Khan 1 & Namra Afzal 6

Mobile robots are increasingly employed in today’s environment. Perceiving the environment to 
perform a task plays a major role in the robots. The service robots are wisely employed in the fully (or) 
partially known user’s environment. The exploration and exploitation of the unknown environment 
is a tedious task. This paper introduces a novel Trimmed Q-learning algorithm to predict interesting 
scenes via efficient memorability-oriented robotic behavioral scene activity training. The training 
process involves three stages: online learning and short-term and long-term learning modules. 
It is helpful for autonomous exploration and making wiser decisions about the environment. A 
simplified three-stage learning framework is introduced to train and predict interesting scenes using 
memorability. A proficient visual memory schema (VMS) is designed to tune the learning parameters. 
A role-based profile arrangement is made to explore the unknown environment for a long-term 
learning process. The online and short-term learning frameworks are designed using a novel Trimmed 
Q-learning algorithm. The underestimated bias in robotic actions must be minimized by introducing 
a refined set of practical candidate actions. Finally, the recalling ability of each learning module is 
estimated to predict the interesting scenes. Experiments conducted on public datasets, SubT, and 
SUN databases demonstrate the proposed technique’s efficacy. The proposed framework has yielded 
better memorability scores in short-term and online learning at 72.84% and in long-term learning at 
68.63%.

The simulation of the unknown environment is a tedious task in mobile robotics1. The role of route planning 
and executing the robots on the trajectories is done using a map model. This is known as ‘exploration.’ Design-
ing an intelligent exploration model is one of the developing real-world robotic applications2. The human brain 
can effortlessly perceive objects in the visual environment. It takes only a few milliseconds3 to differentiate the 
objects presented in the environment. Indeed, training artificial systems that equalize human-level performance 
to differentiate the objects in an image is still challenging4–7. Performing the navigation task is a challenging task 
because of the available information. The representation of the environment is required to perform navigation 
tasks. To design an autonomous system, the representation of the information related to the initial and intended 
position is also significant.

Scene recognition (SR) is a rapidly growing domain that received much attention in recent past years. It is 
a tedious task that looks for better methods to classify the objects at an appropriate time. It is one of the vital 
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processes for the design of robots’ navigation and exploration8. The recognition of interesting scenes plays a vital 
role in the development of intelligent exploration. It is also one of the fundamental abilities of mobile robots. 
It helps to make better decisions for the robot navigation task. Consider finding the door with a hole in the 
wall, which could affect forecasting the next desired point. Regardless of it, the existing methods are difficult in 
unknown environments. In this case, the robots find engaging scenes and some repetitive scenes that impact the 
robot exploration process. There is a chance of losing interest in the interesting scenes. The current approaches, 
such as interestingness detection, saliency detection, anomaly detection, novelty detection, and meaningfulness 
detection, can’t learn the scenes in both offline and online schemes9.

To gain a complete understanding of images, the precise estimation and analysis of the locations and concepts 
of the scenes in each image is an important task. This is referred to as ‘object detection’ which provides valuable 
information to perceive the semantic concepts of images. The design of learning systems has a great impact on 
object detection techniques. It is a tedious and time-consuming due to issues such as deviation in viewpoints, 
poses, occlusion, and lighting conditions. It receives much attention to determine the objects presented in the 
given image and their relevant classes. Therefore, the processes involved in object detection are10:

(a)	 Selecting the informative region: The presence of different objects in an image will have different aspect 
ratios. The analysis of multi-scale sliding windows helps to perceive the whole image. However, it has 
many pitfalls in locating the exact position of an object (or) scene. The chance of irrelevant regions may be 
analyzed, which leads to computationally expensive.

(b)	 Extracting the significant features: The extraction of visual features facilitates the semantic and robust 
representation. The diverse nature of images, like faded appearance, illumination, and backgrounds, will 
deteriorate the design of the feature descriptor.

(c)	 Classification: Finally, a classifier is required to differentiate the objects from their categories. This repre-
sentation makes it more hierarchical, semantic, and informative for predictions.

The main contributions of the paper are:

(a)	 To address the unknown environment, a novel Trimmed Q-learning algorithm that leverages the hyper-
parameters of short-term, long-term, and online learning modules.

(b)	 Inspired by the lateral placement (LP) strategy, the interesting scenes are trained via candidate roles.
(c)	 A Novel Trimmed Q-learning algorithm is designed to improve maximizing the expected action value. 

Long-term, short-term, and online learning training must be efficient regarding scene recall ability.

The paper is organized as follows:

Section “Related work” presents the ‘Related surveys’ that discuss the scope of the existing studies.
Section “Proposed framework” presents the ‘Proposed framework’ that discusses the working module of the 
memorability-based interestingness prediction system.
Section “Experimental results and discussion” presents the ‘Experimental results and discussion’ that portrays 
the evaluation of the designed framework.
Section “Conclusion” presents the ‘Conclusion’ that discusses the study’s findings.

Related work
The concept of vision-based robot exploration has been a vital goal in the robotics research field. It remains a 
challenging task for robots equipped with vision sensors. The robotic navigation is adjourned using model-based 
and appearance-based approaches to detect interesting scenes. Model-based approaches portray the derivation 
of knowledge using the 3D model. With the help of sensor data, the localization of the scene is estimated using 
global and local models. The features such as lines11, planes12, and points13. In the case of unknown model explo-
ration, the learning step is involved. The human operator controls the robot’s actions, wherein the reconstruction 
of that performance is handled by hierarchical bundle adjustment. In the line case, the odometry14 is integrated 
with the visual tracking system to derive the feature coordinates. Several studies have defined the concept of 
an autonomous mapping model using Simultaneous Location and Mapping (SLAM). These approaches help 
to discover the new region but do not achieve the intended location. Finding the present position is a tedious 
task. In15, at the learning step, the navigation is estimated from the combination of different features obtained 
from the image trajectories mapping module. The analogy of visual complexity has been studied using Shannon 
entropy16. The analysis of complex images includes more redundant information by estimating the entropy. The 
entropy-based measures are employed to operationalize the visual clutter17. Relied on the entropy value, the 
images are cluttered and disorganized.

The appearance-based approach is referred to as the topological approach. It does not take the need for 
a 3D model. It performs on the available sensor space and is represented by a topological graph. Herein, the 
node denotes the description of the current position, and the link represents the connection between nodes for 
navigation purposes. The images are acquired and analyzed in the learning step. The concept of localization is 
employed to compute the likelihood score between ground truth and different images. The global descriptors18,19 
can also be used for estimating the likelihood. Similarly, color histograms20 and image gradients21,22 were also 
used to analyze the entire image. Pertaining to it, the localization of robots using local descriptors is studied 
using photometric invariants23 and SIFT points24. Several techniques have been introduced to assist mobile 
robots during navigation25. A unique motion feature is selected from each image26. Robots perform the next 
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navigation step based on the closest view of an image. However, it could not handle the deviation when it’s been 
away from the planned path. The robots are converged using a visual servings loop27 that could measure the 
error and achieve the intended positions. Sometimes, the convergence towards the intermediary position fails 
to reach the intended position.

The role of the interestingness measure was introduced in later years. It is a kind of subjective measure that 
looks for annotated features. To characterize the judgments, the association between human visual interesting-
ness and image features is studied28. It is keenly observed in the supervised learning methods specific to train-
ing modules. In29, the three features, such as composition, content, and illumination are used to measure the 
interestingness of the image. In30, the social media platforms such as YouTube and Flickr are used to evaluate 
the interestingness from image to video using visual features. The main cause of the interestingness measure is 
evolving as a unified learning model. It is made to recognize the outliers from human annotation31,32. Deep learn-
ing has been adopted for forecasting the interestingness measures. In33, a modulated support vector regression is 
introduced on the animated GIF inputs. Then, a customized CNN is designed to recognize the salient and non-
salient sliding window frames using video inputs. A combination of two deep-ranking networks34 was studied 
to enhance the performance of the interestingness measure. Similarly, in35, the CNN and LSTM are combined 
to extract the learning features for media inputs.

The human annotation used for training is computationally expensive36. Concurrently, it is studied in unsu-
pervised learning modules37. The density ratio algorithm with the HOG features38 is studied. However, it is not 
suitable for adaptive constraints. In39, the autoencoder technique is employed as an unsupervised learning step 
for better feature extraction. In some scenarios, an autoencoder is employed to find the regularities in long-term 
videos40. The dropout layer in the autoencoder is analyzed under pixel-wise saliency detection41. It is extended 
using a spatiotemporal autoencoder42 that extracts spatial and temporal features. Many researchers have predicted 
visual complexity using information theoretics under different human perceptions43. Multiple complexity scores 
are evaluated for different perceptions of the image. Though it has given better accuracy, the online learning 
process is still low. The most recent work focuses on developing neural models of perceptual image complexity, 
finding that visual complexity information arises within the feature maps of deep convolutional networks44 and, 
similarly, that multiple regions across the brain are involved with the representation of the complexity inherent 
in naturalistic stimuli45. In46, Rewards based learning process was focused to innovate in episodic memory. It was 
explored on the “couch-potato” issues of prior work. The deployed agents has established the instant self-actions. 
It was tested in visually rich 3D environments in ViZDoom, DMLab and MuJoCo. A learning adaptive based 
imagination approach47 was studied to enhance the reliability of the formed dynamics models. It was explored 
on the latent space and the intrinsic rewards of the learning process. Dual system based motor learning model48 
was studied to arbitrate the meta-controller between model based and model-free decisions. In specific to, the 
reliability of the learned models was explored from the intrinsic feedback signals. The results show that our 
approach outperforms the compared methods and learns near-optimal grasping policies in dense- and sparse-
reward environments. A general end-to-end diversity-augmented intrinsic motivation for deep reinforcement 
learning which encourages the agent to explore new states and automatically provides denser rewards was 
studied49. It was explored in MuJoCo, the approach improves on prior techniques for tasks using the standard 
reward setting, and achieves the state-of-the-art performance on 12 out of 15 tasks containing delayed rewards. 
Plan2Explore, a self-supervised reinforcement learning agent50 that tackles both these challenges through a 
new approach to self-supervised exploration and fast adaptation to new tasks, which need not be known dur-
ing exploration.From the conducted survey, the concept of Reinforcement Learning (RL) in interesting scene 
measure has been studied to provide a set of sophisticated tools for learning robotic controls. It works on the 
dynamic variables of state and actions in robotic field.

Proposed framework
The derivation of required information from a scene is not limited to the practical environment. Depending on 
the application, the prediction of scenes from an image might vary, i.e. prediction of all presented objects in a 
scene, prediction of organized objects, prediction of similar objects, prediction of interesting scenes in an object, 
and so on. These complex information systems are maintained by visual queries, called as visual systems. If the 
represented objects are not linked to the scene, then understanding the scene with visual memory will be helpful. 
The design of complex visual queries assists in binding the objects represented under retainable memory. The 
objects are learned from both online and offline modes. Online learning schemes are quite low in dealing with 
complex visual queries compared to offline schemes.

System model
Consider a set of images representing the different scenes. It is presented in the matrix, I = [s1, s2, s3, s4 . . . .sc] ∈ 
RF×T . The required visual memory schema (VMS) is represented as M = [m1,m2,m3,m4 . . . .mc] ∈ RT , where 
vi ∈ RF and F is the dimension of features; R is the real number field; T is the set of training videos and vi is the 
set of variables. The objects and the regions of the scene are presented in visual schemas that include physical and 
spatial properties. Specifically, the different regions of a scene with required information are associated, sorted, 
and encoded into a visual memory. It is then retrieved with the efficient memory schema. However, the VMS 
can bring deviated interference between observed and predicted information. Each image’s visual region map is 
formulated and remembered for further use. It encodes semantic knowledge and episodic memory of an image. 
Therefore, the VMS may correspond to true and false image memorability. Thus, updating the VMSs according 
to the online and offline modes is presented.
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Feature extraction
The three main features, annotation, object, and scene of an image are employed to build an efficient VMS. As 
presented in a dataset, the human annotation varies; thus, normal and difficult annotations are used.

Long‑term learning
The chance that interesting scenes and redundant scenes might become uninteresting scenes during the long-term 
learning process. Role-based lateral placement (RBLP) is a novel behaviour-based and unsupervised method used 
in this study. It performs to identify the intra- image associations. The different scenes of an image are communi-
cated over time which are arranged into a learnable set of roles. Once after extracting the features, these are fed 
into the LP process of the RBLP technique. Lateral placement (LP) is the closest lateral position of a robot from 
the edge of the pavement when the robot is in motion. A reference line is maintained to eliminate the collapse of 
the robot during motion. The performance time of each robot is captured from the video frames. Based on that, 
the distance and speed of the robot are estimated. The estimated object attributes from a frame are considered for 
defining the candidate roles. The design of role-based learning models relies on the subject of the input frame.

Let’s consider that the ground truth role of each video is unknown and inferred from the connection between 
annotation and scene attributes. A general system classification method based on the interesting scenes labelled 
as ‘normal and difficult’ is used for defining the functional roles. Each video is labelled as ‘normal’ dealing with a 
single subject of interesting scenes and ‘difficult’ dealing with multiple subjects of interesting scenes over a period 
of time. These two labels summarize how a particular video acts as normal and difficult. A video belonging to 
the same group is considered to have the same role. In some scenarios, the roles are not easily defined due to the 
descriptive labels. Relying on the external databases, the quality and the count of groups will vary, which might 
have two different roles with different subjects.

(A)	 Creating a ‘normal’ profile: To create a normal profile, a data source is maintained to record the linked 
information involving the frame. Relevant data attributes and scene attributes are used.

(B)	 Creating a ‘difficult’ profile: To create a difficult profile, a source of data is communicated with the inter-
associated frames gathered.

(C)	 Recognizing the roles: To begin this, all frames are observed over some time. Depending on the LP moves, 
each video is profiled using the above methods. Similar profiles are grouped and termed as ‘roles’.

Short‑term learning
Initially, the mission of the robot system is started with uninteresting scenes. The set of interesting objects must 
be studied in the short term to learn the interesting scenes. Henceforth, a supervised object detector is employed 
in the prior unsupervised model. It is trained in the incremental process to learn in a stipulated period. Hence, a 
novel Trimmed_Q-learning algorithm is proposed. Q-learning is a kind of reinforcement learning that eliminates 
the robot’s computational effort and increases its abilities. Since it’s behaviour-based, an improvement is made 
using reward agents and requires little supervision. The Q-learning algorithm uses Q-tables, which reduces the 
longer training time. The function approximations of the Q-learning are devised in this study. The proposed 
Trimmed_Q-learning technique combines the baselines of traditional Q-learning with an improvement in max-
imising the expected action value. In short-term learning, the underestimated bias in robotic actions must be 
minimized by introducing a refined set of practical candidate actions. It includes two sets: a set of fitted candi-
dates’ actions with high action values and a set of estimators.

Consider a robotic video interacting with an environment ℇ. The state s of a robot is a high-dimensional 
vector including s € S, where S is the set of available states. According to the environment, the robot takes the 
actions a € A = {a1, a2 …an}, n € N, Number of possible actions. The state transition probability distribution of a 
robot with an environment is expressed as:

Reward agent R is expressed as:

The agent gains a new reward information rt for a given time step t and the present state st ϵ S. Then, a new 
state st+1 ǫ S will be generated for the current action at ǫA . Therefore, the intention of the agent is to maximize 
the aggregated rewards by ensuring the fittest policy π : States × ActionA → [0, 1] . In the conventional Markov 
Decision Process (MDP), the functional value for an action is presented as:

The fittest policy is obtained by equalizing the Bellman Optimality (BO) constraints which are expressed as:

To approximate the random variables for the short-term learning process, an optimal functional value for an 
action Q∗(s, a) will iteratively increase. Thus, the updated action value is expressed as:

(1)Prob = S × A× S → Robot .

(2)R : S × A → Robot;With a discount factor γ ǫ[0, 1]

(3)Qpolicyπ (s, a) = Expectpolicyπ

[

∑∞

t=0
γ t rt

...s0 = S; a0 = A

]

.

(4)Q∗∗(s, a) = Expectπ∗∗ ∼ Prob

(

γ
...s, a

)

[RewardR(s, a)+maxQ∗∗
a′ǫA

(

s
′, a′

)

.
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where the target value is estimated as:

The trimmed_Q-Learning relives the overestimation bias in frame parameters by maintaining two Q-func-
tions, QP and QU. One of the Q-learning functions is randomly updated with the target values. It is expressed as:

The interesting scenes are trimmed by maximum action value from one of the Q-learnings, which is updated 
and expressed as:

Finally, the maximum function value is fitted according to the short-term learning parameters. Furthermore, 
the reward function ( RewardR(s, a) ) is formulated from the expected reward and the observed reward which is 
obtained from the optimal value of the next state. All reward functions are considered as bounded. The behaviors 
such as up, down, top and bottom robotic motions are used to estimate the reward function.

Online learning
Online learning looks for an update within a stipulated period of time. Hence, it combines with the short-term 
learning module. It demands continuous action control, and so an action-critic framework is formulated. An 
actor-network ϑ(s, θ) and two critic-networks, Q(s, a| θ 1) and Q(s, a| θ 2). According to the robotic learning 
environment, the critic networks are updated using the formula.

The target value targety
OnlinetrimQ
t  is defined as:

where ϕ− and θ−k  are the online hyperparameters of ϕ and θk.
Finally, the fittest policy for an actor µ(s;ϕ) is updated as follows:

The trimming operation removes the underestimation issue during the parameters learning process.

Memorability‑based interesting scene prediction
The interesting scene prediction comes from the proper training process as shown in Fig. 1. Hence, the count of 
candidate action sets is vital in predicting the interesting scenes. The training process of long-term, short-term 
and online learning must be efficient regarding scene recall ability. In the reinforcement learning module, the 
agent looks for a good set of candidate actions C that speeds up the target region’s process. Since the robot’s 

(5)Q
(

st , at
)

→ Present
(

Q
(

st , at
))

+ ∝

(

targety
Q
t − Q

(
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)

)

,
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Q
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(
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)

.
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Q′

t = rt + γQU (st+1, arg
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(
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)

.
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)
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)
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k
)
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t
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]

.
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{Q
(
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)
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[
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(
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(
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)

.

Figure 1.   Proposed workflow.
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actions are continuous and discrete by nature, the short-term ( targetytrimQ
t  ) and online learning ( targety

OnlinetrimQ
t ) 

estimators are combined.
In the Q-tables, the Q-function preserves QP and QU. The learning process’s actions occur on those Q-func-

tions and the experience. Depending on the experience, the Q-functions are updated. Pertaining to it, the QP 
is updated as:

For QP, the maximum action value ac
* is estimated from ℵC at state s′. Then, it’s updated as:

The actions QP and QU are explored via a greedy exploration strategy. It balances the overestimation and 
underestimation bias. At last, it converges to the fittest policy under finite MDP constraints.

Experimental results and discussion
The Subterranean SubT dataset51 is employed for the experimental setup and simulation purposes. The dataset 
is collected by the team of DARPA communities that assists the robots to intelligently explore and exploit in the 
subterranean environment. This dataset poses many challenges to robots in terms of lighting, incapability of 
GPS, water dripping and so on. This dataset introduced by defense advanced research projects agency (DARPA) 
that discusses the underground operations. It explores new approaches rapidly map, navigate, search, and exploit 
complex underground environments such as human-made tunnel systems, urban underground, and natural cave 
networks. Therefore, the prediction of the interesting scene is a tedious task. Each video runs from 50 to 85 min 
and is being annotated as normal and difficult. The Figs. 2 and 3 present the difference between uninteresting 
and interesting scenes. The proposed framework experiments on these input videos. The learning process is 
implemented in MATLAB 2019A.

The efficacy of the proposed learning framework is evaluated using the performance metrics such as Preci-
sion, recall, F-measure and memorability score. The Table 1 presents the collective performance values of the 
proposed technique applied on the considered dataset.

Precision
The intention of the precision metric is to enhance the success rate of a predictor system. It is a statistical measure 
used for validating the predicted interesting scenes to the total count scenes in videos with reference to ground 
truth information. It is expressed as follows:

Recall
The recall is the statistical measure for defining the ability of a developed prediction system. It evaluates the 
testing videos. It is expressed as:

(12)ℵC =
{

j
∣

∣QU
(

s′, aj
)

ǫ top C values in QU (s′, .)}.

(13)targety
trimQ
t = r + γmin{QU (s′, a∗c ),maxaQ

P(s′, a)}.

(14)Precision =
count of correctly predicted interesting scenes

total count of interesting and uninteresting video scenes
.

(15)Recall =

∑TS
j=1(sj − s)(gj − g)

√

∑TS
j=1(sj − s)

2
√

∑TS
j=1(gj − g)

2
,

Figure 2.   Uninteresting scenes–samples.
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where TS is the aggregate count of test video scenes, gj is the ground truth value of jth scenes, g  is the mean 
ground truth value; sj is the predicted value of the jth scenes, s is the average predicted value.

F‑measure
The F-measure presents the positive agreement over the developed prediction system. It presents the weighted 
harmonic balance between precision and recall measures. It is expressed as follows:

Memorability testing
Memorability testing is a significant measure employed to define the efficacy of the learning frameworks. It is 
evaluated by exploring the memory capability of learning parameters. It portrays the proficiency of the predic-
tion system. It is expressed as follows:

In order to evaluate the performance of the proposed method, an analytic study is performed on the conver-
gence analysis, memory capacity, translational invariance, and losing interest.

(16)F-measure =
2 ∗ Precision ∗ Recall

Precision+ Recall
.

(17)

Memtest =
Count of missed interesting scenes

(

Count of interesting scenes received − Count of interesting scenes withdrawn
)

× 100
.

Figure 3.   Interesting scenes–samples.

Table 1.   Performance values of each dataset.

Testing data No. of frames Selected frames (interesting scenes) Object & scenes category Precision Recall F1-measure

817-UGV0-Tunnel0 3312 2444 Objects 80.14 78.23 80.12

817-UGV0-Tunnel1 5023 3245 Humans 79.23 80.14 78.45

818-UGV0-Tunnel1 4845 2364 objects 80.00 78.14 79.63

820-UGV0-Tunnel1 8145 5478 Outdoor 80.45 80.17 81.12

821-UGV0-Tunnel1 5255 3124 Outdoor 81.47 80.17 81.23
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Convergence analysis
The convergence analysis between short-term and online learning modules is done to prove the effectiveness of 
the results. The proposed Trimmed Q-Learning module looks for the specified target region to learn the next 
action of the robots. Here, the outcome of the predictor region is not amended due to the dynamic environment. 
The iteration number decreases rapidly with the trimmed regions during the learning process. Henceforth, the 
learning parameters converge at the 10th iteration with the lesser epochs. Finally, a maximum of 200 iterations 
are used for training purposes.

Memory capacity
The analysis of memory capacity is done to explore the count of trimmed regions used for the learning process. 
The accuracy of the learning module is an opinionated one. The role of uninteresting objects in the interesting 
scenes might affect learning ability. Thus, the model is designed to cope with better features and interesting 
scenes.

Translational invariance
Here, it is assumed that the results of robot actions are invariant to translations and rotations of both scenes 
and the action. A set of convoluted operators is used over a spatial action space to generate a Q-function with-
out degrading image quality. It is also not equivariant to all state and action variables. The use of the dynamic 
trimmed function does efficient memory modules.

Losing interest
The qualitative test is conducted on the proposed Trimmed Q-learning framework. It is done with the help of the 
SUN dataset52. The objects monitored on the video are relatively stable due to the dynamic background motion. 
It is intended to test the online learning framework. The use of two critic networks is to define the interestingness 
level to detect new objects. The detection of similar scenes might drop the interestingness level. Therefore, the 
hyper parameters related to the action variables are adjusted to the learning parameters.

Comparative analysis
The proposed framework outcomes in Table 2 is compared with the existing CNN learning framework53. In 
the previous study, the analysis is carried out in the Area under Curve (AUC). Here, the memorability-based 
interesting scene-prediction system is introduced. Each frame is described by its count of objects, categories 
and the intrinsic characteristics. Regardless, many studies reveal several properties with the frames that plays 
important role in modelling the video memorability. The Fig. 4 presents the feature extraction process and the 
comparison graph is shown in Fig. 5.

Table 2.   Proposed framework–outcomes.

Performance metrics Short-term + online learning Long- term learning Existing (AUC)

Memorability score 72.84 68.63 66.2

Precision 80.59 87.62 43.7

Recall 80 87.56 33.0

F-measure 80.29 87.59 50.8

Figure 4.   Sample- feature extraction process.
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Conclusion
This paper uses a memorability-based interestingness measure to predict interesting scenes for robotic appli-
cations. A novel trimmed Q-learning algorithm is designed to leverage the long-term, short-term and online 
learning process. Initially, the input videos are modelled into the visual memory schema. Each video frame is 
accessed by object, scene and annotated attributes. The collected attributes are used to define the roles of a frame 
that contributed to a long-term learning process. Then, a set of candidate actions with the trimmed regions are 
explored in a diverse unknown environment contributing to the short-term and online learning process. At last, 
the interesting scenes with the interesting objects are predicted by estimating the recalling ability. Experiments 
conducted on public datasets, SubT and SUN databases demonstrate the proposed technique’s efficacy. The 
proposed framework has yielded a 10−15% better improvement than the existing study.

Data availability
The datasets generated or analyzed during the current study are available in the SubT dataset and SUN Dataset 
repository, https://​theai​rlab.​org/​datas​et/​inter​estin​gness and https://​groups.​csail.​mit.​edu/​vision/​SUN/​hiera​rchy.​
html respectively.
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