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Machine learning molecular 
dynamics reveals the structural 
origin of the first sharp diffraction 
peak in high‑density silica glasses
Keita Kobayashi 1*, Masahiko Okumura 1,4, Hiroki Nakamura 1,4, Mitsuhiro Itakura 1,4, 
Masahiko Machida 1,4, Shingo Urata 2,4 & Kentaro Suzuya 3,4

The first sharp diffraction peak (FSDP) in the total structure factor has long been regarded as a 
characteristic feature of medium-range order (MRO) in amorphous materials with a polyhedron 
network, and its underlying structural origin is a subject of ongoing debate. In this study, we utilized 
machine learning molecular dynamics (MLMD) simulations to explore the origin of FSDP in two typical 
high-density silica glasses: silica glass under pressure and permanently densified glass. Our MLMD 
simulations accurately reproduce the structural properties of high-density silica glasses observed in 
experiments, including changes in the FSDP intensity depending on the compression temperature. 
By analyzing the simulated silica glass structures, we uncover the structural origin responsible for the 
changes in the MRO at high density in terms of the periodicity between the ring centers and the shape 
of the rings. The reduction or enhancement of MRO in the high-density silica glasses can be attributed 
to how the rings deform under compression.

Silicon dioxide is an essential material used not only in glass manufacturing but also in the production of 
semiconductors1,2. In addition to its industrial significance, silica glass is of great interest in fundamental research 
as an archetypal polyhedron network former3. One of the most fundamental issues of the polyhedron network 
forming materials is the origin of the first sharp diffraction peak (FSDP) in the total structure factor measured 
by neutron and X-ray diffraction (ND and XRD) experiments. The FSDP has been considered a signature of 
medium-range order (MRO) in disordered materials. Numerous models have been proposed to explain the 
relationship between the FSDP and the underlying atomic structures4. The periodicity of the quasi-crystalline5,6, 
layered structures7,8, cluster-like regions9,10, and chemical ordering of the voids around cations11,12 have been 
explored as the structural origins of FSDP. The MRO and FSDP in amorphous materials have also been discussed 
in relation to their glass-forming ability13–16. In the case of silica glass, the quasi-periodicity formed in the SiO4 
tetrahedral network is considered to induce FSDP in the total structure factor17–26.

The FSDP is significantly affected by the density of silica glass24,27–31. For example, it is well known that the 
FSDP heights of the permanently densified silica glass produced by cold compression27,28 and the silica glass 
under high pressure29,31 are significantly reduced, suggesting that the densification disrupts the MRO in the 
glasses. By contrast, Onodera et al.24 recently reported unusual behavior of FSDP in high-density silica glass. 
They have shown that the permanently densified silica glass created via hot compression enhances the FSDP. 
Depending on the thermal treatment used for the formation of high-density silica glass, the FSDP exhibits the 
opposite behavior, which cannot be determined solely by the density. Thus, investigating high-density silica glass 
is crucial for understanding the origin of FSDP in disordered polyhedral network materials.

Reliable information in real space is essential for detailed investigations of the structural properties of 
disordered materials. However, XRD and ND experiments on noncrystalline materials can only provide one-
dimensional structural information, such as total structure factors and their corresponding pair distribution 
functions. Therefore, computational methods, including the reverse Monte Carlo method, molecular dynamics 
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(MD) simulations, and first-principles calculations based on the density functional theory (DFT), have been 
extensively used to obtain three-dimensional real-space structural information on disordered materials20,23,24,32–38.

Over the past decade, a variety of machine learning techniques have been applied to predict material proper-
ties and characterize the structures of glasses39–44. Specifically, machine learning molecular dynamics (MLMD) 
is a breakthrough in the accurate structural prediction of materials45–53. In MLMD, flexible functions with 
several adjustable parameters are employed as interatomic potentials for MD simulations: for example, artificial 
neural networks45,46 and Gaussian processes47,48. These are referred to as machine-learning potentials. Machine-
learning potentials are trained with numerous DFT calculations to imitate the DFT potential-energy surface and 
enable large-scale MD simulations with near DFT accuracy. Machine-learning potentials for covalent glasses 
and liquids have been constructed using linear regression49, artificial neural networks49–52, and the Gaussian 
approximation potential53. In particular, Erhard et al.53 revealed that a machine-learning potential based on DFT 
with the strongly constrained and appropriately normed meta-GGA exchange-correlation functional54 enabled 
high-accuracy calculations for various phases of silica. MLMD simulations, which can provide accurate real-
space structural information with almost DFT accuracy, are expected to further our understanding of MRO in 
disordered materials.

In this study, we investigated the detailed microscopic structures as the origin of MRO in high-density 
silica glass using MLMD simulations with neural networks type machine-learning potential45,46trained using 
the results of DFT calculations with the strongly constrained and appropriately normed meta-GGA exchange-
correlation functional. We aimed to elucidate the relationship between the FSDP and the atomic structures of 
high-density silica glass. To achieve this outcome, we subjected silica glass to different types of deformations, 
as performed in previous experiments24,27,29,31. We primarily focused on two types of high-density silica glass: 
silica glass under pressure (SGUP) at room temperature and densified silica glass created by hot compression 
(DSG). Elastic deformation is expected to dominate the deformation of the SGUP, whereas plastic deformation 
with Si–O bond recombination is expected to predominantly govern DSG formation. Investigating the differ-
ence in the deformation behavior between SGUP and DSG is expected to deepen our understanding of MRO 
in silica glass. We show that the MLMD simulations reasonably reproduce various experimental results for 
high-density silica glasses, including the enhancement (or reduction) of FSDP. The structural origin of MRO 
in the simulated high-density silica glasses was investigated from the perspective of the quasi-periodicity of the 
boundaries between successive cages formed by rings in the SiO4 tetrahedral network. The difference between 
the structural origins of the MROs in the SGUP and DSG was clarified by examining the deformation manner 
of the rings under cold and hot compression.

Results
The structural properties of the ordinary silica glass (OSG) obtained via MLMD melt-quenching simulations are 
summarized in Table 1. The percentage error of the density in the experimental data was approximately 2.4 %, 
and the obtained bond lengths agreed well with the experimental results. The O–Si–O angle is extremely close 
to the central angle of the ideal tetrahedron, 109.47◦ . The Si–O–Si angle obtained through MLMD was compa-
rable to the experimental data. Figure 1 shows the Faber–Ziman total structure factor SFZ(Q) of the simulated 
and experimental OSGs. Three distinctive peaks, Q1, Q2, and Q3, were observed for SFZ(Q) . The first peak Q1 is 
the FSDP, reflecting the MRO embedded in the SiO4 tetrahedral networks. The second peak Q2 is called as the 
principal peak (PP). The scale of the Q2 agrees with the heights of the SiO4 tetrahedra as Q2 ≃ 2π/(4dSiO/3) , and 
the PP is considered to reflect the local arrangement of the SiO4 tetrahedra58,59. The third peak Q3 is a generic 
feature of amorphous materials arising from single-pairwise correlations between nearest-neighbor atoms23,59. 
Although the total structure factor computed using MLMD slightly underestimates the height of the FSDP, all the 
peak positions of the SFZ(Q) show excellent agreement with the experimental data from low to high scattering 
vector Q. The structures of the simulated silica glass generated by MLMD simulations with near DFT accuracy 
were considered reliable for discussing the structural properties, including MRO.

Based on MLMD simulations, we analyzed the structural properties of two typical high-density silica glasses: 
SGUP and DSG. The pressure-density curve of the SGUP evaluated via MLMD was consistent with the trend of 
the experimental data, as shown in Fig. 2a. Figure 2b shows the density of the DSG created by compressing the 
OSG at various pressures and temperatures. Although the plastic deformation of silica glass at room temperature 
was experimentally observed at approximately 9 GPa60,61, the density of the silica glass compressed at 10 GPa 

Table 1.   Structural properties of the OSG computed by MLMD. The Si–O, Si–Si, and O–O bond lengths ( dSiO , 
dSiSi , and dOO ) are determined as the first-peak positions of pair-distribution functions. The averaged O–Si–O 
and Si–O–Si angles ( θOSiO and θSiOSi ) are defined using the mean value of the angle distributions.

MLMD Exp.

Density [g/cm2] 2.245 2.19655

dSiO [Å] 1.61 1.6119

dSiSi [Å] 3.08 3.0719

dOO [Å] 2.62 2.6219

θOSiO [ ◦] 109.41 109.4756

θSiOSi [ ◦] 144.57 148.356, 14632
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and 300 K was extremely low in the MLMD simulation (see the inset of Fig. 2b). This was due to the limitation 
of the time scale of the MD simulation, and compression at high temperatures was required to achieve a large 
structural relaxation of silica glass38,63–65. On the timescale of the present simulation, densification due to hot 
compression above 1000 K can be detected. Sufficient structural relaxation of silica glass is considered to be 
realized above 3000 K, because the density of silica glass does not show a temperature dependence above 3000 
K. Experimentally, silica glass can be densified up to approximately 23%, the value of which depends on the 
compression pressure and temperature24,28,30,66,67. In the present simulation, with hot compression up to 10 GPa 
and 3500 K, the silica glass was densified by up to 19%.

Figure  3 shows the partial differential distribution Gαβ(r) and angle distribution functions Pαβγ (θ) 
of the OSG, the SGUP, and the DSG. The partial differential distribution function19,33 is defined as 
Gαβ(r) = 4πρ0r[gαβ(r)− 1] , where ρ0 is the density of the silica glass. Herein, we focus on the SGUP and the 
DSG with almost the same density (2.692 and 2.662 [g/cm3 ], respectively). The first peak positions of GOO(r) and 
GSiO(r) in SGUP and DSG, which correspond to the O–O and Si–O bond lengths, were almost unchanged from 
those of OSG. All the peaks of the O–Si–O angle distribution functions are close to 109◦ , as shown in Fig. 3b. 
These results indicated that the structures of the SiO4 tetrahedral units were well maintained under cold and hot 
compression. The peak of the Si–O–Si angle distribution of the SGUP largely shifted toward a lower angle than 
that of the OSG, whereas the corresponding peak shift of the DSG was small. In all cases, the contribution of the 
edge-sharing SiO4 tetrahedra was negligible (see inset of Fig. 3e), and the SiO4 networks of the glasses consisted 
of corner-sharing tetrahedral SiO4 . Overall, the peaks of Gαβ(r) of the SGUP shifted to a lower position from 
those of the OSG, except the first peak. In addition, the ring size distribution of the SGUP was almost unchanged 
from that of the OSG, as shown in Fig. 4a. The structure of the SGUP is considered to have almost the same 
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Figure 1.   Faber–Ziman structure total factor SFZ(Q) of the OSG obtained via the MLMD melt-quenching 
simulation and experiment (Exp124 and Exp257). The upper and lower panels show the results of the ND and 
XRD, respectively.
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topology as that of the OSG with a reduced Si–O–Si angle. By contrast, in the case of the DSG, there is no regular 
trend with regard to the peak shifts of Gαβ(r) from those of the OSG. Furthermore, the ratio of rings larger than 
seven-membered rings increased in the DSG compared to that in the OSG (see Fig. 4a). These results indicate 
that the structure of DSG has a different topology from those of OSG and SGUP because of the recombination 
of Si–O bonds by compression at high temperatures. The increase in the number of larger rings agrees with the 
reverse Monte Carlo result for the DSG created by hot compression24. Notably, the creation of larger rings in 
the DSG is linked to a small change in the Si–O–Si angle distribution of the DSG (Fig. 3e). This is because large 
rings can adopt various configurations to allow large Si–O–Si angles, whereas the configurations of small rings 
are more constrained, and the deformation of small rings inevitably leads to a reduction in the Si–O–Si angle. 
From an energy perspective, a small Si–O–Si angle increases the local energy related to the Si–O–Si bond, as 
shown in Fig. 4b. Therefore, large rings were generated in the DSG to avoid the local energy increment owing to 
the significant reduction in the Si–O–Si angle caused by compression.

Figure 5a shows the Faber–Ziman total structure factors SFZ(Q) for SGUP and DSG with approximately 
the same density. The FSDP intensities of SGUP and DSG showed reduction and enhancement, respectively, 
which are in good agreement with previous experimental reports24,29,31 (see also Supplementary Information). In 
particular, MLMD successfully reproduced the enhancement of the FSDP in DSG, which was recently reported 
by Onodera et al.24. The density dependence of the positions and heights of the FSDPs in the SGUP and DSGs 
compressed at various temperatures is shown in Fig. 5b. The positions of the FSDPs shifted towards a higher 
wavevector with increasing density in all cases, and the shifts of the DSGs were larger than those of the SGUP 
at almost the same density. Although the positions of the FSDP in the DSGs were slightly scattered, they were 
assumed to be proportional to the density, as observed in the experimental results27. Regarding the density 
dependence of the height of the FSDP, although the height of the FSDP in the SGUP monotonically decreased 
with increasing density, those in the DSGs showed a reduction or enhancement depending on the compression 
temperature. As reported in the experiments, FSDP in DSG was sensitive to thermal treatment24. The PPs in 
the SFZ(Q) observed by the ND became sharper with increasing density, which was considered to be related to 
the oxygen packing fraction23,58,59. Although the PP usually does not appear in the XRD structure factor as in 
the case of the OSG and DSG, the SFZ(Q) observed via XRD for the SGUP reveals a small peak around 2.9 Å −1 , 
which is also observed in in-situ high-pressure experiments31.

Discussion
We have demonstrated that the MLMD simulations accurately reproduced the experimental results for high-
density silica glasses. Based on reliably simulated high-density silica glasses, we discuss the structural origin of 
the FSDP. The FSDP in silica glass has been considered to arise from the quasi-periodicity of the boundaries 
between successive cages formed by the rings in the SiO4 tetrahedral network17–20. To extract the quasi-periodicity 
of the boundaries from the simulated glasses, we evaluated the ring center pair distribution function defined as
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where V is the system volume, NRC denotes the total number of the rings obtained by shortest path analysis, and 
rRC,i indicates the centroid coordinate of i-th ring. Figure 6a shows the ring center differential distribution func-
tion, GRC(r) = 4πρRr[gRC(r)− 1] , where ρRC = NRC/V  The peaks of GRC(r) in the short-range region within 
3Å are attributed to the overlapping of some centroid positions of the rings. The distinctive peaks appear in the 
intermediate range (3Å≤ r ) with a period �r ≃ 4 , which coincides with the scale of the FSDP, Q1 ≃ 2π/�r . We 
evaluated the ring center structure factor SRC(Q) , defined by the Fourier transform of gRC(r) , and the results are 
shown in Fig. 6b. The peak positions of SRC(Q) qualitatively reproduced the positions of the FSDPs in the total 
structure factor SFZ(Q) . This result supports the conclusion of the previous studies that the origin of the FSDP 
is the quasi-periodicity between the succession of cages17–20. Although the ring center structure factor SRC(Q) 
does not reproduce the change in the height of the FSDP in SFZ(Q) , it can capture some characteristic features 
of the MRO in high-density silica glasses. The shapes of SRC(Q) for the OSG and SGUP are almost identical, and 
SRC(Q) for the SGUP is regarded as a simple shift of the OSG to a higher scattering vector, which is consistent 
with the trend of the partial differential distribution functions of the SGUP (see Fig. 3a–c). This result implies 
that the MRO in the SGUP and OSG are basically identical. By contrast, the peak of SRC(Q) of DSG is sharper 
than that of OSG and SGUP. The sharper peak indicates a clearer quasi-periodicity between the cage boundaries, 
which can also be confirmed by the long-lasting periodicity of GRC(r) of the DSG, as shown in Fig. 6a.
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∑
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Figure 6.   (a) Ring center differential distribution function GRC(r) . (b) Upper panel shows the ring center 
structure factor and the lower panel represents the Faber–Ziman total structure factor of ND. (c) One-
dimensional persistence diagram of the DSG with density 2.662 [g/cm3 ]. The horizontal and vertical axes (birth 
and death) represent the length scale of loops embedded in atomic configuration. (d) Probability distribution 
of death scale on the L1 band (region enclosed by the black dashed line in (c)) The values in (·) in the legends 
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The ring center structure factor SRC(Q) does not reproduce the changes in the height of the FSDPs with 
increasing density because it only considers the correlation between ring centers and ignores information on 
the shapes of the rings. To address this issue, we used a persistence diagram to analyze the shapes of the rings 
in high-density silica glasses. Figure 6c shows the one-dimensional persistence diagram of the DSG with three 
characteristic bands: LT , L1 , and L2 . The LT band represents a triangular loop comprising silicon and its two near-
est oxygen atoms, indicating a short-range order owing to the local structure of the SiO4 tetrahedron (right lower 
panel in Fig. 6c). In the persistence diagram calculations, we defined the initial radii of the atomic balls for silicon 
rSi and oxygen rO to satisfy the condition dSiO = rSi + rO . Therefore, the rings obtained through shortest path 
analysis based on Si–O bond length appear nearly on the vertical line along b ≃ 0 in the L1 band (the left upper 
subpanel in Fig. 6c). The L2 band represents the subloops arising within the loops in the L1 band and continu-
ing into the L1 band. We refer to the intersecting region of the L1 and L2 bands as L1 ∩ L2 band, which includes 
loops corresponding to largely distorted ring structures, as shown in the right lower panel of Fig. 6c. Figure 6d 
shows the probability distribution of the death scale for the L1 band. Both the L1 peaks of SGUP and DSG shift 
towards a smaller death scale, indicating that the mean ring radii are reduced in the high-density silica glasses. 
The primary difference between the SGUP and the DSG indicates the peak development related to the L1 ∩ L2 
band ( d ≃ 0.5 ). In the SGUP, the peak of the L1 ∩ L2 band significantly develops, and the boundary between the 
L1 and the L1 ∩ L2 bands is rendered ambiguous. This result suggests that compression causes extensive distor-
tion of the ring shapes in the SGUP, which is consistent with the considerable reduction in the Si–O–Si angles 
illustrated in Fig. 3e. Consequently, the boundary surfaces of the cages formed by the rings in the SGUP are 
significantly disturbed compared to those in the OSG and DSG, which is considered to weaken the quasi-Bragg 
diffraction between the boundaries and decrease the FSDP. By contrast, the L1 ∩ L2 peak of the DSG is small, 
and the L1 peak becomes shaper. This indicates that structural relaxation accompanied by hot compression sup-
presses the creation of distorted rings caused by densification, resulting in more aligned boundary surfaces of 
successive cages in the DSG. The cage boundary surfaces of the DSG, which consist of rings with well-aligned 
length scales and small disturbances, enhance the quasi-Bragg diffraction related to the FSDP.

Finally, we uncover the underlying mechanism for developing the MRO, focusing on ring deformation caused 
by compression. We characterized deformation of the ring shape using a cuboid approximation of a ring on the 
ring pseudo-plane. To define the pseudo-plane for each ring, we computed the inertia tensor of the i-th ring as

We then determined the axes of each ring’s pseudo-plane using the principal axes of its inertia tensor. The lengths 
of the sides of the i-th ring approximated as a cuboid were defined as follows:

where U (i) is the matrix to diagonalize M(i) and the index k denotes the principal axes of the inertia tensor 
( k = 1, 2, 3 ). The ordering of l(i)k  is such that l(i)1 ≤ l

(i)
2 ≤ l

(i)
3  , where l(i)1  represents the thickness of the pseudo-plane 

of the i-th ring, l2 and l3 characterize the shape of the ring within the pseudo-plane (see Fig. 7a), respectively. 
To quantify the deformation of the ring shape, we evaluated the average aspect ratio of the sides, l2/l3 , of the 
cuboids approximating the ring shapes. The aspect ratio, l2/l3 , indicates the shape of a ring in the pseudo-plane, 
where a value close to 1 suggests that the shape of the ring is close to isotropic in the pseudo-plane, whereas a 
small value of l2/l3 indicates that the ring has an elongated shape. The aspect ratio, l2/l3 , revealed noteworthy 
differences between the shapes of the rings in the SGUP and DSG (see Fig. 7b). For small rings, the l2/l3 of the 
SGUP decreased from that of the OSG, while the ratios of the DSG and OSG were almost identical. This differ-
ence between SGUP and DSG indicates that cold compression deforms the small rings, whereas hot compression 
retains the shape of the small rings. By contrast, for large rings, l2/l3 of the DSG is smaller than that of the SGUP-
the rings in the DSG are more deformed than those in the SGUP. The difference in ring deformation between 
SGUP and DSG was attributed to the presence or absence of Si–O bond recombination. Because Si–O bond 
recombination is absent in the SGUP, all rings are forcefully deformed with a significant reduction in the Si–O–Si 
angles (Fig. 3e), and the ring shapes are distorted (Figs. 6d, 7c). By contrast, the Si–O bond recombination in the 
DSG through hot compression suppressed the considerable reduction in the Si–O–Si angles and the distorted 
shape of the rings by preferentially deforming the large rings. This is because large rings can adopt various con-
figurations to allow large Si–O–Si angles, as discussed previously. The large structural relaxation caused by hot 
compression deforms the large rings into elongated shapes and retains the shape of the small rings, as shown in 
Fig. 7c, preventing a local energy increase resulting from small Si–O–Si angles (see Fig. 4b).

The primary contribution to the formation of the FSDP is thought to originate from the length scale of 
l2 , since the l2 distribution contains primarily the length scale of the FSDP, Q1 = 2π/�r = 1.5 ∼ 1.8 , where 
�r ≃ 3.5 ∼ 4.2 (see Figs. 5, 7d). By examining the l2 distributions of the ring sizes, we elucidated the relationship 
between ring deformation and the change in MRO in high-density silica glass. The l2 distributions of the SGUP 
exhibited almost uniform shifts toward a smaller length scale compared to those of the OSG, as shown in Fig. 7e. 
The differences in the length scales between the different ring sizes of the SGUP were similar to those of the 
OSG, indicating that the quasi-periodicity of the cage boundaries was basically identical to that of the OSG. This 
result agrees with the analysis of the partial differential distribution functions and ring center structure factor of 
the SGUP. By contrast, the distributions of the smaller rings of the DSG than 5-member are almost unchanged 
compared to those of the OSG, whereas those of the larger rings than 7-member largely shifted to a small length 

(2)M(i) =
�

j∈i-th ring






y2j + z2j − xjyj − xjzj
−xjyj x2j + z2j − yjzj
−xjzj − yjzj x2j + y2j






(3)l
(i)
k = max({[U (i)

rj∈i-th ring]k})−min({[U (i)
rj∈i-th ring]k}),
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scale from those of the OSG. Thus, the l2 distributions of the rings of the DSG exhibit a large overlap compared 
to those of the SGUP and OSG, indicating the aligned length scales of rings with different sizes (see also the 
schematic figure of the DSG in Fig. 7c). The aligned length scales of the rings in the DSG are directly linked to 
the deformation of the rings in the DSG, i.e., small rings in the DSG tend to maintain their shape, whereas large 
rings tend to become elongated. Consequently, the length scales ( l2 ) of the different rings are rendered close, and 
the aligned length scales of the rings enhance the quasi-periodicity of the SiO4 network in the DSG.

Conclusion
We have performed extensive MLMD simulations to explore the structural origin of MRO in high-density silica 
glass. Our MLMD simulation reasonably reproduced the structural properties of high-density silica glasses 
observed in experiments, including the reduction and enhancement of the FSDP depending on the compression 
temperature. Based on the structures of the simulated high-density silica glasses, we investigated the structural 
origin of the difference in the FSDPs between SGUP and DSG, which have almost the same density. Two pri-
mary factors were identified that influence the reduction or development of the FSDP in these high-density 
silica glasses. The first relates to the shape of boundary surfaces of cages formed by rings, quantifiable through 
persistent diagrams. The second factor is associated with the quasi-periodicity in the SiO4 tetrahedral network, 
which correlates with the length scale of the rings. Under cold compression for the SGUP, there was no recom-
bination of the Si–O bond, meaning that the topology of the SiO4 tetrahedral network remains unchanged. 
This observation was supported by the partial differential distribution, ring statistics, and the ring center pair 
distribution function. The reduction in FSDP within the SGUP is attributed to the ring shape distortion caused 
by compression, which in turn weakens the quasi-Bragg diffraction between the boundary surfaces of succes-
sive cages in the SiO4 tetrahedral network. For the DSG created by hot compression, the recombination of the 
Si–O bond created and deformed large rings. The creation and deformation of the large rings occurred in order 
to avoid a local energy increase associated with a significant reduction of the Si–O–Si angles by densification. 
This is because large rings have flexibility, allowing for larger Si–O–Si angles in a high-density state, whereas the 
deformation of smaller rings inevitably results in a reduction of the Si–O–Si angles. The large rings tended to 
deform into elongated shapes, characterized by significant changes in their aspect ratios ( l2/l3 ), while the shape 
of smaller rings remains almost unchanged. Consequently, the length scales of small to large rings ( l2 ) became 
close, and quasi-periodicity developed. The large structural relaxation through high-temperature compression 

2

1

3

OSG SGUP DSG

small ring

large ring

(a)

(b)

(c)

(d) (e)

Figure 7.   (a) Ring approximated as a cuboid on the principal axes of the moment tensor of a ring. l1 , l2 , and l3 
represent the length of the sides of the cuboid ( l1 ≤ l2 ≤ l3 ). (b) Averaged ratio of the sides of the cuboid l2/l3 
for each ring size. (c) Schematic figures of ring deformation for small and large rings of SGUP and DSG. (d) 
Distribution of l1 , l2 , and l3 for OSG, SGUP and DSG. (e) Distribution of l2 calculated for each ring size. Dashed 
lines represent the peak position of the l2 distribution for guide. The values in (·) in the legends denote the 
density of silica glass [g/cm3].
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caused the cage boundary surfaces to form rings with well-aligned length scales and small distortions, which 
contributed to the enhancement of the FSDP.

Methods
Machine learning molecular dynamics
A machine-learning potential based on the Behler-Parrinello type neural network45,46 was created using the n2p2 
code. The details and validations of the proposed machine-learning potential are provided in the Supplementary 
Information. MD simulations with the machine-learning potential were performed using the LAMMPS code68 
with an n2p2 interface. A Nosè-Hoover thermostat69,70 and a Parrinello-Rahman barostat71,72 were used to control 
the temperature and pressure of the systems, respectively.

Simulated silica glass
Ordinary silica glass (OSG) structures were created via melt quenching simulations. We first conducted an NPT 
simulation of liquid silica with 1728 atoms at 3500 K. The time step and total simulation time were 1 fs and 500 
ps, respectively. Five configurations of liquid silica were selected at 100 ps intervals from the MD trajectories. 
A melt-quenching simulation was then performed for the five structures from temperatures of 3500–300 K at a 
cooling rate of 0.5 K/ps. In this study, we calculated all the physical quantities of simulated silica glasses from MD 
trajectories generated via NPT simulations with 100 ps run at 300 K. In addition, we assumed the ensemble aver-
age using five different configurations of silica glass to improve the statistical certainty of the physical quantities.

We also created two types of simulated high-density silica glass: SGUP and DSG. The SGUPs were prepared 
by applying various pressures (2.5, 5.0, 7.5, and 10 GPa) to the simulated OSG with a simulation time of 100 ps 
at 300 K. The DSGs were created by compressing the simulated OSG at high temperatures (1000, 1500, 2000, 
2500, 3000, and 3500 K) and pressures (2.5, 5.0, 7.5, and 10 GPa). The OSG was compressed at the target pressure 
and temperature for 100 ps, and then cooled to 300 K at a rate of 0.5 K/ps. After the quenching simulation, the 
applied pressure was gradually released to 0 GPa for 100 ps. The physical properties of the simulated high-density 
silica glasses were computed in the same manner as those for the OSG.

Faber–Ziman total structure factor
We calculated the Faber–Ziman total structure factor from the partial pair distribution function gαβ(r) of the 
simulated silica glass as

where ρ0 is the density of the silica glass, cα is the concentration of chemical species ( α = Si,O ), and bα(Q) is the 
neutron (or X-ray) scattering factor for the chemical species, and 〈b(Q)〉 denotes the average of the scattering 
factor as �b(Q)� ≡

∑
α cαbα(Q) . We used neutron scattering lengths, bSi = 4.1491 and bO = 5.803 , to calculate 

the total structure factor of the ND. The Q-dependent scattering factors bα=Si,O(Q) for the calculation of the total 
structure factor of the XRD were taken from the reference73.

Topological analysis
The topology embedded in the SiO4 network in high-density silica glass was analyzed using ring statistics and 
persistence homology analyses21,74. The ring size distribution was computed using shortest path analysis75. We 
defined the edges of an undirected graph from the Si–O bonds and collected the shortest rings connected to an 
Si atom using a depth-first search. Persistence homology analysis was performed using the HomCloud package74. 
The mathematical details of persistence homology can be found in the references21,74. In this method, we generate 
an atomic ball with radius ri(α) =

√
α + r2i  , where ri is the initial radius of each atom and the parameter α is an 

adjustable parameter. By varying α from zero to a sufficiently large value, we can detect the loops embedded in 
the atomic configuration at each α . The detected loops are characterized by birth and death scales (b and d), at 
which the loop first appears ( α2 = b ) and disappears ( α2 = d ). Subsequently, the persistence diagram is given 
as a 2D histogram counting the number of loops on the birth-death plane, which provides quantitative informa-
tion on both the shape and length of the loops embedded in the SiO4 network. In this study, the input radii of 
oxygen and silicon atoms ( rO and rSi ) were determined from the O–O and Si–O bond lengths ( dOO and dSiO ) as 
rO = dOO/2 and rSi = dSiO − rO

21.

Data availability
The machine learning potentials and the datasets generated during the current study are available from the cor-
responding author on reasonable request.
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(4)SFZ(Q) =
∑

α,β

cαcβbα(Q)bβ(Q)

�b(Q)�2
Sαβ(Q),

(5)Sαβ(Q) = 1+ 4πρ0

∫

drr2
sin(Qr)

Qr

(
gαβ(r)− 1

)
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