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Machine learning molecular
dynamics reveals the structural
origin of the first sharp diffraction
peak in high-density silica glasses

Keita Kobayashi'*, Masahiko Okumura®*, Hiroki Nakamura*, Mitsuhiro ltakura’*,
Masahiko Machida*, Shingo Urata* & Kentaro Suzuya®*

The first sharp diffraction peak (FSDP) in the total structure factor has long been regarded as a
characteristic feature of medium-range order (MRO) in amorphous materials with a polyhedron
network, and its underlying structural origin is a subject of ongoing debate. In this study, we utilized
machine learning molecular dynamics (MLMD) simulations to explore the origin of FSDP in two typical
high-density silica glasses: silica glass under pressure and permanently densified glass. Our MLMD
simulations accurately reproduce the structural properties of high-density silica glasses observed in
experiments, including changes in the FSDP intensity depending on the compression temperature.

By analyzing the simulated silica glass structures, we uncover the structural origin responsible for the
changes in the MRO at high density in terms of the periodicity between the ring centers and the shape
of the rings. The reduction or enhancement of MRO in the high-density silica glasses can be attributed
to how the rings deform under compression.

Silicon dioxide is an essential material used not only in glass manufacturing but also in the production of
semiconductors™*. In addition to its industrial significance, silica glass is of great interest in fundamental research
as an archetypal polyhedron network former?. One of the most fundamental issues of the polyhedron network
forming materials is the origin of the first sharp diffraction peak (FSDP) in the total structure factor measured
by neutron and X-ray diffraction (ND and XRD) experiments. The FSDP has been considered a signature of
medium-range order (MRO) in disordered materials. Numerous models have been proposed to explain the
relationship between the FSDP and the underlying atomic structures*. The periodicity of the quasi-crystalline®®,
layered structures”®, cluster-like regions®'’, and chemical ordering of the voids around cations'"'? have been
explored as the structural origins of FSDP. The MRO and FSDP in amorphous materials have also been discussed
in relation to their glass-forming ability'>-!°. In the case of silica glass, the quasi-periodicity formed in the SiO4
tetrahedral network is considered to induce FSDP in the total structure factor'’-2¢.

The FSDP is significantly affected by the density of silica glass***’~>!. For example, it is well known that the
FSDP heights of the permanently densified silica glass produced by cold compression?”?® and the silica glass
under high pressure??! are significantly reduced, suggesting that the densification disrupts the MRO in the
glasses. By contrast, Onodera et al.?* recently reported unusual behavior of FSDP in high-density silica glass.
They have shown that the permanently densified silica glass created via hot compression enhances the FSDP.
Depending on the thermal treatment used for the formation of high-density silica glass, the FSDP exhibits the
opposite behavior, which cannot be determined solely by the density. Thus, investigating high-density silica glass
is crucial for understanding the origin of FSDP in disordered polyhedral network materials.

Reliable information in real space is essential for detailed investigations of the structural properties of
disordered materials. However, XRD and ND experiments on noncrystalline materials can only provide one-
dimensional structural information, such as total structure factors and their corresponding pair distribution
functions. Therefore, computational methods, including the reverse Monte Carlo method, molecular dynamics
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(MD) simulations, and first-principles calculations based on the density functional theory (DFT), have been
extensively used to obtain three-dimensional real-space structural information on disordered materials?®*2432-35,

Over the past decade, a variety of machine learning techniques have been applied to predict material proper-
ties and characterize the structures of glasses*~**. Specifically, machine learning molecular dynamics (MLMD)
is a breakthrough in the accurate structural prediction of materials**~>*. In MLMD, flexible functions with
several adjustable parameters are employed as interatomic potentials for MD simulations: for example, artificial
neural networks*>*¢ and Gaussian processes**%. These are referred to as machine-learning potentials. Machine-
learning potentials are trained with numerous DFT calculations to imitate the DFT potential-energy surface and
enable large-scale MD simulations with near DFT accuracy. Machine-learning potentials for covalent glasses
and liquids have been constructed using linear regression®, artificial neural networks*->2, and the Gaussian
approximation potential®. In particular, Erhard et al.>® revealed that a machine-learning potential based on DFT
with the strongly constrained and appropriately normed meta-GGA exchange-correlation functional® enabled
high-accuracy calculations for various phases of silica. MLMD simulations, which can provide accurate real-
space structural information with almost DFT accuracy, are expected to further our understanding of MRO in
disordered materials.

In this study, we investigated the detailed microscopic structures as the origin of MRO in high-density
silica glass using MLMD simulations with neural networks type machine-learning potential*>*trained using
the results of DFT calculations with the strongly constrained and appropriately normed meta-GGA exchange-
correlation functional. We aimed to elucidate the relationship between the FSDP and the atomic structures of
high-density silica glass. To achieve this outcome, we subjected silica glass to different types of deformations,
as performed in previous experiments®**”?**!. We primarily focused on two types of high-density silica glass:
silica glass under pressure (SGUP) at room temperature and densified silica glass created by hot compression
(DSQ). Elastic deformation is expected to dominate the deformation of the SGUP, whereas plastic deformation
with Si-O bond recombination is expected to predominantly govern DSG formation. Investigating the differ-
ence in the deformation behavior between SGUP and DSG is expected to deepen our understanding of MRO
in silica glass. We show that the MLMD simulations reasonably reproduce various experimental results for
high-density silica glasses, including the enhancement (or reduction) of FSDP. The structural origin of MRO
in the simulated high-density silica glasses was investigated from the perspective of the quasi-periodicity of the
boundaries between successive cages formed by rings in the SiOy tetrahedral network. The difference between
the structural origins of the MROs in the SGUP and DSG was clarified by examining the deformation manner
of the rings under cold and hot compression.

Results

The structural properties of the ordinary silica glass (OSG) obtained via MLMD melt-quenching simulations are
summarized in Table 1. The percentage error of the density in the experimental data was approximately 2.4 %,
and the obtained bond lengths agreed well with the experimental results. The O-Si-O angle is extremely close
to the central angle of the ideal tetrahedron, 109.47°. The Si-O-Si angle obtained through MLMD was compa-
rable to the experimental data. Figure 1 shows the Faber-Ziman total structure factor Sgz(Q) of the simulated
and experimental OSGs. Three distinctive peaks, Q1, Q2, and Q3, were observed for Sgz(Q). The first peak Q; is
the FSDP, reflecting the MRO embedded in the SiO4 tetrahedral networks. The second peak Q, is called as the
principal peak (PP). The scale of the Q; agrees with the heights of the SiOy4 tetrahedra as Q; ~ 27 /(4dsio/3), and
the PP is considered to reflect the local arrangement of the SiOj4 tetrahedra®®*’. The third peak Q3 is a generic
feature of amorphous materials arising from single-pairwise correlations between nearest-neighbor atoms**.
Although the total structure factor computed using MLMD slightly underestimates the height of the FSDP, all the
peak positions of the Spz(Q) show excellent agreement with the experimental data from low to high scattering
vector Q. The structures of the simulated silica glass generated by MLMD simulations with near DFT accuracy
were considered reliable for discussing the structural properties, including MRO.

Based on MLMD simulations, we analyzed the structural properties of two typical high-density silica glasses:
SGUP and DSG. The pressure-density curve of the SGUP evaluated via MLMD was consistent with the trend of
the experimental data, as shown in Fig. 2a. Figure 2b shows the density of the DSG created by compressing the
OSG at various pressures and temperatures. Although the plastic deformation of silica glass at room temperature
was experimentally observed at approximately 9 GPa®!, the density of the silica glass compressed at 10 GPa

MLMD Exp.
Density [g/cm?] 2.245 2.196%°
dsio [A] 161 1.61'°
dsisi [A] 3.08 3.07"
doo [A] 2.62 2.62Y
Oosio [°] 109.41 109.47%¢
Osiosi [°] 144.57 148.3%, 146°

Table 1. Structural properties of the OSG computed by MLMD. The Si-O, Si-Si, and O-O bond lengths (dsio,
dsisi, and doo) are determined as the first-peak positions of pair-distribution functions. The averaged O-Si-O
and Si-O-Si angles (Oosio and Bsios;) are defined using the mean value of the angle distributions.
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Figure 1. Faber-Ziman structure total factor Sgz(Q) of the OSG obtained via the MLMD melt-quenching
simulation and experiment (Exp1?* and Exp2®’). The upper and lower panels show the results of the ND and
XRD, respectively.
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Figure 2. (a) Density change of the SGUP at 300 K. Circle dots denote the results obtained via MLMD. Square
(Expl), triangle (Exp2), and inverted triangle dots (Exp3) represent the experimental data®-%2. (b) Density of
the DSGs compressed at different pressures and temperatures.

and 300 K was extremely low in the MLMD simulation (see the inset of Fig. 2b). This was due to the limitation
of the time scale of the MD simulation, and compression at high temperatures was required to achieve a large
structural relaxation of silica glass*®%-%°. On the timescale of the present simulation, densification due to hot
compression above 1000 K can be detected. Sufficient structural relaxation of silica glass is considered to be
realized above 3000 K, because the density of silica glass does not show a temperature dependence above 3000
K. Experimentally, silica glass can be densified up to approximately 23%, the value of which depends on the
compression pressure and temperature?»*33%6667 Tn the present simulation, with hot compression up to 10 GPa
and 3500 K, the silica glass was densified by up to 19%.

Figure 3 shows the partial differential distribution Gug(r) and angle distribution functions Pyg, (6)
of the OSG, the SGUP, and the DSG. The partial differential distribution function'®* is defined as
Gap(r) = 4mpor(gap(r) — 11, where pq is the density of the silica glass. Herein, we focus on the SGUP and the
DSG with almost the same density (2.692 and 2.662 [g/cm?], respectively). The first peak positions of Goo (r) and
Gsio () in SGUP and DSG, which correspond to the O-O and Si-O bond lengths, were almost unchanged from
those of OSG. All the peaks of the O-Si-O angle distribution functions are close to 109°, as shown in Fig. 3b.
These results indicated that the structures of the SiO4 tetrahedral units were well maintained under cold and hot
compression. The peak of the Si-O-Si angle distribution of the SGUP largely shifted toward a lower angle than
that of the OSG, whereas the corresponding peak shift of the DSG was small. In all cases, the contribution of the
edge-sharing SiOy tetrahedra was negligible (see inset of Fig. 3e), and the SiO4 networks of the glasses consisted
of corner-sharing tetrahedral SiO4. Overall, the peaks of Gyg(r) of the SGUP shifted to a lower position from
those of the OSG, except the first peak. In addition, the ring size distribution of the SGUP was almost unchanged
from that of the OSG, as shown in Fig. 4a. The structure of the SGUP is considered to have almost the same
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Figure 3. (a), (b), and (c): Partial differential distribution functions Gg(r) for O-0O, Si-Si, and Si-O pair.

The insets show the first peak of G (r). (d) and (e): O-Si-O and Si-O-Si angle distributions. The inset in (e)
denotes the edge-sharing tetrahedron that contributes to the Si-O-Si angle distribution at approximately 90°.
The distributions of OSG, SGUP, and DSG are indicated by the black, blue, and red lines, respectively. The values
in () in the legends represent the density of the silica glass [g/cm?].
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Figure 4. (a) Ring-size distribution around silicon atom for OSG, SGUP, and DSG. (b) Mean Si-O-Si atomic
energy, e(Si-O-Si) vs Si-O-Si angle, 0si_o-_s;. The Si—-O-Si atomic energy is calculated from machine-learning
potential atomic energy e(i) as e(Si-O-Si) = Zie{si—OfSi}(e(i) — e(i)), where (i) is mean atomic energy of
silicon and oxygen atoms. The values in (-) in the legends denote the density of silica glass [g/cm?].

Scientific Reports |  (2023) 13:18721 |

https://doi.org/10.1038/s41598-023-44732-0

nature portfolio



www.nature.com/scientificreports/

topology as that of the OSG with a reduced Si-O-Si angle. By contrast, in the case of the DSG, there is no regular
trend with regard to the peak shifts of G,g (1) from those of the OSG. Furthermore, the ratio of rings larger than
seven-membered rings increased in the DSG compared to that in the OSG (see Fig. 4a). These results indicate
that the structure of DSG has a different topology from those of OSG and SGUP because of the recombination
of Si-O bonds by compression at high temperatures. The increase in the number of larger rings agrees with the
reverse Monte Carlo result for the DSG created by hot compression®*. Notably, the creation of larger rings in
the DSG is linked to a small change in the Si-O-Si angle distribution of the DSG (Fig. 3e). This is because large
rings can adopt various configurations to allow large Si-O-Si angles, whereas the configurations of small rings
are more constrained, and the deformation of small rings inevitably leads to a reduction in the Si-O-Si angle.
From an energy perspective, a small Si—O-Si angle increases the local energy related to the Si-O-Si bond, as
shown in Fig. 4b. Therefore, large rings were generated in the DSG to avoid the local energy increment owing to
the significant reduction in the Si-O-Si angle caused by compression.

Figure 5a shows the Faber-Ziman total structure factors Sgz(Q) for SGUP and DSG with approximately
the same density. The FSDP intensities of SGUP and DSG showed reduction and enhancement, respectively,
which are in good agreement with previous experimental reports**?**! (see also Supplementary Information). In
particular, MLMD successfully reproduced the enhancement of the FSDP in DSG, which was recently reported
by Onodera et al.*. The density dependence of the positions and heights of the FSDPs in the SGUP and DSGs
compressed at various temperatures is shown in Fig. 5b. The positions of the FSDPs shifted towards a higher
wavevector with increasing density in all cases, and the shifts of the DSGs were larger than those of the SGUP
at almost the same density. Although the positions of the FSDP in the DSGs were slightly scattered, they were
assumed to be proportional to the density, as observed in the experimental results”’. Regarding the density
dependence of the height of the FSDP, although the height of the FSDP in the SGUP monotonically decreased
with increasing density, those in the DSGs showed a reduction or enhancement depending on the compression
temperature. As reported in the experiments, FSDP in DSG was sensitive to thermal treatment*!. The PPs in
the Sgz(Q) observed by the ND became sharper with increasing density, which was considered to be related to
the oxygen packing fraction”>**. Although the PP usually does not appear in the XRD structure factor as in
the case of the OSG and DSG, the Sz (Q) observed via XRD for the SGUP reveals a small peak around 2.9 A=,
which is also observed in in-situ high-pressure experiments®'.

Discussion

We have demonstrated that the MLMD simulations accurately reproduced the experimental results for high-
density silica glasses. Based on reliably simulated high-density silica glasses, we discuss the structural origin of
the FSDP. The FSDP in silica glass has been considered to arise from the quasi-periodicity of the boundaries
between successive cages formed by the rings in the SiO4 tetrahedral network'”-". To extract the quasi-periodicity
of the boundaries from the simulated glasses, we evaluated the ring center pair distribution function defined as
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Figure 5. (a) Faber-Ziman total structure factor Sgz(Q) for ND and XRD computed via MLMD simulation.
The black, blue, and red lines represent the structure factors for OSG, SGUP, and DSG, respectively. The values
in (-) in the legends denote the density of silica glass [g/ cm?]. (b) shows the density dependence of position
(upper panel) and height (lower panel) of the FSDP in the Faber-Ziman structure factor of ND. The black
dots denote the results of the SGUP. The blue, green, purple, and red dots represent the results of the DSGs
compressed at 2000, 2500, 3000, and 3500 K (DSG2000, DSG2500, DSG3000, and DSG3500), respectively. The
orange squares denote the experimental data of the DSG?.
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Va(r — |rrcj — rreil)
gre(r) = i%ﬂ) 12 Nre(Nee — 1) (1)

where V is the system volume, Nrc denotes the total number of the rings obtained by shortest path analysis, and
rrc,i indicates the centroid coordinate of i-th ring. Figure 6a shows the ring center differential distribution func-
tion, Gre(r) = 4mwprrlgrc(r) — 1], where prc = Nrc/V The peaks of Gre () in the short-range region within
3A are attributed to the overlapping of some centroid positions of the rings. The distinctive peaks appear in the
intermediate range (3A< r) with a period Ar ~ 4, which coincides with the scale of the FSDP, Q; ~ 27/ Ar. We
evaluated the ring center structure factor Spc(Q), defined by the Fourier transform of grc(r), and the results are
shown in Fig. 6b. The peak positions of Src(Q) qualitatively reproduced the positions of the FSDPs in the total
structure factor Sgz(Q). This result supports the conclusion of the previous studies that the origin of the FSDP
is the quasi-periodicity between the succession of cages'’’. Although the ring center structure factor Spc(Q)
does not reproduce the change in the height of the FSDP in Sgz(Q), it can capture some characteristic features
of the MRO in high-density silica glasses. The shapes of Src(Q) for the OSG and SGUP are almost identical, and
Src(Q) for the SGUP is regarded as a simple shift of the OSG to a higher scattering vector, which is consistent
with the trend of the partial differential distribution functions of the SGUP (see Fig. 3a—c). This result implies
that the MRO in the SGUP and OSG are basically identical. By contrast, the peak of Src(Q) of DSG is sharper
than that of OSG and SGUP. The sharper peak indicates a clearer quasi-periodicity between the cage boundaries,
which can also be confirmed by the long-lasting periodicity of Grc (r) of the DSG, as shown in Fig. 6a.
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Figure 6. (a) Ring center differential distribution function Grc (7). (b) Upper panel shows the ring center
structure factor and the lower panel represents the Faber-Ziman total structure factor of ND. (c) One-
dimensional persistence diagram of the DSG with density 2.662 [g/cm?]. The horizontal and vertical axes (birth
and death) represent the length scale of loops embedded in atomic configuration. (d) Probability distribution
of death scale on the L; band (region enclosed by the black dashed line in (c)) The values in (-) in the legends
denote the density of silica glass [g/cm?].
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The ring center structure factor Src(Q) does not reproduce the changes in the height of the FSDPs with
increasing density because it only considers the correlation between ring centers and ignores information on
the shapes of the rings. To address this issue, we used a persistence diagram to analyze the shapes of the rings
in high-density silica glasses. Figure 6¢ shows the one-dimensional persistence diagram of the DSG with three
characteristic bands: Ly, L1, and L,. The Lt band represents a triangular loop comprising silicon and its two near-
est oxygen atoms, indicating a short-range order owing to the local structure of the SiO4 tetrahedron (right lower
panel in Fig. 6¢). In the persistence diagram calculations, we defined the initial radii of the atomic balls for silicon
rsi and oxygen rg to satisfy the condition dsio = rs; + ro. Therefore, the rings obtained through shortest path
analysis based on Si-O bond length appear nearly on the vertical line along b > 0 in the L; band (the left upper
subpanel in Fig. 6¢). The L, band represents the subloops arising within the loops in the L; band and continu-
ing into the L; band. We refer to the intersecting region of the L; and L; bands as L; N Ly band, which includes
loops corresponding to largely distorted ring structures, as shown in the right lower panel of Fig. 6¢. Figure 6d
shows the probability distribution of the death scale for the L; band. Both the L; peaks of SGUP and DSG shift
towards a smaller death scale, indicating that the mean ring radii are reduced in the high-density silica glasses.
The primary difference between the SGUP and the DSG indicates the peak development related to the L; N L,
band (d >~ 0.5). In the SGUP, the peak of the L; N L, band significantly develops, and the boundary between the
L;and the L; N L, bands is rendered ambiguous. This result suggests that compression causes extensive distor-
tion of the ring shapes in the SGUP, which is consistent with the considerable reduction in the Si-O-Si angles
illustrated in Fig. 3e. Consequently, the boundary surfaces of the cages formed by the rings in the SGUP are
significantly disturbed compared to those in the OSG and DSG, which is considered to weaken the quasi-Bragg
diffraction between the boundaries and decrease the FSDP. By contrast, the L; N L, peak of the DSG is small,
and the L, peak becomes shaper. This indicates that structural relaxation accompanied by hot compression sup-
presses the creation of distorted rings caused by densification, resulting in more aligned boundary surfaces of
successive cages in the DSG. The cage boundary surfaces of the DSG, which consist of rings with well-aligned
length scales and small disturbances, enhance the quasi-Bragg diffraction related to the FSDP.

Finally, we uncover the underlying mechanism for developing the MRO, focusing on ring deformation caused
by compression. We characterized deformation of the ring shape using a cuboid approximation of a ring on the
ring pseudo-plane. To define the pseudo-plane for each ring, we computed the inertia tensor of the i-th ring as

2 2
A S o
MY = Z —Xjyj X'tz =Yg (2)
jeithring \ —Xxjz;  — ¥;z; sz -l—yjz

We then determined the axes of each ring’s pseudo-plane using the principal axes of its inertia tensor. The lengths
of the sides of the i-th ring approximated as a cuboid were defined as follows:

1 = max({{UD e h ringlk)) — min({[U ¥jei-th ringlk)), (3)

where UV is the matrix to diagonalize M® and the index k denotes the principal axes of the inertia tensor
(k = 1,2, 3). The ordering of l,((l) is such that lf) < l;l) < lgl), where 11@ represents the thickness of the pseudo-plane
of the i-th ring, [, and I3 characterize the shape of the ring within the pseudo-plane (see Fig. 7a), respectively.
To quantify the deformation of the ring shape, we evaluated the average aspect ratio of the sides, I, /I3, of the
cuboids approximating the ring shapes. The aspect ratio, I /I3, indicates the shape of a ring in the pseudo-plane,
where a value close to 1 suggests that the shape of the ring is close to isotropic in the pseudo-plane, whereas a
small value of I, /I3 indicates that the ring has an elongated shape. The aspect ratio, I, /I3, revealed noteworthy
differences between the shapes of the rings in the SGUP and DSG (see Fig. 7b). For small rings, the I, /I3 of the
SGUP decreased from that of the OSG, while the ratios of the DSG and OSG were almost identical. This differ-
ence between SGUP and DSG indicates that cold compression deforms the small rings, whereas hot compression
retains the shape of the small rings. By contrast, for large rings, I /13 of the DSG is smaller than that of the SGUP-
the rings in the DSG are more deformed than those in the SGUP. The difference in ring deformation between
SGUP and DSG was attributed to the presence or absence of Si-O bond recombination. Because Si-O bond
recombination is absent in the SGUP, all rings are forcefully deformed with a significant reduction in the Si-O-Si
angles (Fig. 3e), and the ring shapes are distorted (Figs. 6d, 7c). By contrast, the Si—-O bond recombination in the
DSG through hot compression suppressed the considerable reduction in the Si-O-Si angles and the distorted
shape of the rings by preferentially deforming the large rings. This is because large rings can adopt various con-
figurations to allow large Si-O-Si angles, as discussed previously. The large structural relaxation caused by hot
compression deforms the large rings into elongated shapes and retains the shape of the small rings, as shown in
Fig. 7¢, preventing a local energy increase resulting from small Si-O-Si angles (see Fig. 4b).

The primary contribution to the formation of the FSDP is thought to originate from the length scale of
b, since the I, distribution contains primarily the length scale of the FSDP, Q; = 2n/Ar = 1.5 ~ 1.8, where
Ar =~ 3.5 ~ 4.2 (see Figs. 5, 7d). By examining the I, distributions of the ring sizes, we elucidated the relationship
between ring deformation and the change in MRO in high-density silica glass. The I, distributions of the SGUP
exhibited almost uniform shifts toward a smaller length scale compared to those of the OSG, as shown in Fig. 7e.
The differences in the length scales between the different ring sizes of the SGUP were similar to those of the
OSG, indicating that the quasi-periodicity of the cage boundaries was basically identical to that of the OSG. This
result agrees with the analysis of the partial differential distribution functions and ring center structure factor of
the SGUP. By contrast, the distributions of the smaller rings of the DSG than 5-member are almost unchanged
compared to those of the OSG, whereas those of the larger rings than 7-member largely shifted to a small length
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Figure 7. (a) Ring approximated as a cuboid on the principal axes of the moment tensor of a ring. [}, [, and I3
represent the length of the sides of the cuboid (I; <, < I3). (b) Averaged ratio of the sides of the cuboid /13
for each ring size. (c) Schematic figures of ring deformation for small and large rings of SGUP and DSG. (d)
Distribution of I, I, and I3 for OSG, SGUP and DSG. (e) Distribution of I, calculated for each ring size. Dashed

lines represent the peak position of the I, distribution for guide. The values in (-) in the legends denote the
density of silica glass [g/cm?].

scale from those of the OSG. Thus, the I, distributions of the rings of the DSG exhibit a large overlap compared
to those of the SGUP and OSG, indicating the aligned length scales of rings with different sizes (see also the
schematic figure of the DSG in Fig. 7¢). The aligned length scales of the rings in the DSG are directly linked to
the deformation of the rings in the DSG, i.e., small rings in the DSG tend to maintain their shape, whereas large
rings tend to become elongated. Consequently, the length scales (1) of the different rings are rendered close, and
the aligned length scales of the rings enhance the quasi-periodicity of the SiO4 network in the DSG.

Conclusion

We have performed extensive MLMD simulations to explore the structural origin of MRO in high-density silica
glass. Our MLMD simulation reasonably reproduced the structural properties of high-density silica glasses
observed in experiments, including the reduction and enhancement of the FSDP depending on the compression
temperature. Based on the structures of the simulated high-density silica glasses, we investigated the structural
origin of the difference in the FSDPs between SGUP and DSG, which have almost the same density. Two pri-
mary factors were identified that influence the reduction or development of the FSDP in these high-density
silica glasses. The first relates to the shape of boundary surfaces of cages formed by rings, quantifiable through
persistent diagrams. The second factor is associated with the quasi-periodicity in the SiOy4 tetrahedral network,
which correlates with the length scale of the rings. Under cold compression for the SGUP, there was no recom-
bination of the Si-O bond, meaning that the topology of the SiO4 tetrahedral network remains unchanged.
This observation was supported by the partial differential distribution, ring statistics, and the ring center pair
distribution function. The reduction in FSDP within the SGUP is attributed to the ring shape distortion caused
by compression, which in turn weakens the quasi-Bragg diffraction between the boundary surfaces of succes-
sive cages in the SiOy tetrahedral network. For the DSG created by hot compression, the recombination of the
Si-O bond created and deformed large rings. The creation and deformation of the large rings occurred in order
to avoid a local energy increase associated with a significant reduction of the Si-O-Si angles by densification.
This is because large rings have flexibility, allowing for larger Si—O-Si angles in a high-density state, whereas the
deformation of smaller rings inevitably results in a reduction of the Si-O-Si angles. The large rings tended to
deform into elongated shapes, characterized by significant changes in their aspect ratios (2 /), while the shape
of smaller rings remains almost unchanged. Consequently, the length scales of small to large rings (I;) became
close, and quasi-periodicity developed. The large structural relaxation through high-temperature compression
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caused the cage boundary surfaces to form rings with well-aligned length scales and small distortions, which
contributed to the enhancement of the FSDP.

Methods

Machine learning molecular dynamics

A machine-learning potential based on the Behler-Parrinello type neural network*>*¢ was created using the n2p2
code. The details and validations of the proposed machine-learning potential are provided in the Supplementary
Information. MD simulations with the machine-learning potential were performed using the LAMMPS code®®
with an n2p2 interface. A Nosé-Hoover thermostat®®’® and a Parrinello-Rahman barostat”"’? were used to control
the temperature and pressure of the systems, respectively.

Simulated silica glass
Ordinary silica glass (OSG) structures were created via melt quenching simulations. We first conducted an NPT
simulation of liquid silica with 1728 atoms at 3500 K. The time step and total simulation time were 1 fs and 500
ps, respectively. Five configurations of liquid silica were selected at 100 ps intervals from the MD trajectories.
A melt-quenching simulation was then performed for the five structures from temperatures of 3500-300 K at a
cooling rate of 0.5 K/ps. In this study, we calculated all the physical quantities of simulated silica glasses from MD
trajectories generated via NPT simulations with 100 ps run at 300 K. In addition, we assumed the ensemble aver-
age using five different configurations of silica glass to improve the statistical certainty of the physical quantities.
We also created two types of simulated high-density silica glass: SGUP and DSG. The SGUPs were prepared
by applying various pressures (2.5, 5.0, 7.5, and 10 GPa) to the simulated OSG with a simulation time of 100 ps
at 300 K. The DSGs were created by compressing the simulated OSG at high temperatures (1000, 1500, 2000,
2500, 3000, and 3500 K) and pressures (2.5, 5.0, 7.5, and 10 GPa). The OSG was compressed at the target pressure
and temperature for 100 ps, and then cooled to 300 K at a rate of 0.5 K/ps. After the quenching simulation, the
applied pressure was gradually released to 0 GPa for 100 ps. The physical properties of the simulated high-density
silica glasses were computed in the same manner as those for the OSG.

Faber-Ziman total structure factor
We calculated the Faber-Ziman total structure factor from the partial pair distribution function g,g(r) of the
simulated silica glass as

cacpba (Q)bp(Q)
Si2(Q) = Xﬂ: Q@ 4)

5 sin(Qr)
Qr

where py is the density of the silica glass, ¢y is the concentration of chemical species (¢ = Si,0), and b, (Q) is the
neutron (or X-ray) scattering factor for the chemical species, and (b(Q)) denotes the average of the scattering
factor as (b(Q)) = ", caba (Q) . We used neutron scattering lengths, bs; = 4.1491and bo = 5.803, to calculate
the total structure factor of the ND. The Q-dependent scattering factors by—si,0 (Q) for the calculation of the total
structure factor of the XRD were taken from the reference”.

Sap(Q) =1+ 4mpo /drr (gap(n) — 1), (5)

Topological analysis

The topology embedded in the SiO4 network in high-density silica glass was analyzed using ring statistics and
persistence homology analyses?”*. The ring size distribution was computed using shortest path analysis’. We
defined the edges of an undirected graph from the Si-O bonds and collected the shortest rings connected to an
Si atom using a depth-first search. Persistence homology analysis was performed using the HomCloud package’.
The mathematical details of persistence homology can be found in the references*”*. In this method, we generate
an atomic ball with radius r; (@) = /o + riz, where r; is the initial radius of each atom and the parameter « is an
adjustable parameter. By varying « from zero to a sufficiently large value, we can detect the loops embedded in
the atomic configuration at each «. The detected loops are characterized by birth and death scales (b and d), at
which the loop first appears (¢ = b) and disappears («? = d). Subsequently, the persistence diagram is given
as a 2D histogram counting the number of loops on the birth-death plane, which provides quantitative informa-
tion on both the shape and length of the loops embedded in the SiO4 network. In this study, the input radii of
oxygen and silicon atoms (1o and rs;) were determined from the O-O and Si-O bond lengths (doo and ds;o) as
ro = doo/2and rs; = dsio — ro”'.

Data availability
The machine learning potentials and the datasets generated during the current study are available from the cor-
responding author on reasonable request.
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